A Trip Down Memory Lane in Haskell

Neil C. C. Brown

University of Kent, UK
neil@twistedsquare.com

Abstract

While writing a compiler in Haskell, we had a problem with a
large memory usage. We show how, by changing only a few small
aspects of our design, we were able to reduce the live memory use
of our program from 650 megabytes down to a mere 10 megabytes.
We examine the aspects of our program that caused this problem:
the writer monad and generic programming. We conclude that
Haskell is a powerful, useful and fun programming language, but
that programmers must remain careful as to which techniques they
choose to use, and must keep a close eye on their memory profile
throughout the development process.

Categories and Subject Descriptors D1.1 [Programming Tech-
niques]: Applicative (Functional) Programming

General Terms Experience Report, Memory Usage.

Keywords Haskell, Monad Transformers, Generics, Memory Us-
age.

1. Introduction

Tock is a compiler for concurrent imperative languages such as
occam-7 (Welch and Barnes 2005) and Rain (Brown 2006) that
generates C/C++ code which is subsequently linked against concur-
rent run-time libraries. Tock is currently around 14,000 (non-blank,
non-comment) lines of Haskell, with an additional 6,000 lines of
tests. It is based on the nanopass methodology (Sarkar et al. 2004)
wherein an abstract syntax tree (AST) is transformed by a series of
separate passes.

Our experience of programming in Haskell has been generally
positive. However, at one point during development we found that
Tock used a very large amount of memory. We knew that our AST
contained over a million data items on a specific problematic test-
case and we could not say exactly how much memory use would
be reasonable for this in a lazy functional language. When our
program overflowed the limits of our physical RAM, we began
investigating the cause.

The GHC Haskell compiler supplies tools for profiling and vi-
sualising heap usage — all the figures in this paper are generated
directly by GHC tools. Each band in these graphs represents the
memory allocated by a particular function in the program (typically
a compiler pass). The bands cumulatively form the total live mem-
ory use of the program over time (the vertical axis). Live memory

[Copyright notice will appear here once ’preprint’ option is removed.]

A Trip Down Memory Lane in Haskell

Adam T. Sampson

University of Kent, UK
ats@offog.org

is that which is still in use, and therefore cannot yet be garbage col-
lected. We ignore here the additional overhead of dead memory that
has yet to be garbage collected. The horizontal axis is computation
time, and does not include time spent in garbage collection.

We will explain briefly some of the design of our program, and
show how a few small changes to our choice of tools managed to
reduce the memory usage by around a factor of 60, before reflecting
on our experience.

2. Monads

All the nanopasses in our compiler are monadic. We use monads
for several purposes, including:

e Carrying around compiler state, such as the symbol table;
® Providing an error mechanism for fatal compiler errors;
e Reading in and writing out files using the 10 monad.

Monad transformers (Jones 1995) allow easy composition of
common monads:

e StateT — persistent, modifiable state;

e ReaderT — persistent read-only state;

e WriterT — persistent append-only state;

e ErrorT — allows errors to short-circuit the computation.

The Haskell monad transformer library provides both strict and
lazy versions of each of these. We found monad transformers very
useful. Our original core monad stack, using the lazy implementa-
tions, was:

type PassM = ErrorT ErrorReport
(StateT CompilerState
(WriterT [Warning]
10))

We eventually traced two of the most severe memory problems
back to the WriterT monad transformer.

2.1 Writing a Large Amount

Our final pass in Tock is a code generator, producing plain text
C/C++ code that is written to a file upon completion (ready to be
compiled by the C/C++ compiler). We took what seemed to be the
obvious approach, and we added an extra WriterT [String] to our
monad stack for this final pass. Here is the changed monad stack in
full:

type CodeWriterM = WriterT [String]
(ErrorT ErrorReport
(StateT CompilerState

(WriterT [Warning]

10)))
—— or: type CodeWriterM = WriterT [String] PassM

1 2008/7/30

550M]

500M]

450M

400M

350M

300M]

250M]

200M]

150M.{

100M |

6.0 second:

(a)

550M |

500M |

450M_

400M_|

350M_

300M |

250M |

200M |

150M

100M

second:

6.0

(b)

Figure 1. Memory usage of using a writer monad for the code generated by the final pass (a) and writing directly to disk (b).

bytes
bytes

300M 300M

250M

250M

200M

200M

150M

150M

100M 100M

10.0

second:

bytes

300M

250M

200M

150M

100Mm

e e ———. @@=

0.0 20 40 6.0 8.0 seconds

(c)

100 second:

Figure 2. Memory usage of using different monads for keeping track of warnings: lazy writer (a), strict writer (b), state monad (c).

All the C/C++ code generation was done inside this top-most
writer monad. Each small string generated was added to a list of
strings that were then written to a file (without first being concate-
nated). We expected some overhead for generating the file in mem-
ory before writing it out, but the true extent was surprising.

The graph in figure 1a shows the memory usage of the program
with this writer monad. It is clear that the code generation stage
results in a huge spike at the end: over 300 megabytes. Using the
strict and lazy implementations of WriterT gives the same result
here. We removed the writer monad and instead wrote the strings
directly to the file (recall that our monad stack has 1O at its base).
This almost completely removed the memory spike, as can be seen
in figure 1b.

The generated file was around 240 kilobytes in size — the mem-
ory spike was over 1,000 times larger than the extra data being
stored. This overhead cannot be explained solely by an increase in
data storage due to having lists of small strings. Instead it must be
due to the building up of unevaluated thunks that simply adds the
empty list on to the list of strings in each lifted action that does
not add to the output. Regardless of the exact reasons behind the
overhead, it is surprisingly large.

A Trip Down Memory Lane in Haskell

2.2 Writing a Small Amount

The memory use in Tock remained generally high, as shown in
the graph in figure 2a. No single pass could be picked out as the
cause for this; each pass took up a similarly-sized band of memory.
Biographical heap profiling revealed nothing of interest — only
five megabytes of data (out of over 300) was retained longer than
necessary or never used.

Given our previous trouble with writer monads, we tried switch-
ing the lazy implementation of the writer monad for our warnings
to the strict implementation. The effect can be seen by comparing
the graph in figure 2a (lazy) to figure 2b (strict) — overall memory
use was reduced by roughly a factor of three. At this stage we also
tried unrolling our monad stack into a single monad with equivalent
code, but this made no difference.

During the test depicted in the graph, only seven warnings are
generated, in the very first pass. Suspecting that the high memory
usage was related to the repeated concatenation of this list of seven
warnings with the empty list, we tried switching from a writer to a
state monad for warnings: a five line change. The effect can be seen
by comparing the strict writer implementation in figure 2b to using
the (lazy) state monad transformer in figure 2c. The latter graph can
also be seen in figure 4c.

2008/7/30

The difference this time was roughly a factor of 10 improvement
over the strict writer monad, giving a total improvement of a factor
of 30 over the original lazy writer monad. There is also a dramatic
qualitative change, which can be seen more clearly by comparing
figures 3 (writer) and 4 (state).

Inspection of the graphs indicates that memory use with the
writer monad only increases, with thick persistent bands, whereas
with the state monad the memory use increases and decreases in
spikes. This suggests that the garbage collector is unable to function
effectively when using the writer monad, perhaps because one huge
list of unevaluated concatenations (with the empty list) is being
built up and evaluated at the very end of the program. In contrast,
the state will be carried through the program unaltered except
where warnings are issued.

3. Generics

One of the most attractive aspects of Haskell to us is its support
for generic programming. There are several generics frameworks
available in Haskell; we use the Scrap Your Boilerplate framework
(Lammel and Peyton Jones 2003).

This framework provides operations such as everywhereM that
apply a monadic transformation function (type: a —=> m a) to every
instance of type a in a tree structure. This makes programming our
passes very easy — we write small functions for specific AST types
(such as expressions), and use the generics framework to apply our
functions over the whole tree automatically.

We discovered that the everywhereM transformation was inef-
ficient in terms of memory usage. Tock has a pass for transforming
one occam-7 operator, AFTER into another (MINUS). The pass trans-
forms the part of the expression using the operator, and leaves all
other AST elements untouched. This operator is used only seven
times in a particular compiler test containing over 2,000 lines of
code.

The graphs in figures 3a and 4a show Tock’s memory use,
with the writer and state monads respectively for warnings (as
discussed in the previous section). These graphs use everywhereM
for traversing the tree.

At this point, using the state monad, we were not as concerned
with memory use (down to around 30MB, figure 4a) as we were
with execution time. We were worried that users would not appre-
ciate waiting for well over a minute for compilation. We deduced
that the execution time was taken up by the blanket everywhereM
traversal descending into each character of each string in the AST.
Our AST contains a large amount of strings; for example, each node
is annotated with a source position for giving back error messages.

We implemented a custom adaptation of SYB that explicitly did
not descend into Strings (we have no passes that operate explicitly
on strings or characters). The execution time was greatly reduced
(by roughly a factor of ten), but there was also a reduction in the
memory use (roughly a factor of four). Figures 3c and 4c show
the memory use with all passes switched across to this custom
traversal. For interest, we also provide graphs of memory use where
one pass (figures 3b and 4n) still uses everywhereM and all the
others use the custom traversal — it is easy to see which is the pass
that still uses the old traversal.

It seems that the everywhereM traversal is copying all the
strings when it descends into them. This difference is cumulative
when using the writer monad (which was foiling the garbage col-
lector), so that each pass retains the increased amount of memory
across the execution of the program. This copying cannot be en-
tirely avoided by lazy evaluation because the traversal is monadic,
so each node must be traversed in case it has an effect on the
monadic state (or causes an error, etc). Changing to not descend
into strings allows the pointer to the whole string to be re-used.

A Trip Down Memory Lane in Haskell

After experiencing this time and memory problem with the SYB
library, we began investigating improving our generics techniques,
focusing particularly on execution time. However, this falls outside
the scope of this paper.

4. Reflections on Memory

Now that we have eliminated the causes of our high memory usage,
they are clear and to some extent reasonable. However, we do not
think that we took an obviously wrong approach in our design. A
WriterT [String] monad seemed like a sensible approach for our
code generation step and a WriterT [Warning] similarly reason-
able for warnings. Given that everywhereM does not modify the
strings in the tree, we might have anticipated a little slow-down in
the program for processing them, but not an increase in memory
use.

We also did not know what our memory usage could or should
be. The long-standing myth is that high-level languages are in-
efficient. When our program used several hundred megabytes, it
was clearly inefficient. But when the peak dropped to around 80
megabytes, we did not think it could drop much lower. Ultimately,
Haskell’s memory usage is very good — for an AST with a million
data items', a peak memory use of ten megabytes is highly com-
mendable, especially on a 64-bit machine where each pointer will
be eight bytes. This efficiency must be due to lazy evaluation, since
that the full number of data items in the AST could not fit into that
amount of memory all at once.

Similarly, we did not know what shape we should expect our
heap profile to be. Given our initial knowledge of monads — that
they sequence operations into one huge expression — an ascending
wedge shape seemed a reasonable fit. In our minds, the program
was building up one huge expression and then evaluating it at the
end. We have now seen that this can be optimised out.

We wonder whether this is the side-effect of moving to a high-
level functional language. Although we have a good mental model
of Haskell’s semantics, we do not have the same for its implemen-
tation — especially compared to lower level languages such as C.
This opinion confirms a similar belief by the authors of the original
Haskell profiler (Sansom and Jones 1997).

Trying out other optimisations such as changing strings to
packed strings, or adding strictness annotations to data-types, al-
ways worsened rather than improved our memory performance.
This adds to our experience that knowing how to optimise lazy
functional programs is difficult.

We also had problems with profiling the memory use. By the
time the live usage had reached nearly 700 megabytes, the actual
use would be double or triple that (including dead memory yet to
be garbage collected). With profiling overhead on top, we needed a
machine with three gigabytes of memory to perform the profiling!
This is why all our benchmarks were run on a 64-bit machine; it
was the only machine we had with a big enough address space to
perform the the profiling.

We are thankful that GHC provided the tools with which to
track down the memory problems in our program (Sansom and
Jones 1997). When a particular function takes up a lot of memory
(graphically: one band is especially thick), it is clear where to start.
However, when all our passes required a lot of memory, it was
not at all obvious to us that we should alter the generic traversal.
Similarly, when our graph was filled with persistent thick bands,
swapping the writer monad for a state monad was not an obvious
fix. We can envisage other programmers new to Haskell having
similar difficulty tracking down their memory problems.

! By data item, we refer to the number of nodes that would be processed by
a generic traversal. This can be measured using the SYB gsize function.

3 2008/7/30

80.0 second:

bytes

600M |

400M |

200M |

oM |
seconds

(b)

bytes

600M |

400M

200M |

oM 4
0.0

seconds

©)

30M

25M

20M

15M |

10M |

5M

oM

=3
5}

bytes

30M

25M |

20M

15M]

10M |

5M |

oM

second:

seconds

(b)

seconds

(©)

Figure 3. Memory usage with a strict writer monad for warnings,
with all passes using everywhereM (a), with only one pass using
everywhereM (b), and using our custom traversal for all passes (c).

A Trip Down Memory Lane in Haskell

Figure 4. Memory usage with a state monad for warnings, with
all passes using everywhereM (a), with only one pass using
everywhereM (b), and using our custom traversal for all passes (c).

2008/7/30

Our advice to other Haskell programmers on a large project
is to profile regularly as you develop. Just as tests should be run
regularly, in hindsight we would have benefited from profiling
regularly. By the time we began profiling, it was no longer clear
what the cause of the excessive memory usage was. If we had
been comparing one week’s profile to the next, we could have more
easily traced the cause for the ballooning memory profile to adding
a writer monad for warnings.

5. Conclusions

In an ideal world, programmers use the techniques and algorithms
that conceptually fit the problem, hoping to not have to care about
implementation details. It is our experience that when program-
ming in Haskell, the wrong choice of technique can prove costly
— our program changed from using 650 megabytes down to 10 by
changing around 30 lines in a program of 14,000.

When we did optimise our program, we were very impressed
with total memory use — a peak of ten megabytes of live memory
for our large test-case. On a 32-bit machine, the memory use was
almost exactly half that of the 64-bit machine; a peak of just
over five megabytes! This was better than the previous occam-m
compiler, written in C, running on the same test case.

We also note that the performance of the garbage collector has a
significant effect on the performance of our program. The percent-
age of the total program time spent garbage collecting varied across
conditions — and is somewhat proportional to the total memory use
of the program — but was always in the range 30-60%. Thus, any
improvement to the efficiency of garbage collection, in terms of
time or memory, will always be of great benefit to Tock.

Benchmark Information

All the benchmarks were carried out on an x86-64 machine, on
GHC version 6.8.2, compiled with the -02 optimisation flag.
Where possible, similar results were confirmed on an x86 machine
and/or without optimisation.

The standard deviation in time on the smallest example, figure
4c, was 0.02 seconds over 10 samples. The garbage collection
statistics are not completely deterministic. The standard deviation
of total bytes allocated in the same example was 12,182 bytes
(roughly 0.01 megabytes) over 10 runs. We expect the standard
deviations for all other examples to be of similar magnitude.

Acknowledgments

Our work on Tock is supported by EPSRC grants EP/P50029X/1
and EP/E049419/1.

References

Neil C. C. Brown. Rain: A New Concurrent Process-Oriented Programming
Language. In Communicating Process Architectures 2006, pages 237—
251, September 2006. ISBN 1-58603-671-8.

Mark P. Jones. Functional Programming with Overloading and Higher-
Order Polymorphism. In First International Spring School on Ad-
vanced Functional Programming Techniques, pages 97-136, London,
UK, 1995. Springer-Verlag. ISBN 3-540-59451-5.

Ralf Limmel and Simon Peyton Jones. Scrap your boilerplate: a practical
design pattern for generic programming. In TLDI, pages 26-37, 2003.

Patrick M. Sansom and Simon L. Peyton Jones. Formally based
profiling for higher-order functional languages. ACM Trans. Pro-
gram. Lang. Syst., 19(2):334-385, 1997. ISSN 0164-0925. doi:
http://doi.acm.org/10.1145/244795.244802.

Dipanwita Sarkar, Oscar Waddell, and R. Kent Dybvig. A nanopass
infrastructure for compiler education. In ICFP 2004, pages
201-212. ACM Press, 2004. ISBN 1-58113-905-5. doi:
http://doi.acm.org/10.1145/1016850.1016878.

A Trip Down Memory Lane in Haskell

Peter H. Welch and Fred R. M. Barnes.

Communicating Mobile Pro-

cesses: introducing occam-pi. In 25 Years of CSP, volume 3525 of Lec-
ture Notes in Computer Science, pages 175-210. Springer Verlag, April

2005. ISBN 3-540-25813-2.

2008/7/30

