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Abstract If logic programs are interpreted over a three-valued logic, then often
Kleene’s strong three-valued logic with complete equivalence and Fitting’s as-
sociated immediate consequence operator is used. However, in such a logic the
least fixed point of the Fitting operator is not necessarily a model for the program
under consideration. Moreover, the model intersection property does not hold. In
this paper, we consider the three-valued Łukasiewicz semantics and show that
fixed points of the Fitting operator are also models for the program under con-
sideration and that the model intersection property holds. Moreover, we review
a slightly different immediate consequence operator first introduced by Stenning
and van Lambalgen and relate it to the Fitting operator under Łukasiewicz se-
mantics. Some examples are discussed to support the claim that Łukasiewicz se-
mantics and the Stenning and van Lambalgen operator is better suited to model
commonsense and human reasoning.

Key words: Three Valued Logic Programs, Łukasiewicz Semantics.

1 Introduction

When interpreting logic programs (with negation) under a three-valued semantics, then
it appears that with some exceptions (see e.g. [10]) mainly the semantics defined by
Fitting in [7] is considered (see e.g. [1]) in the logic programming literature up to now.
This semantics combines Kleene’s strong three-valued logic for negation, conjunction,
disjunction and implication with complete equivalence, which was also introduced by
Kleene (see [13]). Complete equivalence was used by Fitting to ensure that a formula of
the form F ↔ F is mapped to true under an interpretation, which maps F to neither true
nor false (see [7], p.300). Under the Fitting semantics, the law of equivalence (F ↔ G
is semantically equivalent to (F ← G) ∧ (G ← F )) does not hold anymore. This is
somewhat surprising as Fitting suggests a completion-based approach ([5]), where the
if-halves of the definitions in a logic program are completed by adding their correspond-
ing only-if-halves. Under the Fitting semantics, a completed definition p ↔ q may be
mapped to true under an interpretation, which maps neither p← q nor q ← p to true.

The Fitting semantics was also considered in a recent book by Stenning and van
Lambalgen [18], where they argue in favor of a completion-based logic-programming
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approach to model human reasoning. Stenning and van Lambalgen introduce an imme-
diate consequence operator, which is slightly different from the one defined by Fitting
in [7], and claim that for a given propositional logic program the least fixed point of this
operator is the minimal model of the program (Lemma 4(1.) in [18]). Looking into this
result we found that the least fixed point may not even be a model for the program (see
[12]) and that this stems from the fact that the Fitting semantics does not admit the law
of equivalence.

From these observations two questions arose: Why did Fitting combine
Kleene’s strong three-valued logic with complete equivalence? Is there an alternative
semantics under which the results proven in [7] hold and which admits also the law of
equivalence?

We can answer the former question only partially: questions of computability1 and,
in particular, termination2 may have been the driving force. As for the latter, we believe
that the Łukasiewicz semantics [15] may be a good candidate.

After reviewing three-valued logics in Section 2 and stating some preliminaries in
Section 3 we investigate Fitting’s immediate consequence operator in Section 4. In par-
ticular, we show that under the Łukasiewicz semantics, a fixed point of the Fitting op-
erator is not only a model for the completion of a given program, but for the program
itself. Moreover, we show that the model intersection property holds for logic programs
(with negation) under the Łukasiewicz semantics.

In Section 5 we review Stenning and van Lambalgen’s immediate consequence op-
erator under Łukasiewicz semantics. The main difference between the Fitting and the
Stenning and van Lambalgen operator is the observation that whereas Fitting assumes
all undefined predicates to be false within the completion process, Stenning and van
Lambalgen allow the user to control which otherwise undefined predicates shall be
mapped to false. In order to do so, they introduce so-called negative facts and mod-
ify the notion of completion accordingly. In Section 6 we present two examples from
commonsense and human reasoning to support the claim that the Stenning and van
Lambalgen operator may be better suited for these reasoning tasks than the Fitting op-
erator. In the final Section 7 we summarize our findings and point to some future and
related work.

2 Three-Valued Logics

In 1920, the Polish philosopher Łukasiewicz introduced the first three-valued logic [15].
The truth values are not only true or false, but there exists a third, intermediate value. A
formula is allowed to be neither true nor false. We can interpret the intermediate truth
value as possibility: the truth value is not decided yet but possibly decided at some later
time. In this paper, we symbolize truth- and falsehood by > and ⊥, respectively. We
call the third truth value undecided and use the symbol u to denote it.

Łukasiewicz used the following principles and definitions to assign values to for-
mulas, where ≡ denotes semantic equivalence:

1 Personal communication with Melvin Fitting.
2 Personal communication with Pascal Hitzler.
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F G ¬F F ∧G F ∨G F ←K G F ↔K G F ↔C G F ←Ł G F ↔Ł G

> > ⊥ > > > > > > >
> ⊥ ⊥ ⊥ > > ⊥ ⊥ > ⊥
> u ⊥ u > > u ⊥ > u
⊥ > > ⊥ > ⊥ ⊥ ⊥ ⊥ ⊥
⊥ ⊥ > ⊥ ⊥ > > > > >
⊥ u > ⊥ u u u ⊥ u u
u > u u > u u ⊥ u u
u ⊥ u ⊥ u > u ⊥ > u
u u u u u u u > > >

Table1. A truth table for three-valued logics. The indices K and Ł refer to Kleene’s and
Łukasiewicz’s logic, respectively.↔C denotes the complete equivalence used by Fitting.

1. The principles of identity and non-identity:
(⊥ ↔ ⊥) ≡ (> ↔ >) ≡ >, (> ↔ ⊥) ≡ (⊥ ↔ >) ≡ ⊥,
(⊥ ↔ u) ≡ (u↔ ⊥) ≡ (> ↔ u) ≡ (u↔ >) ≡ u, (u↔ u) ≡ >.

2. The principles of implication:
(⊥ ← ⊥) ≡ (> ← ⊥) ≡ (> ← >) ≡ >, (⊥ ← >) ≡ ⊥,
(u← ⊥) ≡ (> ← u) ≡ (u← u) ≡ >, (⊥ ← u) ≡ (u← >) ≡ u.

3. The definitions of negation, disjunction and conjunction:
¬A ≡ (⊥ ← A), A ∨B ≡ (B ← (B ← A)), A ∧B ≡ ¬(¬A ∨ ¬B).

Later, in 1952, Kleene proposed an alternative three-valued logic with the truth val-
ues true, false, and undefined. He distinguishes between weak and strong three-valued
logics. For our paper only the latter is of interest. It is similar to the Łukasiewicz logic,
but differs in the semantics of implication and equivalence, viz., u ↔ u ≡ u and
u ← u ≡ u. Kleene also introduced a complete equivalence where (F ↔ G) ≡ > if
and only if both F and G have the same logical value, else (F ↔ G) ≡ ⊥.

The semantics of the connectives is summarized in Table 1. In the Łukasiewicz logic
[15] the set of connectives is {¬, ∧, ∨, ←Ł, ↔Ł}, in Kleene’s strong three-valued
logic [13] the set of connectives is {¬, ∧, ∨, ←K , ↔K}, and in the Fitting logic
[7] the set of connectives is {¬, ∧, ∨, ←K , ↔C}. Table 2 gives an overview over
some common laws which do not always hold with respect to the Łukasiewicz, Kleene
and Fitting logics considered in this paper. Other laws like impotency, commutativity,
associativity, absorption, distributivity, double negation, de Morgan and contraposition
hold under Kleene, Łukasiewicz and Fitting logics.

3 Preliminaries

In this section we recall some notations and terminologies based on [14].

3.1 First-Order Language

We consider an alphabet consisting of (finite or countably infinite) disjoint sets of vari-
ables, constants, function symbols, predicate symbols, connectives {¬, ∨, ∧,
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Laws Łukasiewicz Kleene Fitting
Equivalence F ↔ G ≡ (F → G) ∧ (G→ F ) Yes Yes No
Implication F → G ≡ ¬F ∨G No Yes Yes
Syllogism (F → G) ∧ (G→ H) ≡ F → H No Yes Yes
Excluded Middle F ∨ ¬F ≡ > No No No
Contradiction F ∧ ¬F ≡ ⊥ No No No

Table2. Some common laws under Łukasiewicz, Kleene and Fitting semantics.

←, ↔}, quantifiers {∀, ∃}, and punctuation symbols {“(“, “, “, “)“}. In this pa-
per we will use upper case letters to denote variables and lower case letters to denote
constants, function- and predicate symbols. Terms, atoms, literals and formulas are de-
fined as usual. To avoid having formulas cluttered with brackets, we adopt the following
precedence hierarchy to order the connectives: ¬ > {∨, ∧} >←>↔. The language
given by an alphabet consists of the set of all formulas constructed from the symbols
occurring in the alphabet. A sentence is a formula without free variables. Finally, we
extend our language by the symbols > and ⊥ denoting a valid and an unsatisfiable
formula, respectively.

3.2 Logic Programs

A (program) clause is an expression of the form A← B1 ∧ · · · ∧Bn, where n ≥ 1, A
is an atom, and each Bi, 1 ≤ i ≤ n, is either a literal (i.e., atom or negated atom) or >.
A is called head and B1 ∧ · · · ∧ Bn body of the clause. One should note that the body
of a clause must not be empty. A clause of the form A← > is called a positive fact.

A (logic) program is a finite set of clauses. ground(P) denotes the set of all ground
instances of the program P . In many cases, ground(P) is infinite, but for propositional
or datalog programs ground(P) is finite. In the sequel we will consider ground(P) as a
substitute for P , thus ignoring unification issues.

We assume that each non-propositional program contains at least one constant sym-
bol. Moreover, the language L underlying a program P shall contain precisely the rela-
tion, function and constant symbols occurring in P , and no others.

3.3 Interpretations and Models

The declarative semantics of a logic program is given by a model-theoretic semantics of
formulas in the underlying language. We represent interpretations by pairs

〈
I>, I⊥

〉
,

where the set I> contains all atoms which are mapped to >, the set I⊥ contains all
atoms which are mapped to ⊥, and I> ∩ I⊥ = ∅. All atoms which occur neither in I>

nor I⊥ are mapped to u. The logical value of formulas can be derived from Table 1 as
usual. We use IŁ, IK and IF to denote that an interpretation I uses the Łukasiewicz,
Kleene or Fitting semantics, respectively. let I denote the set of all interpretations. One
should observe that (I,⊆) is a complete semi-lattice (see [7]).

Let I be an interpretation of a language L and let F be a sentence of L. I is a model
for F if F is true with respect to I (i.e., I(F ) = >). Let S be a set of sentences of a
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language L and let I be an interpretation of L. We say I is a model for S if I is a model
for each sentence of S. Two sentences F and G are said to be semantically equivalent
if and only if both have same truth value under all interpretations.

3.4 Program Completion

Let ground(P) be a logic program. Consider the following transformation:

1. All clauses with the same head A← Body1, A← Body2, . . .
are replaced by A← Body1 ∨ Body2 ∨ . . ..

2. If a ground atom A is not the head of any clause in ground(P) then add A ← ⊥,
where ⊥ denotes an unsatisfiable formula.

3. All occurrences of← are replaced by↔.

The resulting set of formulas is called completion of ground(P) and is denoted by
comp(ground(P)). One should observe that in step 1 there may be infinitely many
clauses with the same head resulting in a countable disjunction. However, its seman-
tic behavior is unproblematic.

4 The Fitting Operator

In this section we will discuss Fitting’s immediate consequence operator [7] under the
Łukasiewicz semantics. We will show that replacing the Fitting semantics with the
Łukasiewicz semantics does not change the behaviors of the Fitting operator. But in
addition each model of the completion of a program coincides with a model of the
program itself.

Let I be an interpretation and P a program. Fitting’s immediate consequence oper-
ator is defined as follows: ΦF,P(I) =

〈
J>, J⊥

〉
, where

J> = {A | there exists A← Body ∈ ground(P) with I(Body) = >} and
J⊥ = {A | for all A← Body ∈ ground(P) we find I(Body) = ⊥}.

Please recall that the body of the program is a conjunction of literals and, hence,
IŁ(Body) = IK(Body) = IF (Body) according to Table 1.

Fitting shows in [7] that ΦF,P is monotone on (I,⊆). Moreover, from [19] and
[16] follows that for finite ground(P) the operator ΦF,P is also continuous. We call a
program P F-acceptable if ΦF,P is continuous.

Given a program P . An interpretation I is said to be fixed point of ΦF,P iff I =
ΦF,P(I). If ΦF,P is continuous, then it admits a least fixed point denoted by lfp(ΦF,P).
It can be computed by iterating ΦF,P starting with the empty interpretation as follows,
where ω is an arbitrary limit ordinal:

ΦF,P ↑0 = 〈∅, ∅〉 ,
ΦF,P ↑(α+1) = ΦF,P(ΦF,P ↑α),
ΦF,P ↑ω =

⋃
{ΦF,P ↑α| α < ω}.

As examples consider the programs P1 = ground(P1) = {p ← q} and P2 =
ground(P2) = {p ← q, q ← p}. Their completions are comp(ground(P1)) = {p ↔
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q, q ↔ ⊥} and comp(ground(P2)) = {p ↔ q, q ↔ p}. In both cases, the Fitting
operator is continuous and we obtain the least fixed points lfp(ΦF,P1) = 〈∅, {p, q}〉 and
lfp(ΦF,P2) = 〈∅, ∅〉. It is easy to verify that the least fixed points are models of the
completions under the Fitting semantics, which is no coincidence as formally proven in
[7]. This property holds also under the Łukasiewicz semantics.

Proposition 1. Let P be a program.
1. IŁ is a fixed point of ΦF,P iff IŁ is a model of comp(ground(P)).
2. If IŁ = lfp(ΦF,P) then IŁ is the least model of comp(ground(P)).

Proof. 1. To show the if-part, suppose I is a fixed point of ΦF,P . As shown in [7],
in this case I is a model of comp(ground(P)) under the Fitting semantics. Com-
paring the columns labeled F ↔C G and F ↔Ł G in Table 1 we observe that
if I(F ↔C G) = > then I(F ↔Ł G) = >. Consequently, I is also model for
comp(ground(P)) under the Łukasiewicz semantics.
To show the only-if-part, suppose IŁ(comp(ground(P))) = >. In this case we
have to show that IŁ =

〈
I>, I⊥

〉
is a fixed point of ΦF,P , i.e., ΦF,P(IŁ) = IŁ. Let

ΦF,P(IŁ) = J =
〈
J>, J⊥

〉
. J = I if and only if J> = I> and J⊥ = I⊥. We

distinguish four cases:
(a) Suppose A ∈ I>, i.e., IŁ(A) = >. Because IŁ(comp(ground(P))) = > we

find A ↔ Body1 ∨ Body2 ∨ . . . ∈ comp(ground(P)) such that IŁ(Body1 ∨
Body2 ∨ . . .) = >. Hence, there exists A ← Bodyi ∈ ground(P), i ≥ 1, such
that IŁ(Bodyi) = >. Therefore, A ∈ J>.

(b) SupposeA ∈ J>. By the definition ofΦF,P , we findA← Bodyi ∈ ground(P),
i ≥ 1, such that IŁ(Bodyi) = >. Hence, we find A↔ Body1 ∨ Body2 ∨ . . . ∈
comp(ground(P)) and IŁ(Body1 ∨ Body2 ∨ . . .) = >. Because
IŁ(comp(ground(P))) = >, we find IŁ(A) = >. Hence, A ∈ I>.

(c) Suppose A ∈ I⊥, i.e., IŁ(A) = ⊥. Because IŁ(comp(ground(P))) = > we
find A ↔ F ∈ comp(ground(P)) such that IŁ(F ) = ⊥. In this case either
F = ⊥ or F = Body1 ∨ Body2 ∨ . . . and for all i ≥ 1 we find IŁ(Bodyi) = ⊥.
By definition of ΦF,P we find A ∈ J⊥ in either case.

(d) Suppose A ∈ J⊥. By the definition of ΦF,P we find for all A ← Bodyi ∈
ground(P), i ≥ 1, that IŁ(Bodyi) = ⊥. Hence, with F = ⊥ ∨ Body1 ∨
Body2 ∨ . . . we find IŁ(F ) = ⊥. Because IŁ(comp(ground(P))) = > and
A↔ F ∈ comp(ground(P)) we conclude IŁ(A) = ⊥. Consequently,A ∈ I⊥.

2. Suppose IŁ = lfp(ΦF,P) and IŁ is not the least model of comp(ground(P)). Then
we find an interpretation JŁ such that JŁ(comp(ground(P))) = > and JŁ ⊂ IŁ.
By 1., JŁ will be a fixed point of ΦF,P , which contradicts the assumption that IŁ is
the least fixed point of ΦF,P . 2

A fixed point of the Fitting operator under the Fitting semantics is a model of the
completion of the program, but it is not necessarily a model of the program itself. Re-
consider P2 = {p ← q, q ← p}. lfp(ΦF,P2) = 〈∅, ∅〉 is not a model for P2. This is
because under Fitting semantics, if p and q are mapped to u, then both implications are
mapped to u as well. However, under the Łukasiewicz semantics, if p and q are mapped
to u, then both implications are mapped to >. Hence, lfp(ΦF,P2) = 〈∅, ∅〉 is a model
for P2 under the Łukasiewicz semantics.



Logic Programs under Three-Valued Łukaswiewicz Semantics 7

Proposition 2. Let P be a program.
If IŁ(comp(ground(P))) = >, then IŁ(ground(P)) = >.

Proof. If IŁ(comp(ground(P))) = >, then for all A ↔ F ∈ comp(ground(P)) we
find IŁ(A ↔ F ) = >. By the law of equivalence we conclude IŁ((A ← F ) ∧ (F ←
A)) = > and, consequently, IŁ(A ← F ) = >. If F = ⊥ then ground(P) does not
contain a clause with head A. Otherwise, F = Body1 ∨ Body2 ∨ . . . and we distinguish
three cases:

1. If IŁ(A) = >, then we find IŁ(A← Bodyi) = > for all A← Bodyi ∈ ground(P ).
2. If IŁ(A) = ⊥, then for all i ≥ 1 we find IŁ(Bodyi) = ⊥ and, consequently,
IŁ(A← Bodyi) = > for all A← Bodyi ∈ ground(P ).

3. If IŁ(A) = u then either IŁ(F ) = ⊥ or IŁ(F ) = u. The former possibility being
similar to case 2. we concentrate on the latter. If IŁ(F ) = u then for at least one i
we find IŁ(Bodyi) = u and for all i ≥ 1 either IŁ(Bodyi) = u or IŁ(Bodyi) = ⊥.
In any case, we find IŁ(A← Bodyi) = > for all A← Bodyi ∈ ground(P). 2

Corollary 1. Let P be a program.
If IŁ is a fixed point of ΦF,P then IŁ(ground(P)) = >.

Proof. The corollary follows immediately from Propositions 1 and 2. 2

Although a fixed point of the Fitting operator is not always a model of the given
program under the Fitting semantics, the program itself may have models. Returning to
the example P2 = {p ← q, q ← p}, its minimal models under the Fitting semantics
are 〈∅, {p, q}〉 and 〈{p, q}, ∅〉. Their intersection 〈∅, ∅〉 is no model of P2 under the
Fitting semantics. In other words, the model intersection property does not hold under
the Fitting semantics. Under the Łukasiewicz semantics, however, 〈∅, ∅〉 is a model for
P2 and, as we will show in the following, the model intersection property does hold
under the Łukasiewicz semantics.

Proposition 3. Let P be a program. If IŁ =
〈
I>, I⊥

〉
is a model of ground(P), then

I ′Ł =
〈
I>, ∅

〉
is also a model of ground(P).

Proof. Let P be a program. Suppose IŁ =
〈
I>, I⊥

〉
is a model of ground(P). Let

A ← Body be a clause in ground(P). In order to show I ′Ł(A ← Body) = > we
distinguish three cases:

1. If A ∈ I>, then I ′Ł(A← Body) = >.
2. If A ∈ I⊥, then IŁ(A) = ⊥ and I ′Ł(A) = u. Because IŁ(A ← Body) = > we

conclude that IŁ(Body) = ⊥. Hence, we find a literal C in Body with IŁ(C) = ⊥.
For each literal B occurring in Body we find:
(a) if B is an atom and B ∈ I>, then IŁ(B) = > and I ′Ł(B) = >,
(b) if B is an atom and B ∈ I⊥, then IŁ(B) = ⊥ and I ′Ł(B) = u,
(c) if B is an atom and B 6∈ I> ∪ I⊥, then I ′Ł(B) = IŁ(B) = u,
(d) if B is of the form ¬B′ and B′ ∈ I>, then IŁ(B) = ⊥ and I ′Ł(B) = ⊥,
(e) if B is of the form ¬B′ and B′ ∈ I⊥, then IŁ(B) = > and I ′Ł(B) = u,
(f) if B is of the from ¬B′ and B′ 6∈ I> ∪ I⊥, then I ′Ł(B) = IŁ(B) = u,
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Because C must belong to either case (b) or (d) and, hence, I ′Ł(C) is either u or
⊥, we conclude that I ′Ł(Body) is either ⊥ or u as well. Because I ′Ł(A) = u we
conclude that I ′Ł(A← Body) = >.

3. If A /∈ I> ∪ I⊥, then IŁ(A) = I ′Ł(A) = u. Because IŁ(A ← Body) = > we
distinguish two cases:
(a) If IŁ(Body) = ⊥, then we conclude as in case 2. that I ′Ł(Body) is either ⊥ or u

and, consequently, I ′Ł(A← Body) = >.
(b) If IŁ(Body) = u, then Body must contain a literal B with IŁ(B) = u. In this

case, I ′Ł(B) = u as well and, consequently, I ′Ł(Body) is either ⊥ or u. As in
the previous sub-case we conclude that I ′Ł(A← Body) = >. 2

As an example consider the program P3 = {p← q ∧ ¬r}. In the remainder of this
paragraph all models are considered under the Łukasiewicz semantics. 〈{p, q}, {r}〉 is a
model for P3, and so is 〈{p, q}, ∅〉. 〈{p, r}, {q}〉 is a model for P3, and so is 〈{p, r}, ∅〉.
〈{r}, {q}〉 is a model for P3, and so is 〈{r}, ∅〉. 〈∅, ∅〉 is the least model of P3.

Proposition 4. Let IŁ1 =
〈
I>1 , ∅

〉
and IŁ2 =

〈
I>2 , ∅

〉
be two models for a program P .

Then IŁ3 =
〈
I>1 ∩ I>2 , ∅

〉
is a model for P as well.

Proof. Suppose IŁ3 =
〈
I>3 , I

⊥
3

〉
=
〈
I>1 ∩ I>2 , ∅

〉
is not a model for P . Then we find

A ← Body ∈ P such that IŁ3(A ← Body) 6= >. According to Table 1 one of the
following cases must hold:

1. IŁ3(A) = ⊥ and IŁ3(Body) = >.
2. IŁ3(A) = ⊥ and IŁ3(Body) = u.
3. IŁ3(A) = u and IŁ3(Body) = >.

Because I⊥3 = ∅ we find IŁ3(A) 6= ⊥ and, consequently, cases 1. and 2. cannot apply.
Therefore, we turn our attention to case 3. If IŁ3(A) = u then there must exist j ∈
{1, 2} such that IŁj(A) = u. Because IŁj is a model forP we find IŁj(A← Body) = >
and, thus, IŁj(Body) is either u or⊥. In this case, Body 6= >. Let Body = B1∧ . . .∧Bn
with n ≥ 1.

Because IŁ3(Body) = > and I⊥3 = ∅ we find for all 1 ≤ i ≤ n that Bi is an atom
with IŁ3(Bi) = >. Hence, {B1, . . . , Bn} ⊆ I>3 and, consequently, {B1, . . . , Bn} ⊆
I>j , which contradicts the assumption that IŁj(Body) is either u or ⊥. 2

Proposition 4 does not hold for arbitrary models of P . For instance, suppose P4 =
{p← q1 ∧ r1, p← q2 ∧ r2}, IŁ1 = 〈∅, {p, q1, r2}〉 and IŁ2 = 〈∅, {p, q2, r1}〉. We can
easily show that IŁ1 and IŁ2 are models for P4. Their intersection 〈∅, {p}〉, however, is
not a model for P4.

Proposition 5. LetMŁ be the set of all models of a program P under the Łukasiewicz
semantics. Then,

⋂
MŁ is a model for P as well.

Proof. The result follows immediately from Propositions 3 and 4. 2

The least model of P4 under the Łukasiewicz semantics is 〈∅, ∅〉, whereas the least
model of P5 = {p ← >, q ← p, r ← q ∧ ¬s} under the Łukasiewicz seman-
tics is 〈{p, q}, ∅〉. The last example also exhibits that the least fixed point of the Fit-
ting operator is not necessarily the least model of the underlying program because
lfp(ΦF,P4) = 〈{p, q, r}, {s}〉.
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5 The Stenning and van Lambalgen Operator

In their quest for models of human reasoning Stenning and van Lambalgen [18] have in-
troduced an immediate consequence operator for propositional programs, which differs
slightly from the Fitting operator. Here, we extend the operator to first-order programs.
Let I be an interpretation and P be a program. Stenning and van Lambalgen’s immedi-
ate consequence operator is defined as follows: ΦSvL,P(I) =

〈
J>, J⊥

〉
, where

J> = {A | there exists A← Body ∈ ground(P) with I(Body) = >} and
J⊥ = {A | there exists A← Body ∈ ground(P) and

for all A← Body ∈ ground(P) we find I(Body) = ⊥}

and the difference to the Fitting operator has been highlighted. Stenning and van Lam-
balgen consider programs under the Fitting semantics. In addition, Stenning and van
Lambalgen allow so-called negative facts of the form A ← ⊥ as program clauses. An
extended (logic) program is a finite set of clauses and negative facts.

Stenning and van Lambalgen show in [18] that ΦSvL,P is monotone on (I,⊆).
Moreover, from [19] and [16] follows that for finite ground(P) the operator ΦSvL,P is
also continuous. We call a program P SvL-acceptable if ΦSvL,P is continuous.

If ΦSvL,P is continuous then we can compute the least fixed point of ΦSvL,P by
iterating ΦSvL,P starting from empty interpretation. Let I be the least fixed point of
ΦSvL,P and let

I0 = 〈∅, ∅〉 (1)
Iα = ΦSvL,P(Iα−1) for every non-limit ordinal α > 0 (2)

Iα =
⋃
β<α

Iβ for every limit ordinal α (3)

Then for some ordinal ω we find I = Iω .
Before discussing further properties of the new operator we reconsider P1 = {p←

q}. Its completion is comp(ground(P1)) = {p ↔ q, q ↔ ⊥}. ΦSvL,P admits a least
fixed point for P1 and we obtain lfp(ΦSvL,P1) = 〈∅, ∅〉. One should note that this
result differs from lfp(ΦF,P1) = 〈∅, {p, q}〉. Now consider P ′1 = {p ← q, q ← ⊥}.
Its completion is comp(ground(P ′1)) = {p ↔ q, q ↔ ⊥} = comp(ground(P1)) and
lfp(ΦSvL,P′

1
) = lfp(ΦF,P1) = 〈∅, {p, q}〉. Thus, by adding negative facts, Stenning and

van Lambalgen’s operator can simulate Fitting’s operator. But it is more liberal in that
if there is no clause with head A in the extended program, then its meaning remains
undefined.

Obviously, completion as defined in Section 3.4 is unsuitable for extended programs
P . If we omit step 2. in the completion transformation, then the resulting set of formulas
is called weak completion of ground(P) and is denoted by wcomp(ground(P)). Return-
ing to the examples, we find wcomp(ground(P1)) = {p↔ q} and wcomp(ground(P ′1)) =
{p↔ q, q ↔ ⊥}.

In the following we relate the Stenning and van Lambalgen operator and weak com-
pletion under the Łukasiewicz semantics.
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Lemma 1. Let IŁ be the least fixed point of ΦSvL,P and JŁ be a model of
wcomp(ground(P)) then IŁ ⊆ JŁ.

Proof. Let IŁ =
〈
I>, I⊥

〉
be the least fixed point of ΦSvL,P and JŁ =

〈
J>, J⊥

〉
be

a model of wcomp(ground(P)). IŁ ⊆ JŁ iff I> ⊆ J> and I⊥ ⊆ J⊥ iff the following
propositions hold: (i) if IŁ(A) = >, then JŁ(A) = > and (ii) if IŁ(A) = ⊥, then
JŁ(A) = ⊥. By transfinite induction it can be shown that for every ordinal α and every
atom A we find: (iii) if Iα(A) = >, then JŁ(A) = > and (iv) if Iα(A) = ⊥, then
JŁ(A) = ⊥. The claim follows immediately by the definition of least fixed point of
ΦSvL,P because it implies that there is an ordinal ω such that IŁ = Iω . 2

Proposition 6. Let P be an extended program. If IŁ is the least fixed point of ΦSvL,P ,
then IŁ is a minimal model of wcomp(ground(P)).

Proof. First we will show that IŁ is a model of wcomp(ground(P)). Let’s pick an arbi-
trary formula (A↔ F ) ∈ wcomp(ground(P)). In order to show that IŁ(A↔ F ) = >
we consider three cases according to the truth value of A in IŁ:

a) If IŁ(A) = >, then according to the definition of ΦSvL,P , there exists a clause
(A← Bodyi) ∈ ground(P) such that IŁ(Bodyi) = >. Because Bodyi is one of the
disjuncts of F , this implies IŁ(F ) = > and hence IŁ(A↔ F ) = >.

b) If IŁ(A) = ⊥, then according to the definition of ΦSvL,P , there is a clause (A ←
Bodyi) ∈ ground(P) and for every clause (A ← Bodyi) ∈ ground(P) we have
IŁ(Bodyi) = ⊥ for all i. Consequently, all disjuncts in F are false under IŁ and,
therefore, IŁ(F ) = ⊥. Hence, IŁ(A↔ F ) = >.

c) If IŁ(A) = u, then according to the definition of ΦSvL,P there is no clause (A ←
Bodyi) ∈ ground(P) with IŁ(Bodyi) = > and there are some clauses (A ←
Bodyj) ∈ ground(P) with IŁ(Bodyj) 6= ⊥. So none of the disjuncts in F is true,
but it is also not the case that all of them are false. Therefore IŁ(F ) = u and
IŁ(A↔ F ) = >.

To prove that IŁ is a minimal model of wcomp(ground(P)), let IŁ =
〈
I>Ł , I

⊥
Ł

〉
. By

Lemma 1 we learn that any model JŁ =
〈
J>Ł , J

⊥
Ł

〉
of wcomp(ground(P)) will be

such that I>Ł ⊆ J>Ł and I⊥Ł ⊆ J⊥Ł . Hence, no proper subset of IŁ can be a model of
wcomp(ground(P)). Consequently, IŁ is a minimal model of wcomp(ground(P)). 2

Proposition 7. Let P be an extended program. If IŁ is a minimal model of
wcomp(ground(P)), then IŁ is the least fixed point of ΦSvL,P .

Proof. Let IŁ =
〈
I>Ł , I

⊥
Ł

〉
be a minimal model of wcomp(ground(P)) and let JŁ =〈

J>Ł , J
⊥
Ł

〉
be the least fixed point of ΦSvL,P . By Lemma 1 we know that J>Ł ⊆ I>Ł

and J⊥Ł ⊆ I⊥Ł . Further, by Proposition 6 we have that JŁ is a minimal model of
wcomp(ground(P)). But then it must be the case that IŁ = JŁ because otherwise we
have a conflict with the minimality of IŁ. 2

Corollary 2. Let P be an extended program. IŁ is the least fixed point of ΦSvL,P iff IŁ

is the least model of wcomp(ground(P)).
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Proof. Follows from Propositions 6 and 7 and the fact that the least fixed point of
ΦSvL,P is unique. 2

One should observe, that Corollary 2 does not hold if we consider comp(ground(P))
and the Fitting semantics instead of the Łukasiewicz semantics. As an example con-
sider again P1 = {p ← q} and let I = 〈∅, {p, q}〉. IF is a model for comp(P1), but
ΦSvL,P1(I) = 〈∅, {p}〉 6= I . This is counter example for Lemma 4(3) in [18].

Proposition 8. Let P be an extended program.
If IŁ(wcomp(ground(P))) = >, then IŁ(ground(P)) = >.

Proof. If IŁ(wcomp(ground(P))) = >, then for all A↔ F ∈ wcomp(ground(P)) we
find IŁ(A ↔ F ) = >. By the law of equivalence we conclude IŁ((A ← F ) ∧ (F ←
A)) = > and, consequently, IŁ(A ← F ) = >. Let F = Body1 ∨ Body2 ∨ . . .. We
distinguish three cases:

1. If IŁ(A) = >, then we find IŁ(A← Bodyi) = > for all A← Bodyi ∈ ground(P ).
2. If IŁ(A) = ⊥, then for all i ≥ 1 we find IŁ(Bodyi) = ⊥ and, consequently,
IŁ(A← Bodyi) = > for all A← Bodyi ∈ ground(P ).

3. If IŁ(A) = u then either IŁ(F ) = ⊥ or IŁ(F ) = u. The former possibility being
similar to case 2. we concentrate on the latter. If IŁ(F ) = u then we find an i with
IŁ(Body1) = u and for all i ≥ 1 either IŁ(Bodyi) = u or IŁ(Bodyi) = ⊥. In any
case, we find IŁ(A← Bodyi) = > for all A← Bodyi ∈ ground(P). 2

From Proposition 6 and Proposition 8 we can derive Corollary 3 for the Stenning
and Lambalgen operator.

Corollary 3. Let P be an extended program.
If IŁ is the least fixed point of ΦSvL,P then IŁ(ground(P)) = >.

Proof. The corollary follows immediately from Propositions 6 and 8. 2

One should observe that contrary to Lemma 4(1.) of [18] this corollary does not hold
under the Fitting semantics. Reconsider P1 = {p ← q}, then lfp(ΦSvL,P1) = 〈∅, ∅〉
and, thus, both p and q are mapped to u. Under this interpretation P1 is mapped to u as
well. One should also note that the least fixed point of the Stenning and van Lambalgen
operator for a given program P is not necessarily the least model of P under the Fitting
semantics. Reconsidering P ′1 = {p ← q, q ← ⊥} we find lfp(ΦSvL,P′

1
) = 〈∅, {p, q}〉

whereas the least model of P ′1 under the Łukasiewicz semantics is 〈∅, ∅〉.

6 Two Examples

In this section we present two examples to illustrate the difference between the Fitting
and the Stenning and van Lambalgen operator. Suppose we want to model an agent
driving a car. One rule would be that he may cross an intersection if the traffic light
shows green and there is no unusual situation:

cross ← green,¬unusual_situation.
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An unusual situation occurs if an ambulance wants to cross the intersection from a
different direction:

unusual_situation ← ambulance_crossing .

In addition, suppose that the green light is indeed on:

green← >.

Let P6 be the set of these clauses. It is easy to see that

lfp(ΦF,P6) = 〈{green, cross}, {unusual_situation, ambulance_crossing}〉 .

Hence, not knowing anything about an ambulance, our agent will assume that no am-
bulance is present, hit the accelerator, and speed into the intersection. One should ob-
serve that not knowing anything about an ambulance may be caused by the fact that the
agent’s camera is blurred or the agent’s microphone is damaged. His assumption that
no ambulance is present is made by default. On the other hand,

lfp(ΦSvL,P6) = 〈{green}, ∅}〉 .

In this case, the agent doesn’t know whether he may cross the intersection. Inspecting
his rules he may find that in order to satisfy the conditions for the first rule, he must
verify that no ambulance is crossing. In doing so, he may extend P6 to P ′6 = P6 ∪
{ambulance_crossing ← ⊥} yielding

lfp(ΦSvL,P6′ ) = 〈{green, cross}, {unusual_situation, ambulance_crossing}〉 .

Now, the agent can safely cross the intersection.

The second example is taken from [4]. Byrne has confronted individuals with sen-
tences like If Marian has an essay to write, she will study late in the library. She does
not have an essay to write. If she has textbooks to read, she will study late in the library.
The individuals are then asked to draw conclusions. In this example, only 4% of the
individuals conclude that Marian will not study late in the library. Although Byrne uses
these and similar examples to conclude that (classical) logic is inadequate for human
reasoning, Stenning and van Lambalgen have argued in [18] that the use of three-valued
logic programs under completion semantics is indeed adequate for human reasoning.
They represent the scenario by

P7 = {l← e ∧ ¬ab1, e← ⊥, ab1 ← ⊥, l← t ∧ ¬ab2, ab2 ← ⊥},

where l denotes that Marian will study late in the library, e denotes that she has an
essay to write, t denotes that she has a textbook to read, and ab denotes abnormality. In
this case, we find lfp(ΦSvL,P7) = 〈∅, {ab1, ab2, e}〉, from which we conclude that it is
unknown whether Marian will study late in the library. On the other hand, lfp(ΦF,P7) =
〈∅, {ab1, ab2, e, t, l}〉. Using the Fitting operator one would conclude that Marian will
not study late in the library. Thus, this operator leads to a wrong answer with respect to
the discussed scenario from human reasoning, whereas the Stenning and van Lambalgen
operator does not.
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Property Fitting Łukasiewicz
Model Intersection No Yes
Fixed points of ΦF,P are models of comp(ground(P)) Yes† Yes
Fixed points of ΦF,P are models of P No Yes
The least fixed point of ΦSvL,P is the least model of wcomp(ground(P)) Yes∗ Yes
The least fixed point of ΦSvL,P is a model of P No Yes

Table3. A comparison between the Fitting and the Łukasiewicz semantics for logic programs.
We have highlighted the results which were obtained by formal proofs or by counter examples in
this paper. The result marked by † was formally proven in [7]. The result marked by ∗ was not
proven formally in [18] nor in this paper, but we conjecture that it holds.

7 Conclusion

Table 3 compares the Fitting and Łukasiewicz semantics for logic programs as dis-
cussed in this paper. In [18] many more examples are given to support the claim that
human reasoning can be adequately modelled using completion-based propositional
logic programs and the Stenning and van Lambalgen operator. Here, we have extended
this approach to first-order programs and have given rigorous proofs of some of the
properties of the operator under Łukasiewicz semantics.

Naish in [17] considers yet another three-valued semantics, which differs from the
Fitting and Łukasiewics semantics studied in this paper as far as the truth table for the
implication is concerned. Although Naish shows several model intersection results for
his logic, these results do not subsume our model intersection result nor is our result an
immediate consequence of Naish’s results. Likewise, Naish introduces new immediate
consequence operators, but they differ from the Stenning and van Lambalgen operator
studied in this paper and, again, the results by Naish do not subsume our results nor are
our results immediate consequences of Naish’s results. There is an underlying reason
for the differences: Naish focuses on programming and debugging, whereas the work by
Stenning and van Lambalgen, which underlies this paper, focuses on human reasoning.

In recent years, the Fitting semantics for logic programs has not been used much.
It has been overtaken in interest by the well-founded semantics [20] and stable model
semantics [9]. The latter extends the former in a well-understood manner, and pro-
vides a two-valued semantics for logic programs. Both capture transitive closure and
other recursive rule behavior and, thus, are useful for programming. However, there
are trade-offs between the Fitting semantics and well-founded semantics. The ability
of well-founded semantics to capture properties like graph reachability means that it
cannot be modelled by a finite first-order theory such as completion. Well-founded se-
mantics also has a higher complexity than the Fitting semantics. The relationship of
the Fitting semantics and the well-founded semantics is brought forward in [11] using
level mappings. These are mappings from Herbrand bases to ordinals, i.e., they induce
orderings on the set of ground atoms while disallowing infinite descending chains. The
result shows that well-founded semantics is a stratified version of the Fitting semantics.

It has been argued recently in [18] that a completion-based approach captures many
aspects of commonsense reasoning. Unlike most approaches to logically modelling
commonsense reasoning which rely on introspection to characterize common sense,
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Stenning and van Lambalgan base their model on the large corpus of cognitive science.
The result is already helping logic programming to be re-examined in fields such as
medical decision-making.

In [18] and [12] connectionist implementations of the Stenning and van Lambalgen
operator are given. The latter is based on the core method (connectionist model gen-
eration using recurrent networks with feed-forward core, see e.g. [2]), which has been
applied to propositional, first-order, multi-valued as well as modal logic programs (see
e.g. [3,6]).

The role of negative facts in extended logic programs needs to be discussed. The
name negative fact is considered only with respect to the (weak) completion of a pro-
gram as, otherwise, a negative fact likeA← ⊥ is also mapped to true by interpretations
which map A to u or >. If in addition a program contains a clause with head A, then
negative facts can be eliminated without changing the semantics of the program. This
is hardly the intention of a negative fact in human reasoning, where an individual may
gather some support for a fact as well as its negation. An alternative idea would be to
add ⊥ ← A to a program and treat this as a constraint, but this needs to be investigated
in the future.

We would like to find a syntactic characterization of SvL-acceptability and relate it
to corresponding characterizations of F-acceptability. Likewise, we would like to find
conditions under which the Stenning and van Lambalgen operator is a contraction and
relate it to corresponding findings with respect to the Fitting operator (see [8]).

Last but not least it remains to be seen which semantics is better suited for logic pro-
gramming, common sense as well as human reasoning. It appears that the Łukasiewicz
semantics has nicer theoretical properties, but we still have to investigate how this se-
mantics relates to questions concerning computability and termination. It also appears
that the Łukasiewicz semantics gives more flexibility than the Fitting semantics con-
cerning common sense reasoning problems. As far as human reasoning is concerned
we would like to find out how individuals treat implications where the premise as well
as the conclusion are undefined as this is the distinctive feature between the Łukasiewicz
and the Fitting semantics.
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