
DA
TA

 SH
EE

T

Automatically Identify and Prevent Java™ Errors throughout the Entire Development Lifecycle with
Parasoft® Jtest®

DATA SHEETDATA SHEET

Parasoft Jtest is a comprehensive Java testing product for development teams building Java EE, SOA, Web, and other Java applications.
Whether a team is trying to build quality into new code or extend a legacy code base without breaking existing functionality, Jtest provides
them a practical way to ensure that their Java code works as expected. It empowers them to modify their code quickly and with confidence,
resulting in optimization of development resources and control of development schedules and costs.

Automatically Expose Difficult-to-Find Runtime Bugs
BugDetective is a new static analysis technology that searches a code base for errors which can lead to runtime bugs and application
instabilities. By automatically tracing and simulating execution paths through even the most complex applications—those with paths that span
multiple methods, classes, and/or packages and contain dozens of sequence calls—BugDetective exposes bugs that would be very difficult and
time-consuming to find through manual testing or inspections, and would be exponentially more costly to fix if they were not detected until
runtime. Using BugDetective, developers can find, diagnose, and fix classes of software errors that can evade coding standards analysis
and/or unit testing. Exposing these bugs early in the software development lifecycle saves hours of diagnosis and potential rework.

Automate Code Review
To help developers identify small coding mistakes before they spawn
bugs that are difficult to find and fix, Jtest's coding standards analysis
automatically checks whether code follows over 700 Java coding best
practices and any number of custom coding rules. Coding standards
analysis can also be used to prevent application-specific errors, enforce a
security policy, improve code readability and maintainability, and
identify code that would benefit from refactoring. Many coding problems
can be resolved automatically, so code can be improved in just seconds.

Since this automated coding standards analysis virtually eliminates the
need for line-by-line inspections during peer code reviews, these
reviews can focus on high-return value analysis, such as examining
design, algorithmic, or implementation issues. Peer code reviews are
further supported by Jtest's Code Review module, which automates the
review process to facilitate participation and communication. This
makes code reviews more productive and practical for software
development organizations—especially those with distributed teams.

Subjecting code to automated and manual inspections ensures that
quality is built into the code, which allows QA to focus on high-level
verification, reduces time to market, and improves project
predictability.

Verify and Capture Code Behavior at the Unit,
Component, and Application Level
Developers and QA testers can use Jtest to build a test suite that not
only verifies code correctness and reliability at multiple levels, but also
captures code behavior to establish a baseline for regression testing.

Modify existing code quickly, and with confidence — Enables teams to
quickly build a regression safety net that will expose defects
immediately upon introduction and determine if code modifications
break existing functionality — even if the team has a large existing
code base with no tests or minimal tests.

Control development costs and schedules — Exposes errors as early as
possible, which is when they are fastest and cheapest to fix. Tests a
broad range of potential user paths to uncover difficult-to-find
problems that could delay releases or require post-release patches.

Optimize development resources — Automatically vets approximately
80% of coding issues so developers can spend less time on line-by-
line inspections and debugging, and more time on design,
algorithms, and implementation.

Leverage the power of the latest technologies while controlling their
risks — Reduces the difficulty of testing complex enterprise
applications (such as SOA/Web services and Java EE applications).

Gain instant visibility into Java code's quality and readiness — Provides
on-demand objective code assessments and tracks progress towards
quality and schedule targets.

Benefits

www.parasoft.com

DA
TA

 SH
EE

T

Parasoft Corporation, 101 E. Huntington Dr., 2nd Flr., Monrovia, CA 91016
Ph: (888) 305.0041, Fax: (626) 256.6884, Email: info@parasoft.com

As soon as a Java method or class is implemented, the developer can test it in
isolation to start finding errors instantly. To facilitate this initial developer
testing, Jtest automatically generates extendable, high-coverage JUnit tests
that expose reliability problems and can be leveraged for regular regression
testing.

Once Java EE classes are deployed to a local application server, Jtest can
automatically generate Cactus tests for them and then execute those tests in the
application container to simulate the code's realistic runtime environment. This
ability to test complex, difficult-to-test Java EE applications in isolation (on the
desktop or a local server) before they are deployed to a production system
promotes early exposure of defects that are typically not noticed until QA or
later—when finding and fixing them is significantly more difficult and expensive.

By monitoring a deployed application in real time, Jtest Tracer can capture
realistic functional tests to further extend the regression test suite. Simply use
the application's GUI or a test client (such as Parasoft SOAtest for SOA/Web
services or Parasoft WebKing for Web applications) to execute the use cases you
want to verify, then Jtest Tracer will capture these operations in "positive" JUnit
test cases. If the functionality associated with your use cases later breaks, these
test cases will fail.

Automatically creates sensitive low-noise regression test
suites—even for large code bases.
Automatically finds runtime bugs in execution paths that may cross
multiple methods, classes, or packages.
Generates functional JUnit test cases that capture actual code
behavior as a deployed application is exercised.
Generates extendable JUnit and Cactus (in-container) tests that
expose reliability problems and capture behavior.
Executes the test suite to identify regressions and unexpected side
effects.
Monitors test coverage and achieves high coverage using branch
coverage analysis.
Identifies memory leaks during test execution.
Checks compliance to configurable sets of over 700 built-in rules,
including 100 security rules.
Corrects violations of 250 rules.
Allows creation of custom rules by modifying parameters, using a
graphical design tool, or providing code that demonstrates a sample
rule violation.
Calculates metrics.
Identifies and refactors duplicate and unused code.
Supports Struts, Spring, Hibernate, EJBs, JSPs, servlets, and so on.
Full integration with Eclipse, RAD, JBuilder.
Limited integration (result import only) with IntelliJ IDEA and Oracle
JDeveloper.
Integration with most popular source control systems.
Automates the peer code review process (including preparations,
notifications, and routing).
Shares test settings and files team-wide or organization-wide.
Generates HTML and XML reports.
Provides GUI (interactive) and command-line (batch) mode.

Operating System Support

IDE Support (plugin)

 Windows 2000, Windows XP, Windows 2003 Server, Windows Vista
Solaris 8, 9, 10
Red Hat Enterprise Linux 3, 4, 5 (glibc version 2.3.2 or higher,
package compat-libstdc++-33 installed)
Mac OS X

Eclipse 3.4-3.0
IBM Rational Application Developer 7.0-6.0
Jbuilder 2007

Features

System Requirements

Establish an Automated Infrastructure for Regular
Automated Regression Testing
Collectively, these test cases establish a robust regression test suite that
automatically runs on a regular basis to detect defects immediately upon
introduction and determine if code modifications break existing functionality.
Having such a regression test suite helps developers rapidly change code with
confidence, which is especially critical for teams working on complex and
constantly-evolving applications. Even if the team has a large existing code base
with no tests or minimal tests, they can use Jtest to create a robust, low-noise
regression suite overnight.

Integrate Jtest into the Team's Infrastructure and Workflow
Jtest's support for team deployment standardizes testing team-wide and
provides a sustainable workflow for integrating best practices into the team's
existing processes—with minimal disruption. The architect defines the team's
designated test configurations, then Parasoft Team Configuration Manager
(TCM) automatically shares them across all team Jtest installations. Developers
can test code directly from their IDE to find and fix problems before adding it to
source control. Additionally, Jtest Server can test the entire project code base
each evening, then email reports to the manager and responsible developers if
any problems are detected. Developers can then import results into their IDEs to
review and repair the errors reported for code they authored. Jtest Server also
sends information from these tests to the Parasoft Group Reporting System
(GRS), which collects and analyzes data from Jtest and other testing products,
and then organizes data into role-based dashboards that provide managers,
architects, developers, and testers instant visibility into the project's overall
quality and status.

