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● An innocent looking example:

unitTests
   (title "Reverse")
   (testAll (sq (list int))
               (fn (xs, ys) 
                    thatEq (list int)
                               {expect = rev (xs @ ys),
                                 actual = rev xs @ rev ys})) $

Why Generics?Why Generics?
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Test OutputTest Output

1. Reverse test
  FAILED:
    with ([521], [7])
    equality test failed:
      expected [7, 521], but got [521, 7].
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Hidden ComplexityHidden Complexity

● Uses quite a few generics:
– Arbitrary – to generate counterexamples
– Shrink – to shrink counterexamples
– Size – to order counterexamples by size ...
– Ord – ... and an arbitrary linear ordering
– Eq – to compare for equality
– Pretty – to pretty print counterexamples
– Hash – used by several other generics
– TypeHash – used by Hash (and Pickle)
– TypeInfo – used by several other generics

● Imagine having to write all those 
functions by hand to state the property...
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Generics?Generics?

● A generic can be used at many types:
eq

 
:     Bool.t

show
 
:   String.t 

● Values indexed by one or more types

● Question: What is the relation to ad-hoc 
polymorphism?

● Problem: Types in H-M are implicit
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Generics vs Ad-Hoc Poly.Generics vs Ad-Hoc Poly.

GenericsGenerics
● aka “Polytypic”, 

“Closed T-I ...”, ...
● Defined once and 

for all
– O(1)

● Structural
● Inflexible
● Abstract

Ad-Hoc Poly.Ad-Hoc Poly.
● aka “Overloaded”, 

“Open T-I ...”, ...
● Specialized for 

each type (con)
– O(n)

● Nominal
● Flexible
● Concrete
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Encoding Types as ValuesEncoding Types as Values

Value-DependentValue-Dependent
● Witness the value

    Bool.t
  String.t

● Hard to compose
● Easy to specialize
● Vanilla H-M

Value-IndependentValue-Independent
● Witness the type

 ↔ u

● Easy to compose
● Hard to specialize
● GADTs, 

Existentials, 
Universal Type

show :  Show.t    String.teq :  Eq.t      Bool.t
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● Use a value-dependent encoding to allow 
specialization

● Encode user defined types via sums-of-
products and witnessing isomorphisms

● Close relative of Hinze's GM approach
● Encode recursive types using a type-

indexed fixed point combinator
● Make type reps open-products to address 

composability

The Approach in a NutshellThe Approach in a Nutshell
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So, in Practice...So, in Practice...

● For each type, the user must provide a 
type representation constructor (an 
encoding of the type constructor).
– This could even be mostly automated.

● As a benefit, the user then gets a bunch 
of generic utility functions to operate on 
the type.

● So, instead of O(mn) definitions, only 
O(m+n) are needed!
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Encoding TypesEncoding Types
signature CLOSED_REP = sig type  t and  s and (, ) p end

signature CLOSED_CASES = sig
  structure Rep : CLOSED_REP
  val iso :  Rep.t  (, ) Iso.t   Rep.t
  val ⊗ : (, ) Rep.p  (, ) Rep.p  ((, ) Product.t, ) Rep.p
  val T :  Rep.t  (, Generics.Tuple.t) Rep.p
  val R : Generics.Label.t   Rep.t  (, Generics.Record.t) Rep.p
  val tuple : (, Generics.Tuple.t) Rep.p   Rep.t
  val record : (, Generics.Record.t) Rep.p   Rep.t
  val ⊕ :  Rep.s   Rep.s  ((, ) Sum.t) Rep.s
  val C0 : Generics.Con.t  Unit.t Rep.s
  val C1 : Generics.Con.t   Rep.t   Rep.s
  val data :  Rep.s   Rep.t
  val Y :  Rep.t Tie.t
  val  :  Rep.t   Rep.t  (  ) Rep.t
  val refc :  Rep.t   Ref.t Rep.t
  (* ... *)
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Binary TreeBinary Tree
fix t

iso

data

C0 (C''LF'') C1 (C''BR'')







tuple

intt

t

datatype  bt =
    LF
  | BR of  bt ×  ×  bt

val bt :  Rep.t   t Rep.t =
  fn a ⇒
     fix Y (fn t ⇒
        iso (data (C0 (C''LF'') 
                        C1 (C''BR'')
                             (tuple (T t  T a  T t))))
             (fn LF ⇒ INL ()
                | BR (a,b,c) ⇒ INR (a&b&c),
              fn INL () ⇒ LF
                | INR (a&b&c) ⇒ BR (a,b,c)))

val intBt : Int.t bt Rep.t = bt int
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● Recall that a value-dependent encoding makes 
it harder to combine generics
– The type rep needs to be a product of all the 

generic values that you want [Yang]
● So, we use an open product for the type rep 

[Berthomieu] and use open structural cases
● A generic is implemented as a functor for 

extending a given (existing) combination

● But you still need to explicitly define the 
combination that you want and close it (non-
destructively) for use

The CatchThe Catch
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Interface of a GenericInterface of a Generic

signature EQ = sig
   structure EqRep : OPEN_REP
   val eq : (, ) EqRep.t   BinPr.t
   val notEq : (, ) EqRep.t   BinPr.t
   val withEq :  BinPr.t  (, ) EqRep.t UnOp.t
end
signature EQ_CASES = sig
   include CASES EQ
   sharing Open.Rep = EqRep
end
signature WITH_EQ_DOM = CASES
functor WithEq (Arg : WITH_EQ_DOM) : EQ_CASES
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And another...And another...

signature HASH = sig
   structure HashRep : OPEN_REP
   val hashParam : (, ) HashRep.t  {totWidth : Int.t,
                                                             maxDepth : Int.t}    Word.t
   val hash : (, ) HashRep.t    Word.t
end
signature HASH_CASES = sig
   include CASES HASH
   sharing Open.Rep = HashRep
end
signature WITH_HASH_DOM = sig
   include CASES TYPE_HASH TYPE_INFO
   sharing Open.Rep = TypeHashRep = TypeInfoRep
end
functor WithHash (Arg : WITH_HASH_DOM) : HASH_CASES
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Extending a CompositionExtending a Composition

● Root generic ($(G)/with/generic.sml)
structure Generic = struct structure Open = RootGeneric end

● Equality ($(G)/with/eq.sml)
structure Generic = struct
   structure Open = WithEq (Generic)
   open Generic Open
end

● Hash ($(G)/with/hash.sml)
structure Generic = struct
   structure Open = WithHash
      (open Generic
       structure TypeHashRep = Open.Rep and TypeInfoRep = Open.Rep)
   open Generic Open
end
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● With the ML Basis System: 
local
  $(G)/lib.mlb
  $(G)/with/generic.sml
  $(G)/with/eq.sml
  $(G)/with/type-hash.sml
  $(G)/with/type-info.sml
  $(G)/with/hash.sml
  $(G)/with/ord.sml
  $(G)/with/pretty.sml
  $(G)/with/close-pretty-with-extra.sml
in
  my-program.sml
end

Defining a CompositionDefining a Composition



17

Algorithmic Details MatterAlgorithmic Details Matter

● Generic algorithms:
– must terminate on recursive types
– must terminate on cyclic data structures
– must respect identities of mutable objects
– should avoid unnecessary computation
– should be competitive with handcrafted 

algorithms

● The Eq generic (example in the paper) is 
easy only because SML's equality already 
does the right thing!
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● One of the simplest generics
● But, there is a catch
● At a sum, which direction do you choose, 

left or right?
● One solution is to analyze the type...

fun a  b = case hasBaseCase a & hasBaseCase b
                     of true & false ⇒ INL o getS a
                       | false & true ⇒ INR o getS b
                       | _ ⇒ ...

SomeSome
val some : (, ) SomeRep.t  
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Does it Have a Base Case?Does it Have a Base Case?
fix t

iso

data

C0 (C''LF'') C1 (C''BR'')







tuple

intt

t

id ⊤=⊤

⊥∧⊤=⊥

⊥∧⊥=⊥

⊤∨⊥=⊤
⊤ id ⊥=⊥

⊥

⊤⊥

id ⊥=⊥

id ⊤=⊤

id ⊤=⊤
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PrettyPretty

● Features:
– Uses Wadler's combinators
– Output mostly in SML syntax
– Doesn't produce unnecessary parentheses
– Formatting options (ints, words, reals)
– Optionally shows only partial value
– Shows sharing of mutable objects
– Handles cyclic data structures
– Supports infix constructors
– Supports customization

val pretty : (, ) PrettyRep.t    Prettier.t
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The LibraryThe Library

● Provides the framework (signatures, 
layering functors) and

● several generics (17+) from which to 
choose

● Most of the generics have been 
implemented quite carefully

● Available from MLton's repository
● MLton license (a BSD-style license)
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In the PaperIn the Paper

● Implementation techniques
– Sum-of-Products encoding
– Type-indexed fixpoint combinator
– Layering functors

● Discussion about the design

● NOTE: Some of the signatures have 
changed (for the better) after writing the 
paper, but the basic techniques are 
essentially same
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ConclusionConclusion

● Works in plain SML'97
● Allows you to define generics both 

independently and incrementally and 
combine later for convenient use

● And I dare say the technique is 
reasonably convenient to use – definitely 
preferable to writing all those utilities by 
hand
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Shopping ListShopping List

● Definitely:
– First-class polymorphism
– Existentials
– In the core language!

● Maybe:
– Deriving
– Type classes – well, something much better

● Wishful:
– Lightweight syntax

● let open DSL in ... end vs (open DSL ; ...)
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● Highlights:
– Platform independent and compact pickles

● Tag size depends on type
● Introduces sharing automatically

– Handles cyclic data structures
– Actually uses 6 other generics

● Some & DataRecInfo
● Eq & Hash
● TypeHash
● TypeInfo

PicklePickle
val pickle : (, ) PickleRep.t    String.t
val unpickle : (, ) PickleRep.t  String.t  
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– Arbitrary
– DataRecInfo
– [Debug]
– Dynamic
– Eq
– Hash
– Ord
– Pickle
– Pretty
– Reduce
– Seq

List of GenericsList of Generics

– Shrink
– Size
– Some
– Transform
– TypeExp
– TypeHash
– TypeInfo
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Example: Generic EqualityExample: Generic Equality

● Desired:
val eq :  Eq.t      Bool.t
– Where Eq.t is the type representation type 

constructor

● Just define:
structure Eq = (type  t =  ×   Bool.t)
val eq :  Eq.t      Bool.t = id

● How to build type representations?
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● Equality types are trivial:
val unit : Unit.t Eq.t = op =
val int : Int.t Eq.t = op =
val string : String.t Eq.t = op =

● So are some non-equality types:
val real : Real.t Eq.t = fn (l, r) 
 PackRealBig.toBytes l = PackRealBig.toBytes r
– Makes sense: reflexive, symmetric, 

antisymmetric, and transitive
– Application: unpickle (pickle x) = x

● What about user-defined types?

Nullary TyConsNullary TyCons
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● First define sum and product datatypes:
datatype (, ) sum = INL of  | INR of 
datatype (, ) product = & of  × 
infix &  

● And equality on sums and products:
val op  :  Eq.t ×  Eq.t  (, ) Sum.t  Eq.t =
  fn (eA, eB)   fn (INL l, INL r)  eA (l, r)

                         | (INR l, INR r)  eB (l, r) | _    false
val op  :  Eq.t ×  Eq.t  (, ) Product.t Eq.t =
  fn (eA, eB)   fn (lA & lB, rA & rB) 
      eA (lA, rA) andalso eB (rA & rB)

UDTs via Sums-of-Products 1/2UDTs via Sums-of-Products 1/2
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UDTs via Sums-of-Products 2/2UDTs via Sums-of-Products 2/2

● Then define isomorphism witness type:
type (, ) iso = (  ) × (  )
– Note: Should be total!

● And equality given a witness:
val iso :  Eq.t  (, ) Iso.t   Eq.t = fn eB 
  fn (a2b, b2a)   fn (lA, rA)  eB (a2b lA, a2b rA)

● Example:
val option :  Eq.t   Option.t Eq.t = fn a 
  iso (unit  a)
       (fn NONE  INL () | SOME a  INR a, 

        fn INL ()  NONE | INR a  SOME a) 
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Value Recursion ChallengeValue Recursion Challenge

● What about recursive datatypes:
val rec list :  Eq.t   List.t Eq.t = fn a 
   iso (unit ⊕ (a ⊗ list a))
         (fn []  INL () | x::xs  INR (x & xs),
          fn INL ()  [] | INR (x & xs)  x::xs)
– Type checks, but diverges!

● -expansion not a solution
– Doesn't work for pairs of functions

● We must use a fixpoint combinator
– But how do you compute fixpoints over 

arbitrary products of multiple abstract 
types?
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Type-Indexed Fix 1/3Type-Indexed Fix 1/3

● Signature for a type-indexed fix:
signature TIE = sig
  type  dom and  cod type  t =  dom   cod
  val fix :  t  (  )  
  val pure : (Unit.t  (  (  ))   t
  val  :  t   t  (, ) Product.t t
  val iso :  t  (, ) Iso.t   t
end
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Type-Indexed Fix 2/3Type-Indexed Fix 2/3

● An implementation of type-indexed fix:
structure Tie :> TIE = struct
  type  dom = Unit.t and  cod = Unit.t    (  )
  type  t =  dom   cod
  fun fix aW f = let val (a, tA) = aW () () in tA (f a) end
  val pure = const
  fun iso bW (a2b, b2a) () () =
     let val (b, tB) = bW () () in (b2a b, b2a o tB o a2b) end
  fun op  (aW, bW) () () =
     let val (a, tA) = aW () () val (b, tB) = bW () ()
     in (a & b, fn a & b  tA a & tB b) end
end
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Type-Indexed Fix 3/3Type-Indexed Fix 3/3

● An ad-hoc witness for functions:
structure Tie = struct open Tie
  val function : (  ) t = fn ? 
    pure (fn ()  let
       val r = ref (fn _  raise Fix)
    in
        (fn x  !r x,
         fn f  (r := f ; f))
    end) ?
end

● Back to the Eq generic...
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Tying the KnotTying the Knot

● First we define a fixpoint witness for the 
Eq type representation
val Y :  Eq.t Tie.t = Tie.function

● Example:
val list :  Eq.t   List.t Eq.t = fn a 
   Tie.fix Y (fn aList 
      iso (unit  (a  aList))
           (fn []  INL () | x::xs  INR (x & xs),
            fn INL ()  [] | INR (x & xs)  x::xs))

● Thanks to Tie., mutually recursive 
datatypes are not a problem.
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Composability 1/2Composability 1/2

● To address composability, the type 
representation is made to carry extra 
data :
signature OPEN_REP = sig
   type (, ) t and (, ) s and (, , ) p
   val getT : (, ) t  
   val mapT : (  )  ((, ) t  (, ) t)
   val getS : (, ) s  
   val mapS : (  )  ((, ) s  (, ) s)
   val getP : (, , ) p  
   val mapP : (  )  ((, , ) p  (, , ) p)
end
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Composability 2/2Composability 2/2

● And structural cases made to build the 
extra data:
signature OPEN_CASES = sig
  structure Rep : OPEN_REP
  val iso : (  (, ) Iso.t  ) 
               (, ) Rep.t  (, ) Iso.t  (, ) Rep.t
  val  : (    ) 
              (, , ) Rep.p  (, , ) Rep.p 
              ((, ) Product.t, , ) Rep.p
  val Y :  Tie.t  (, ) Rep.t Tie.t
  val list : (  )  (, ) Rep.t  ( List.t, ) Rep.t
  val int :   (Int.t, ) Rep.t
  (* ... *)



38

Layering GenericsLayering Generics

● The open rep and cases allow one to 
extend a generic. We do so by means of 
layering functors:
– LayerRep (OPEN_REP, CLOSED_REP) :> 

LAYERED_REP
– LayerCases (OPEN_CASES, LAYERED_REP, 

CLOSED_CASES) :> OPEN_CASES
– LayerDepCases (OPEN_CASES, LAYERED_REP, 

DEP_CASES) :> OPEN_CASES



39

Layering SchemeLayering Scheme

LROR

OC

CR

DC or CC

 

}  OR    OC
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The BenefitThe Benefit

● Having the binary tree type rep means 
that we can
– pretty print binary trees,
– pickle and unpickle them,
– compare them for equality,
– hash them
– reduce and transform them,
– ...

● Let's try...
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Goals and RequirementsGoals and Requirements

● Available yesterday (SML'97)
● Reasonably expressive (eq, ord, show, 

read, pickle-unpickle, hash, arbitrary, ...)
● Support all types (mutually rec., 

mutable)
● Specialization required by applications
● Composability for convenient use
● Not a toy – Algs must do The Right Thing
● Reasonably efficient
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In SummaryIn Summary

● First you select which generics you want,
– add the generics one-by-one to a 

composition, and
– close it for use

● Then you define type rep constructors for 
your types

● And you then get to use those generic 
utility functions with your types
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Three type cons for type reps?Three type cons for type reps?

● SML's datatypes are not binary sums and 
tuples & records are not binary products!

● So, we generalize:
signature CLOSED_REP = (type  t and  s and (, ) p)
– Distinguishes between complete and 

incomplete types as well as tuples and 
records

– The extra tycons are useful; sometimes you 
really want different representations for 
sums and products (e.g. pickle/unpickle, 
read)
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OrderOrder
datatype order = LESS | EQUAL | GREATER

val order : Order.t Rep.t =
   iso (data (C0 (C''LESS'')  C0 (C''EQUAL'')  C0 (C''GREATER''))
        (fn LESS ⇒ INL (INL ()) | EQUAL ⇒ INL (INR ()) | GREATER ⇒ INR (),
         fn INL (INL ()) ⇒ LESS | INL (INR ()) ⇒ EQUAL | INR () ⇒ GREATER)

C0 (C''LESS'')

C0 (C''GREATER'')

C0 (C''EQUAL'')

data

iso






