
Formal Semantics of Weak References

Kevin Donnelly J. J. Hallett Assaf Kfoury
Department of Computer Science

Boston University
{kevind,jhallett,kfoury}@cs.bu.edu

Abstract
Weak references are references that do not prevent the object they
point to from being garbage collected. Many realistic languages,
including Java, SML/NJ, and Haskell to name a few, support weak
references. However, there is no generally accepted formal seman-
tics for weak references. Without such a formal semantics it be-
comes impossible to formally prove properties of such a language
and the programs written in it.

We give a formal semantics for a calculus called λweak that in-
cludes weak references and is derived from Morrisett, Felleisen,
and Harper’s λgc. The semantics is used to examine several issues
involving weak references. We use the framework to formalize the
semantics for the key/value weak references found in Haskell. Fur-
thermore, we consider a type system for the language and show
how to extend the earlier result that type inference can be used to
collect reachable garbage. In addition we show how to allow col-
lection of weakly referenced garbage without incurring the compu-
tational overhead often associated with collecting a weak reference
which may be later used. Lastly, we address the non-determinism of
the semantics by providing both an effectively decidable syntactic
restriction and a more general semantic criterion, which guarantee
a unique result of evaluation.

Categories and Subject Descriptors F.3.2 [Logics and Meanings
of Programs]: Semantics of Programming Languages

General Terms Languages

Keywords Weak references, garbage collection, formal semantics

1. Introduction
1.1 Background and Motivation

Weak references are references that do not prevent the object they
point to from being garbage collected. During gabage collection, if
an object is only reachable through weak references then it may be
collected and the weak references to it replaced with a special tag,
sometimes called a tombstone. Weak references are an important
programming feature, supported by many modern programming
languages (see the appendix of [5] for a survey of weak references
in some popular languages). Weak references have shown to be par-
ticularly useful when we want to store numerous objects without
allowing them to permanently occupy space. The classic examples

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

ISMM’06 June 10–11, 2006, Ottawa, Ontario, Canada.
Copyright c© 2006 ACM 1-59593-221-6/06/0006. . . $5.00.

of data structures that benefit from weak references are caches, im-
plementations of hash-consing, and memotables [3]. In each data
structure we may wish to keep a reference to an object but also
prevent that object from consuming unnecessary space. That is, we
would like the object to be garbage collected once it is no longer
reachable from outside the data structure despite the fact that it is
reachable from within the data structure. A weak reference is the
solution!

Difficulties with weak references. Despite its benefits in practice,
defining formal semantics of weak references has been mostly ig-
nored in the literature, perhaps partly because of their ambiguity
and their different treatments in different programming languages.
The Weak Signature documentation of Standard ML of New Jersey
says, “The semantics of weak pointers to immutable data struc-
tures in ML is ambiguous.”[12]. The problem stems from both a
lack of documentation and the intrinsic connection between weak
references, garbage collection, and thus the runtime-system. The
SMLofNJ Structure documentation [12] gives a slightly modified
version of the following example:

let val (b’, w’) =
let val a = (1, 2)

val b = (1, 2)
val w = weak(a)

in (b, w) end
in (b’, strong(w’)) end

where weak and strong allocate and dereference weak references
respectively. The types of these functions are as follows:

weak : ′a → ′a weak
strong : ′a weak → ′a option.

After evaluation of this expression, a is unreachable, so one would
expect the result to be ((1, 2), NONE). However, the object that a
weak pointer references is not considered dead until garbage collec-
tion actually occurs. If the runtime-system has not initiated garbage
collection then the result will be ((1, 2), SOME(1, 2)). Also, the
compiler or runtime-system may have performed subexpression
elimination for optimization reasons, thus a and b would point to
the same (1, 2). If this is the case then w would remain alive as long
as b does.

Weak references are a complex programming feature which
forces the programmer to think about runtime behavior that is irrel-
evant without such a feature. While it would be possible to formal-
ize a semantics for weak references without a semantics of garbage
collection, such a semantics would be limited in application. Al-
lowing the semantics of weak references to explicitly depend on
garbage collection gives a more precise semantics which could, for
example, let one prove more specific properties about memory us-
age of programs. It also forces a semantics for weak references to
incorporate a semantics for garbage collection.

126

The ability to concisely specify and formally prove the correct-
ness of garbage collection strategies, in an implementation inde-
pendent way, was an important contribution of Morrisett, Felleisen
and Harper’s λgc [10]. By modeling the heap as a set of mutually
recursive definitions, the semantics of a garbage collection strat-
egy can be specified as a rewrite rule which removes bindings from
the mutually recursive set without altering program behavior. The
addition of weak references changes this situation in that program
behavior can depend on how garbage collection is employed. With
such added complexity, it is even more desireable to have a formal
semantics.

1.2 Our Contributions and Organization of the Report

Our ultimate goal is to provide a framework for formal reasoning
about weak references. We make use of the formalization to prove
some properties of the language including correctness of an ex-
tended garbage collection strategy and some conditions guarantee-
ing the result of a program is unique regardless of when garbage
collection occurs. Such a framework could also be used by imple-
mentors to determine whether potential code optimizations are safe
with respect to the collection of weak references.

Towards this goal, we propose a small functional program-
ming language, λweak, using a style of definition proposed in [10].
Though quite simple in its final formulation, the design of λweak was
not obvious or necessarily dictated by the use of weak references in
practice, if only because there is quite a bit of divergence between
the ways in which different programming languages handle them.
We strived to define a minimal calculus that can be augmented,
or adjusted minimally, to model weak references in more than one
language.

In Section 2, we define the syntax and semantics of λweak and
prove several preliminary results. A fundamental aspect of λweak

is that, even though parameter-passing is deterministic (call-by-
value in our case), program evaluation is non-deterministic because
weak references (possibly affecting the result of the program) can
be garbage-collected at any time during execution.

Section 3 substantiates our claim that λweak is flexible enough
for adaptation to other languages that support weak references. In
this section we show how λweak can be adapted to model the weak
references found in Haskell.

In section 4 we describe a more general semantics which allows
weak references to be tombstoned at any time, even if the object
they point to is still strongly reachable. A programmer making use
of this semantics cannot rely on a weak reference being alive at
any particular time. This means that compiler optimizations, like
common subexpression elimination (CSE), which may cause weak
references to go dead sooner then expected, will have behavior that
is allowed by this semantics.

In Section 5 we set up a type system for λweak which, in addition
to enforcing the standard invariants, i.e., catching programs that
“go wrong” (Subsection 5.1), can be used for a more efficient
management of memory (Subsection 5.2). We extend the latter
result by showing that we can use type inference to allow for
the collection of additional weak references without incurring the
runtime penalty that might otherwise occur if a collected weak
reference is later used.

In Section 6 we study the conditions under which λweak pro-
grams are “well-behaved”, i.e., under which garbage collection
does not affect the result of evaluation. It is undecidable whether
an arbitrary λweak program is well-behaved.

In Subsection 6.1 we define a proper subclass of well-behaved
programs that is efficiently recognizable (in linear time) and en-
compasses some common uses of weak references. In Subsection
6.2 we define a general, but undecidable, criterion for the well-

behavedness of programs which can be used as a guideline for writ-
ing programs satisfying the property.

In Section 7 we discuss related work and in Section 8, we pro-
pose several directions for future research and conclude. Missing
proofs and additional materials can be found in the two companion
reports, [4, 5] .

The appendix contains the proofs and auxiliary lemmas of the-
orems in Sections 4 and 5.

2. Modeling Weak References: λweak

A formal model called λweak, which extends λgc with the means to
introduce and conditionally dereference weak references, is given
in [5] and further investigated in [4] . λweak formalizes the semantics
for weak references in SML/NJ [12] by giving a semantics to weak
references in which garbage collection is non-deterministically ap-
plied. Therefore a programmer using λweak to reason about his
program cannot rely on the timing of garbage collection. This is
a natural way to reason about weak references as the program-
mer (usually) is not aware of when garbage collection occurs.
In Section 4 we breifly explore another semantics which, in ad-
dition to non-deterministically applying garbage collection, non-
deterministically tombstones weak references. With this semantics
a programmer cannot rely on the liveness of a weak reference, but
in return we can model the semantics of programs that are opti-
mized by compilers.

Syntax of λweak

The syntax of λweak (given in Figure 1) is that of a standard pro-
gramming language based on the λ-calculus along with additional
primitives for introducing weak references and doing conditional
weak dereferencing. A λweak expression is either a variable (x),
an integer (i), a pair (〈e1, e2〉), a projection (πi e), an abstraction
(λx. e), an application (e1 e2), a weak expression (weak e) or an
ifdead expression (ifdead e1 e2 e3). In some examples we make
use of let x = e1 in e2 as syntactic sugar for (λx.e2) e1.

Heap values, hv, are values which may be allocated to the
heap during reduction. Heap values are a subset of expressions in
addition to the special value d (meaning “dead”). During execution,
a weak pointer “weak y” on the heap may be replaced with d if the
only remaining references to y are weak. When this happens we
say the weak pointer has been tombstoned.

A λweak program, letrec H in e consists of a set of mutually
recursive definitions (given by a finite map H : Var → Hval)
which models the heap, and an expression e. We write H � H ′ to
be the union of two heap functions defined on disjoint domains and
Dom(H) and Ran(H) to be the domain and range of H and we
define

Hs = {x �→ H(x) | H(x) 	= weak y for any y}
to be the strong part of the heap. The set of free variables of an
expression, FV (e) and capture-avoiding substitution e{x := e′}
are defined as usual. Free variables for a heap H and a program
letrec H in e are defined by:

FV (H) =

0
@ [

x∈Dom(H)

FV (H(x))

1
A − Dom(H)

FV (letrec H in e) = (FV (H) ∪ FV (e)) − Dom(H)

Expressions are identified up to α-conversion and programs are
identified up to renaming of variables bound in the heap, e.g.,
letrec H �{x �→ hv} in x = letrec H �{y �→ hv{x := y}} in y
assuming x /∈ FV (H) and y /∈ FV (H).

127

Programs:
(variables) w, x, y, z ∈ Var
(integers) i ∈ Int ::= . . . | −2 | −1 | 0 | 1 | 2 | . . .
(expressions) e ∈ Exp ::= x | i | 〈e1, e2〉 | π1 e | π2 e | λx.e | e1 e2 |

weak e | ifdead e1 e2 e3
(heap values) hv ∈ Hval ::= i | 〈x1, x2〉 | λx.e | weak x | d
(heaps) H ∈ Var

fin−→ Hval
(programs) P ∈ Prog ::= letrec H in e
(answers) A ∈ Ans ::= letrec H in x

Evaluation Contexts and Instruction Expressions:
(contexts) E ∈ Ctxt ::= [] | 〈E, e〉 | 〈x,E〉 | πi E | E e | x E | weak E | ifdead E e1 e2
(instruction) I ∈ Instr ::= hv | πi x | x y | ifdead x e1 e2

Rewrite Rules:
(alloc) letrec H in E[hv]

alloc−−−→ letrec H � {x 	→ hv} in E[x]
where x is a fresh variable

(πi) letrec H in E[πi x]
πi−−→ letrec H in E[xi]

provided H(x) = 〈x1, x2〉 and i ∈ {1, 2}
(app) letrec H in E[x y]

app−−→ letrec H in E[e{z := y}]
provided H(x) = λz.e

(ifdead) letrec H in E[ifdead x e1 e2]
ifdead−−−→

(
letrec H in E[e2 w] if H(x) = weak w

letrec H in E[e1] if H(x) = d

Figure 1. Syntax and Operational Semantics of λweak

Semantics of λweak

The reduction semantics of λweak are given by the evaluation
contexts (which apply left-to-right, call-by-value reduction) and
rewrite rules in Figure 1. We use the following notation for rewrite
rules. Let G be a set of rules and P and P ′ be programs:

P
G−→ P ′ means P rewrites to P ′ by some rule in G and

G−→∗ is the reflexive, transitive closure of
G−→.

P ⇓G P ′ means P
G−→∗ P ′ and P ′ is irreducible with

respect to the rules in G.
P ⇑G means there exists an infinite reduction using rules in
G starting from program P .

The evaluation rules are chosen to extend normal evaluation with
reference values and weak references. The rule (alloc) allocates a
value on the heap and replaces it with a reference. The rule (app)
evaluates function calls by reference passing. In this language,
all values are “reference values” in that they are allocated to the
heap and passed by reference. The projection rules (πi) extract the
appropriate component from a pair pointed to by a reference.

Rule (ifdead) applied to P = letrec H in E[ifdead x e2 e3]
does a conditional dereference of weak reference x. If H(x) =
weak y (the weak reference is not dead) then P reduces to
letrec H in E[e3 y]. If H(x) = d then P reduces to letrec H in e2.
Unlike Standard ML which separates these two actions by deref-
erencing to an option datatype and using case analysis to branch
on the result, λweak combines these so we do not have to introduce
datatypes. This combination also allows us to syntactically identify
programs whose evaluation does not depend on garbage collection,
which we explore in Section 6.

There is an additional rewrite rule (garb) not listed in Figure 1
which uses the following as auxiliary rules.

(gc) letrec H1 � H2 in e
gc−→ letrec H1 in e

provided Dom(H2) ∩ FV (letrec Hs
1 in e) = ∅,

and H2 	= ∅
(weak-gc) letrec H � {x �→ weak y} in e

weak-gc−−−−→
letrec H � {x �→ d} in e
provided y /∈ Dom(H)

Using these rules we define the garbage collection rule (garb) as
follows:

(garb) letrec H in e
garb−−→ letrec H ′ in e

provided letrec H in e
gc−→ letrec H ′′ in e

and letrec H ′′ in e ⇓weak-gc letrec H ′ in e

Intuitively the rule (garb) works by first collecting some bindings
to which there is no strong reference, then setting to dead all the
weak references which refer to collected bindings. Notice that this
rewrite rule allows for the collection of cycles of garbage 1. Often,
in practice garbage collection will collect every location to which
there is no strong reference, however we do not want the program-
mer to rely on this behavior, so the rule reflects this. In particular,
the garbage collector may be implemented to not collect weakly
reachable references if there is not a shortage of memory. By using
this rule we allow the implementor of the garbage collector ex-
treme freedom as to what garbage is collected as long as weak ref-
erences to collected locations are all properly tombstoned (which is
reflected by the ⇓weak-gc in the rule). In addition, using this rule we
are sure that the programmer cannot rely on some location having
been collected, so it is safe to perform many compiler optimizations
which make object identity statically unknown.

We denote the set of rewrite rules by

R = {alloc, π1, π2, app, ifdead, garb}.
Given the rewrite rule (garb), the reduction is no longer con-

fluent because the initiation of garbage collection can effect the
reduction of ifdead expressions. The example program P1 shown
in Figure 2, taken from [5] , shows the non-confluence of λweak.

We can even have a program whose behavior can converge or
diverge depending on when garbage collection occurs. For exam-

1 An easier-to-understand but more restrictive definition of (gc) is

letrec H � {x 	→ hv} in e
gc−→ letrec H in e

provided x /∈ FV (letrec Hs in e)

This rule collects only one binding at a time and does not permit the

collection of cycles of garbage. Having thus redefined (gc), “
gc−→” should

also be replaced by “
gc−−→∗ ” in the definition of (garb).

128

EXAMPLE 2.1.
P1 = letrec {} in (λx.ifdead (weak x) 0 (λy.π1 y)) 〈5, 6〉

alloc−−−→∗ letrec {a 	→ λx.ifdead (weak x) 0 (λy.π1 y), b 	→ 5, c 	→ 6, e 	→ 〈b, c〉} in a e
app−−→ letrec {a 	→ λx.ifdead (weak x) 0 (λy.π1 y), b 	→ 5, c 	→ 6, e 	→ 〈b, c〉} in ifdead (weak e) 0 (λy.π1 y)
alloc−−−→ letrec {a 	→ λx.ifdead (weak x) 0 (λy.π1 y), b 	→ 5, c 	→ 6, e 	→ 〈b, c〉, f 	→ weak e} in ifdead f 0 (λy.π1 y)

then
ifdead−−−→ letrec {a 	→ λx.ifdead (weak x) 0 (λy.π1 y), b 	→ 5, c 	→ 6, e 	→ 〈b, c〉, f 	→ weak e} in (λy.π1 y) e −→ · · · garb−−→ letrec {b 	→ 5} in b

or
garb−−→ letrec {f 	→ d} in ifdead f 0 (λy.π1 y) −→ · · · garb−−→ letrec {g 	→ 0} in g

where a, b, c, e, f and g are fresh variables introduced in the process of program evaluation.

Figure 2. Example of Non-confluent Reduction

ple:

P2 = letrec {} in (λx. ifdead (weak x) 0
(ifdead (weak x) Ω (λz. λy. πi y)))

where Ω = (λy. y y)(λy. y y).
If a program is completely evaluated without getting stuck, it

will have the form: letrec H in x. In order to talk about the value
in the heap that x represents, we define result(S,H, e) as in Figure
3. We use this function to recursively replace any heap locations
in e with the heap value it is mapped to in H . Note that cycles
in the heap may cause problems. For example, the value in the
heap {x �→ 〈x, x〉} that x represents is undefined. However, we
can detect cycles by keeping track of the heap locations that have
been visited as we traverse the heap. If a cycle is detected, we set
result(S,H, e) = •.

An irreducible value is either an answer, letrec H in x, or a
stuck program which corresponds to an error.

Definition 2.2 (Stuck Programs). A λweak program is stuck if it is
of one of the following forms:

letrec H in E[πi x]
(x 	∈ Dom(H) or H(x) 	= 〈x1, x2〉)

letrec H in E[x y]
(x 	∈ Dom(H) or H(x) 	= λz.e)

letrec H in E[ifdead x e1 e2]
(x 	∈ Dom(H) or (H(x) 	= weak w and H(x) 	= d))

Definition 2.3 (Evaluation Set). The evaluation set of a program
P relative to a set of rewrite rules G:

eval-set(P,G) = {⊥ | P ⇑G} ∪
{error | P ⇓G P ′ and P ′ is stuck} ∪
{result(H,x) | P ⇓G letrec H in x}

Because the untyped lambda-calculus is a subset of λweak,
eval-set(P,G) is an undecidable set in general. If G = R, we
write eval-set(P) instead of eval-set(P,R). For the programs
in the previous examples, we have eval-set(P1) = {0, 5} and
eval-set(P2) = {0, 5,⊥}.

Definition 2.4 (Program Equivalence). (P,G) ≡ (P ′, G′) iff
eval-set(P,G) = eval-set(P ′, G′). If G = G′ = R, we simply
write P ≡ P ′.

Note that our program equivalence “≡” is more general than
Kleene equivalence “�” used in [10]. However, if all evalatuations
of P and P ′ return an int answer and do not use weak references,
then P ≡ P ′ iff P � P ′. Kleene equivalence is not sufficient to

formally describe “equivalent behavior” of λweak programs which
can have more than one possible outcome.

We define garbage using program equivalence. Any binding
which does not contribute to the final result is garbage.

Definition 2.5 (Garbage). Let P = letrec H � {x �→ hv} in e
Then the binding “x �→ hv” is garbage in P iff P ≡ letrec H in e.

Proposition 2.6. It is undecidable whether a binding is garbage in
an arbitrary program.

Proof sketch. Consider the program

P = letrec {x �→ 5} in (λy. x) e,

where e is an arbitrary closed lambda-expression. The binding
“x �→ 5” is garbage in P iff e diverges according to call-by-value
β-reduction, which is undecidable.

Definition 2.7 (Well-Behaved Programs). A program, P , is well-
behaved iff eval-set(P) is a singleton set – in words, iff either all
evaluations of P diverge, or all evaluations of P get stuck, or all
evaluations of P converge and return the same result.

Proposition 2.8. It is undecidable whether an arbitrary program
is well-behaved.

Proof sketch. Let e be an arbitrary closed lambda-expression, Ω =
ω ω and ω = (λx. x x). Then

letrec {} in ifdead (weak 5) Ω (λx.e)

is well-behaved if and only if e diverges according to call-by-value
β-reduction.

The two preceding propositions, though not difficult to prove,
frame the rest of the discussion in the paper.

Proposition 2.6 shows it is impossible to compute an optimal
garbage collection strategy, i.e., one that removes all garbage from
the heap. Thus, any gc algorithm must conservatively approximate
bindings that are garbage.

Proposition 2.8 shows is impossible to recognize exactly the set
of programs evaluating to unique results, so that any (decidable)
criterion for this property must conservatively approximate well-
behaved programs.

3. GHC Haskell Key/Value Weak References
Our formal setup is flexible enough to handle weak references in
other popular programming languages. In this section we formalize
the key/value weak references found in GHC Haskell (which are
similar to ephemerons [6]) by extending the syntax and replacing
the garbage collection rule of λweak. We call the garbage collection
rule derived from the GHC documentation (garb′).

129

We write result(H, e) for result(∅, H, e).

result(S,H, e) =

8>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>:

x if e = x and x
∈ Dom(H)

result(S ∪ {x}, H,H(x)) if e = x and x ∈ Dom(H) and x
∈ S

i if e = i

d if e = d

〈result(S,H, e1), result(S,H, e2)〉 if e = 〈e1, e2〉 and result(S,H, ei)
= • for 1 ≤ i ≤ 2

πi result(S,H, e′) if e = πi e′ and result(S,H, ei)
= • for 1 ≤ i ≤ 2

λx.result(S,H, e′) if e = λx.e′ and x
∈ Dom(H) and result(S,H, e′)
= •
result(S,H, e1) result(S,H, e2) if e = e1 e2 and result(S,H, ei)
= • for 1 ≤ i ≤ 2

weak result(S,H, e′) if e = weak e′ and result(S,H, e′)
= •
ifdead result(S,H, e1) result(S,H, e2) result(S,H, e3) if e = ifdead e1 e2 e3 and result(S,H, ei)
= • for 1 ≤ i ≤ 3

• otherwise

Figure 3. Definition of result(S,H, e)

A key/value weak reference is a special type of weak reference
which contains both a key and a value. To simplify things we
do not consider finalizers (which are included in GHC). During
garbage collection, the tracer does not trace the value of a weak
pointer unless the key is otherwise reachable. Such references are
a generalization of ordinary weak references which are used in
creating weak mappings with complex collection behavior, like
memotables (as described in [8]). In the GHC documentation [7],
the semantics is specified as follows.

Informally, something is reachable if it can be reached by
following ordinary pointers from the root set, but not follow-
ing weak pointers. We define reachability more precisely as
follows. A heap object is reachable if:

• It is directly pointed to by a reachable object, other than
a weak pointer object.

• It is a weak pointer object whose key is reachable.
• It is the value or finaliser of an object whose key is

reachable.

Notice that a pointer to the key from its associated value
or finaliser does not make the key reachable. However, if
the key is reachable some other way, then the value and the
finaliser are reachable, and so, therefore, are any other keys
they refer to directly or indirectly.

To formalize key/value weak references we replace the syntax
weak e with KVweak(e1, e2) where e1 is the key and e2 is the value.
In order to specify the reachable parts of the heap we define the one
step closure of H with respect to H ′ (where H ⊆ H ′) by:

CH′(H) = H ∪ {z �→ H ′(z), x �→ KVweak(y, z) |
y ∈ Dom(H) ∧ H ′(x) = KVweak(y, z)}

∪ {x �→ H ′(x) | ∃e.e ∈ Ran(H) ∧
x ∈ FV(e) ∧ ∀yz.e 	= KVweak(y, z)}

We define the reachable part of the heap,

R(H, e) =
[
n∈N

C
(n)
H (H � FV (e))

where f � S means the restriction of f to domain S ∩ Dom(f)
and f (n) means composition of n copies of f . It is easy to see that
this definition of reachability meets the definition given in the GHC
documentation. We get rid of the reduction rule (garb) and use the

following instead.

(gc′) letrec H1 � H2 in e
gc′−−→ letrec H1 in e

provided Dom(H2) ∩ Dom(R(H1 � H2, e)) = ∅
and H2 	= ∅

We still make use of (essentially) the original (weak-gc) rule

(weak-gc) letrec H � {x �→ KVweak(y, z)} in e
weak-gc−−−−→

letrec H � {x �→ d} in e
provided y /∈ Dom(H)

We then define our new garbage collection rule (garb′) by

(garb′) letrec H in e
garb′−−−→ letrec H ′ in e

provided letrec H in e
gc′−−→ letrec H ′′ in e

and letrec H ′′ in e ⇓weak-gc letrec H ′ in e

According to the semantics of GHC, a key/value weak pointer
is reachable if its key is reachable, even if the weak pointer object
itself is unreachable. We can use (garb′) to illustrate this. For
example, in the program:

letrec {y �→ KVweak(x, z), z �→ (λx.e)} in x

the location z may not be garbage collected because it is reachable
according to the semantics.

4. Semantics to Encompass Compiler
Optimizations

As briefly discussed, compiler optimizations can affect the reacha-
bility of heap values. Consider the program:

letrec {a �→ 5, b �→ 6, x �→ 〈a, b〉, y �→ weak x, f �→ λx.x}
in f (π1 x) (ifdead y 2 (λz.π1 z)) (π1 x).

Most optimizing compilers would eliminate the common subex-
pression π1 x, resulting in the seemingly equivalent program:

letrec {a �→ 5, b �→ 6, x �→ 〈a, b〉, y �→ weak x, f �→ λx.x}
in let c = π1 x in f c (ifdead y 2 (λz.π1 z)) c

In the optimized program, x becomes unreachable after the let
binding is evaluated. If garbage collection occurs at this point, the
program will return the value 2, a result that is impossible in the
program before optimization.

In the presence of such compiler optimizations the (garb) rule
of Section 2 does not correctly model reachability-based garbage
collection and this can affect the semantics of a program. One
approach to remedying this situation is to write a compiler that
produces code that obeys the rules of λweak. In the example above,

130

the compiler would not be able to perform CSE on the first and
third arguments. Another approach is to generalize the definition of
(garb) so that the weak reference to x in the first example above
can be tombstoned. We can realize the second approach by adding
another rule to aribitrarily tombstone weak references.

(garb′′) letrec H � H ′ in e
garb′′−−−→

letrec H � {x1 �→ d, . . . , xn �→ d} in e
provided H ′ = {x1 �→ weak y1, . . . , xn �→ weak y2}

This rule allows weak references to be tombstoned at any time.
Therefore not only can common subexpressions be collected ear-
lier than expected, but any weakly referenced value can. With this
rule the programmer can no longer rely on syntactic reachability to
determine when a weakly referenced value will be collected. How-
ever, this is an inherent effect of compiler optimizations that may
alter reachability. In Section 6 we discuss methods for determining
that garbage collection cannot change the result of a program. The
methods that we give do not analyze the reachability of weakly ref-
erenced values, so they are suitable for reasoning about behavior in
the presence of (garb′′).

5. Types for Garbage Collection
As in [10] we introduce a standard monomorphic type system, and
show how one can use type inference to collect additional garbage.
Additionally, we extend this result to allow for collecting additional
weakly-referenced garbage without incurring the unnecessary over-
head of recomputing unused data cached in the weak references.

5.1 Monomorphic Type System

In this section we introduce a standard monomorphic type system
for λweak. There are no surprises here. While we could formulate an
explicitly typed language allowing for tag-free garbage collection
[1, 14], this was already done in [10] and there are no additional
complications arising from weak references. Therefore we will
formulate an implicit type assignment system for the language
λweak already defined.

The syntax of types is as follows.

Types:
(types) τ ∈ Type ::= int | τ1 × τ2 | τ1 → τ2 | τ weak

The typing rules are shown in Figure 4 and are (almost) com-
pletely standard. The one non-standard addition is that we assign to
d the type τ weak for any τ . This is necessary for type assignments
to be preserved by the rule (weak-gc).

This type system is sound, it rules out stuck programs, which is
proven using the following progress and preservation lemmas [15],
whose proofs are standard.

Lemma 5.1 (Progress). For every λweak program P , if � P : τ

then either P is an answer or there exists P ′ such that P
R−→

P ′.

Lemma 5.2 (Preservation). For every λweak program P , if � P :

τ and P
R−→ P ′ then � P ′ : τ .

Theorem 5.3 (Type Soundness). For every λweak program P , if
� P : τ then either P is an answer or else there is some P ′ such
that P

R−→ P ′ and � P ′ : τ .

Further discussion of the type system along with an efficient
type inference algorithm can be found in [5] .

5.2 Collecting Reachable Garbage

As was pointed out in [2], and proven in [10], one can use type
inference to detect that the values of certain references will never be

used. Any binding that will never be used is semantically garbage
regardless of whether or not it is reachable. So reachable values that
will never be used can be changed to any value (we use 0) without
affecting the result of the program. This can allow for additional
garbage collection. For example the program

letrec {x1 �→ 1, x2 �→ 2, x3 �→ 〈x2, x2〉, x4 �→ 〈x1, x3〉} in π1 x4

is equivalent to the program

letrec {x1 �→ 1, x3 �→ 0, x4 �→ 〈x1, x3〉} in π1 x4

so we can safely collect the binding x2 �→ 2.
This is formalized by considering the base language, in our case

λweak, to be an implicitly typed language with type variables.

(types) τ ∈ Type ::= t | int | τ1 × τ2 | τ1 → τ2 | τ weak

The presence of type variables allows us to derive a most general
type for each well-typed program, i.e., a type such that every other
type of the same program is a substitution instance of it.

We prove a slightly stronger version of preservation for this
system. We will use this preservation theorem to prove that if a
binding can be assigned a type variable then after a reduction step
that binding can still be assigned a type variable.

Lemma 5.4 (Preservation). If there exists a typing Γ � e : τ and

for some � H : Γ, we have letrec H in e
R−→ letrec H ′ in e′ then

there exists Γ′ with � H ′ : Γ′, and Γ′ � e′ : τ such that for all
x ∈ (Dom(Γ) ∩ Dom(Γ′)) we have Γ(x) = Γ′(x).

Proof. By induction on the derivation of Γ � e : τ .

We then use type inference to generate a most general type for
a given program. If we are ever able to assign a type variable to a
reference, then the value of this reference cannot affect the result
of the program. In order to prove this we will first define the active
positions of a term (which are the occurrences that constrain the
type of a reference).

Definition 5.5. We say x occurs in an active position of e if one of
the following occurs as a subterm of e:

1. x e′ for some e′, or
2. πi x, or
3. ifdead x e1 e2 for some e1, e2.

In any typing derivation, if a reference is assigned a type vari-
able then it cannot appear in an active position.

Lemma 5.6. If Γ � {x : t} � e : τ then x does not occur in an
active position in e.

Proof. It is easy to see that each typing rule whose conclusion
creates a new active position ((proji), (app), and (ifdead))
constrains the type of the term appearing in the active position to
be something other than a type variable.

The addition of weak references has a small effect on the cor-
rectness of inference GC. Because, in general, garbage collection
can affect the result of a program, we need to assume that the pro-
gram we are running garbage collection on is well-behaved in or-
der to prove that inference GC preserves the semantics. Proof of
the following theorem can be found in the Appendix A. The proof
technique is suggested at the end of [10].

Theorem 5.7 (Inference GC). Let

Γ1 = {x1 : t1, ..., xn : tn},
H1 = {x1 �→ h1, ..., xn �→ hn}, and

H ′
1 = {x1 �→ 0, ..., xn �→ 0}.

131

Γ � {x : τ} � x : τ
(var)

Γ � i : int
(int)

Γ � d : τ weak
(dead)

Γ � e1 : τ1 Γ � e2 : τ2

Γ � 〈e1, e2〉 : τ1 × τ2

(pair)
Γ � e : τ1 × τ2

Γ � πi e : τi
(proji) (for i = 1, 2)

Γ � {x : τ1} � e : τ2

Γ � λx.e : τ1 → τ2
(abs)

Γ � e1 : τ1 → τ2 Γ � e2 : τ1

Γ � e1 e2 : τ2
(app)

Γ � e : τ
Γ � weak e : τ weak

(weak)
Γ � e1 : τ1 weak Γ � e2 : τ2 Γ � e3 : τ1 → τ2

Γ � ifdead e1 e2 e3 : τ2
(ifdead)

∀x ∈ Dom(Γ′).Γ � Γ′ � H(x) : Γ′(x)

Γ � H : Γ′ (heap) ∅ � H : Γ Γ � e : τ
� letrec H in e : τ

(prog)

Figure 4. Typing rules for λweak

If

1. Γ1 � Γ2 � e : τ (τ /∈ Tvar), and
2. Γ1 � H2 : Γ2, and
3. ∃S.∅ � H1 : SΓ1, and
4. letrec H1 �H2 in e is well behaved (i.e. the timing of garbage

collection cannot affect the final result)

then letrec H1 � H2 in e ≡ letrec H ′
1 � H2 in e.

So type-inference based GC works in this language. We can ac-
tually get a bit more traction out of inference GC in the presence
of weak references. Often weak pointers are often used to cache
data that was computationally expensive to produce, so killing a
weak pointer may cause expensive recomputation. Inference GC al-
lows for additional garbage to be collected and therefore additional
weak references to be tombstoned. Because of the type inference,
we know that values pointed to by these additional weak references
will never be used, so recomputing (by taking the dead branch of
an ifdead-expression) the value is pointless. Consider the following
program:

letrec {x1 �→ 1, x2 �→ 2, x3 �→ 〈x2, x2〉, x4 �→ 〈x1, x3〉,
x5 �→ weak x2, f �→ λx.e} in 〈ifdead x5 (fe′) f, π1 x4〉

If x /∈ FV (e) then type-inference would allow us to collect x2

(because then we can assign x5 : t weak and x2 : t), which would
cause x5 to be tombstoned. This means that the ifdead expression
will always reduce to the dead case, which causes e′ to be evaluated
and then thrown away by f . Since by doing the type inference we
already knew that the value of x2 does not matter, we should be able
to take the live branch and just pass a dummy value to f , which will
throw it away.

We can avoid this useless recomputation by adding a new dis-
tinct tombstone marker d′. A weak reference that has been replaced
with d′ will be treated as alive for the purpose of ifdead reduction.
A weak reference must only be tombstoned as d′ if the value stored
in the memory it weakly references is never used in the rest of the
computation.

Formally, we extend the syntax of Hval

(heap values) hv ::= ... | d′
and we change the ifdead reduction rule to be

(ifdead) letrec H in E[ifdead x e1 e2]
ifdead−−−→8><

>:
letrec H in E[e2 w] if H(x) = weak w

letrec H in E[e1] if H(x) = d

letrec H � {z �→ 0} in E[e2 z] if H(x) = d′

We also use an additional typing rule, which assigns to d′

the type t weak for a type variable t. We only need to allow d′

to be typed by t weak because we will only introduce d′ when
tombstoning a weak reference to a binding that can be assigned a
type variable. Observe that Theorem 5.4 still holds with this new
rule for ifdead.

We can now prove the following theorem which states that
given a program and a typing derivation that assigns some heap
locations type variables, those locations can be rebound to 0 and
weak references to those locations can be tombstoned with d′

without affecting the result of the program. The proof can be found
in Appendix A.

Theorem 5.8 (Inference Weak GC). Let
Γ1 = {x1 : t1, ..., xn : tn},
Hs

1 = {x1 �→ h1, ..., xn �→ hn},
Hw

1 = {y1 �→ weak xi1 , ..., ym �→ weak xim},
H ′s

1 = {x1 �→ 0, ..., xn �→ 0},
H ′w

1 = {y1 �→ d′, ..., ym �→ d′},
H1 = Hs

1 � Hw
1 , and

H ′
1 = H ′s

1 � H ′w
1 .

If

1. Γ1 � Γ2 � e : τ (τ /∈ Tvar), and
2. Γ1 � H2 : Γ2, and
3. ∃S.∅ � H1 : SΓ1, and
4. letrec H1 � H2 in e is well behaved

then letrec H1 � H2 in e ≡ letrec H ′
1 � H2 in e.

6. Recovering Uniqueness of Program Result
In general, when a programmer uses weak references he or she does
so in a way that guarantees that garbage collection cannot change
the result of evaluation. Examples such as memoizing functions
and hash-consing lists certainly fit into this category. For these
programs, which we believe are ubiquitous, it is desirable to be
able to check whether garbage collection can influence the result.
Much as a type system is used to prove programs “don’t go wrong”
this section describes techniques to prove garbage collection cannot
alter the result of evaluation.

We refer to programs which always evaluate to the same result
as well-behaved (note this is weaker than the usual notion of con-
fluence). The property is formally given by Definition 2.7 and its
undecidability shown in Proposition 2.8. While the evaluation of
these programs may not be deterministic, the final result is. An ex-
ample of a program which we know will always have the same final
result is

letrec {} in ifdead (weak e) (e′ e) e′

We can see that any end result will be the same as a result of the
program letrec H in e′ e. Assuming there are no occurrences of

132

λweak terms

well-behaved
λweak terms

Section 6.2
criterion

Section 6.1
criterion

Figure 5. Well-behavedness criteria

weak e′′ in e or e′ for any e′′, all reductions of this program must
end with the same result.

In this section we give two criteria for determining that a pro-
gram is well behaved. First we give a decidable syntactic criterion,
then a less restrictive but undecidable semantic criterion. Figure 5
shows the relationships of these criteria. It will be interesting (left
for future research) to adjust the syntactic criterion of Section 6.1,
or define a new syntactic criterion, that decreases the gap to the
semantic criterion of Section 6.2.

6.1 A Syntactic Restriction for Well-Behavedness

Given that it is impossible to syntactically characterize the well-
behaved programs we will characterize a proper subset of the well-
behaved programs which is big enough to cover some realistic uses
of weak references. The syntactically restricted Exp∗ is defined
in Figure 6. The restriction comes from [5] , also in that paper is
an example implementation of (an approximation to) hash-consing
meeting the restriction. This class is extremely restrictive as we
essentially pair “weak e” with e at each ifdead statement. While
this hinders the usefulness of weak references, it does not destroy
it. Weak references in this case are useful if the space required to
store e is smaller than the data produced by e. This proper subset
of well-behaved programs is referred to as the set of “gc-oblivious”
programs.

Definition 6.1 (Companion Expressions). Let e1 and e2 be ar-
bitrary expressions. We say that e2 is the companion of e1 if
(e1, e2) ∈ ExpPair. (We do not use the relation “companion-of”
symmetrically, i.e., e1 is not the companion of e2.)

Definition 6.2 (GC-Oblivious Programs). A program letrec {} in e
is gc-oblivious iff e ∈ Exp∗.

Proposition 6.3. Membership in Exp∗ is recognizable in linear
time.

Proof. The rules for ExpPair are syntax directed by the first term
of the pair and just walk down the terms comparing top-level
constructors, except the weak case which uses syntactic equality.

Theorem 6.4. If P is gc-oblivious and well-typed then it is well-
behaved.

A complete proof of this theorem and all auxiliary lemmas can
be found in Appendix B. Below we give a sketch of the pertinent
defintions and lemmas of the proof.

We will begin by generalizing the notion of gc-obliviousness.
This generalization of gc-obliviousness is used to show correctness
of a semantics-preserving transformation which removes all occur-
rences of ifdead-expressions. Once ifdead-expressions are elimi-
nated, well-behavedness of the calculus is easily proven using a
“postponement” lemma along the lines of the proof given in [10].

Generalization of GC-Obliviousness

We will generalize the notion of gc-obliviousness for well-typed
terms by defining a set ExpConf, as in Figure 7, which contains all
well-typed gc-oblivious terms.

Definition 6.5 (Relation Confτ). For e1, e2, such that Γ � e1 :
τ1 → ... → τn weak and Γ � e2 : τ1 → ... → τn

1. (e1, e2) ∈ Confτ weak if Γ � e1 : τ weak and for all H such
that � H : Γ

letrec H in e1
R−→∗ letrec H ′ � {x �→ weak y} in x

iff letrec H in e2
R−→∗ letrec H ′ in y.

2. (e1, e2) ∈ Confτ1→τ2 if Γ � e1 : τ1 → τ2 and for all
e ∈ Exp∗ with Γ � e : τ1 we have (e1 e, e2 e) ∈ Confτ2 .

Lemma 6.6. (e1, e2) ∈ ExpPair and Γ � e1 : τ implies (e1, e2) ∈
Confτ

We define the transformation e◦ as follows:

x◦ = x

i◦ = i

〈e1, e2〉◦ = 〈e◦1, e◦2〉
(πi(e1))

◦ = πi(e
◦
1)

(λx.e)◦ = (λx.e◦)
(e1 e2)

◦ = e◦1 e◦2
(weak e1)

◦ = weak (e◦1)
(ifdead e1 (e e2) e)◦ = (e◦ e◦2)

Lemma 6.7. Suppose e0 ∈ ExpConf and Γ � e0 : τ then for any
H such that � H : Γ, letrec H in e0 ≡ letrec H in e◦0.

Proof of Theorem 6.4. From Lemma 6.7 we know that for closed,
well-typed e, letrec {} in e yields the same possible results as
the evaluation of letrec {} in e◦. Since e◦ contains no ifdead-
expressions, the final result of letrec {} in e◦ is unique, therefore
the final result of letrec {} in e is unique.

Enlarging the Set of GC-Oblivious Programs

We can enlarge the set of gc-oblivious programs if we wish. For ex-
ample, we can parameterize the ExpPair relation with p ∈ {1, 2}∗
to obtain a larger set of gc-oblivious programs that includes pairs
and projections. The parameter p ∈ {1, 2}∗ represents the se-
quence of projections that will yield an appropriate companion pair.
ExpPair(p) is defined as in Figure 8. We would then change the
definition of Exp∗ to use ExpPair(ε) in place of ExpPair, where ε
is the empty sequence.

All of the nice properties of the ExpPair relation still hold for
ExpPair(p). In particular, the proofs of Proposition 6.3 and Theo-
rem 6.4 easily generalize. For example, notice that the definition of
the Conf relation naturally generalizes when we expand the set of
gc-oblivious programs to handle pairing and projection using the
parameterized relation ExpPair(p). In this case we parameterize
Conf as Conf(p).

6.2 A General Semantic Criterion for Well-Behavedness

The syntactic restriction of gc-obliviousness in Section 6.1 is ar-
guably too restrictive and does not allow natural expression of
many realistic uses of weak references. In particular memoized
functions do not seem to fall into this restricted category. In or-
der to remedy this situation we give a natural semantic criterion
for well-behavedness and use this criterion to informally argue for
the correctness of an implementation of memoized function ap-
plication. This semantic criterion is intended to be used by pro-
grammers to assure their programs written using weak references

133

i ∈ Exp∗ x ∈ Exp∗
e1, e2 ∈ Exp∗

〈e1, e2〉 ∈ Exp∗
e ∈ Exp∗ i ∈ {1, 2}

πi e ∈ Exp∗
e ∈ Exp∗

λx.e ∈ Exp∗
e1, e2 ∈ Exp∗

e1 e2 ∈ Exp∗

e ∈ Exp∗

weak e ∈ Exp∗
(e1, e2) ∈ ExpPair e3 ∈ Exp∗

ifdead e1 (e3 e2) e3 ∈ Exp∗
e ∈ Exp∗

(weak e, e) ∈ ExpPair

(e1, e2) ∈ ExpPair

(λx.e1, λx.e2) ∈ ExpPair

(e1, e2) ∈ ExpPair e3 ∈ Exp∗

(e1 e3, e2 e3) ∈ ExpPair

(e1, e2) ∈ ExpPair (e3, e4) ∈ ExpPair

(ifdead e1 (e3 e2) e3, ifdead e1 (e4 e2) e4) ∈ ExpPair

Figure 6. Definition of Exp∗

i ∈ ExpConf x ∈ ExpConf

e1, e2 ∈ ExpConf

〈e1, e2〉 ∈ ExpConf

e ∈ ExpConf i ∈ {1, 2}
πi e ∈ ExpConf

e ∈ ExpConf

λx.e ∈ ExpConf

e1, e2 ∈ ExpConf

e1 e2 ∈ ExpConf

e ∈ ExpConf

weak e ∈ ExpConf

(e1, e2) ∈ Confτ e3 ∈ ExpConf

ifdead e1 (e3 e2) e3 ∈ ExpConf

Figure 7. Definition of ExpConf

e ∈ Exp∗

(weak e, e) ∈ ExpPair(ε)

(e1, e2) ∈ ExpPair(i p) i ∈ {1, 2}
(πi e1, πi e2) ∈ ExpPair(p)

(e1, e2) ∈ ExpPair(p) e3 ∈ Exp∗

(〈e1, e3〉, 〈e2, e3〉) ∈ ExpPair(1 p)

(e1, e2) ∈ ExpPair(p) e3 ∈ Exp∗

(〈e3, e1〉, 〈e3, e1〉) ∈ ExpPair(2 p)

(e1, e2) ∈ ExpPair(p)

(λx.e1, λx.e2) ∈ ExpPair(p)

(e1, e2) ∈ ExpPair(p) e3 ∈ Exp∗

(e1e3, e2e3) ∈ ExpPair(p)

(e1, e2) ∈ ExpPair(ε) (e3, e4) ∈ ExpPair(p)

(ifdead e1 (e3 e2) e3, ifdead e1 (e4 e2) e4) ∈ ExpPair(p)

Figure 8. Extended ExpPair(p) Definition

are well-behaved (which is generally desirable). We assume that
we are working within a typed setting so that we do not have to
worry about stuck programs and to provide a free variable context
for ifdead expressions under lambda binders.

Local Well-behavedness

We say a program letrec H in e is locally well-behaved if it is well-
behaved at each ifdead. In order to define this we use the following
relation.

Definition 6.8 (LocΓ). (e1, e2, e3) ∈ LocΓ iff for all H such that
� H : Γ, if

letrec H in e1
R−→∗ letrec H ′ � {x �→ weak y, y �→ hv} in x

then we have

(letrec H ′ � {x �→ weak y, y �→ hv} in e3 y
R−→∗ letrec H ′′ in z

iff

letrec H ′ � {x �→ weak y, y �→ hv} in e2
R−→∗ letrec H ′′′ in z)

with result(H ′′, z) = result(H ′′′, z).

Definition 6.9. A closed program letrec H in e is locally well-
behaved iff it has a typing derivation � letrec H in e : τ and for
all ifdead occurrences in the derivation, Γ � ifdead e1 e2 e3 : τ ′,
we have (e1, e2, e3) ∈ LocΓ.

The notion of local well-behavedness is an undecidable property
because well-typed programs can contain cyclic heap bindings2.
For example consider the following well-typed program

letrec {f �→ λx.λy.f x (x y)} in f (λx.x) 3.

However this is still a natural criterion to use when programming
with weak references.

Theorem 6.10. If a program P is gc-oblivious and well-typed, then
it is locally well-behaved.

Proof sketch. Every occurrence of an ifdead in a gc-oblivious pro-
gram obviously satisfies the second part of the property (same re-
sults of reducing each branch) all that is missing is well-typedness.

Theorem 6.11. If a program P is locally well-behaved then it is
well-behaved.

Proof sketch. Since the program is well-behaved around each of its
top-level ifdead occurrences and ifdead reduction is the only source
non-well-behavedness, it is well-behaved.

EXAMPLE 6.12 (MEMOIZING FUNCTIONS). Assume we have a
type memofun(τ1, τ2) of memoized functions from τ1 to τ2 with

2 Note however, that well-typed programs with an empty heap can never
reduce to a well-typed program with a cyclic heap binding because the
(alloc) rule guarantees that the left-hand side of a heap binding is fresh.

134

the following functions:

Lookupmemo : (memofun(τ1, τ2) ∗ τ1) → τ2 weak option
Addmemo : (memofun(τ1, τ2) ∗ τ1) →

(τ2 ∗ memofun(τ1, τ2))

Lookupmemo and Addmemo do not need to use ifdead so
they are locally well-behaved. We verify the following (in ML-like
notation) is locally well-behaved:

fun appmemo (f:memofun(T1,T2),o:T1)
:(T2 * memofun(T1,T2)) =
case Lookupmemo(f,o) of
None => Addmemo(f,o)

| Some(ref) =>
(ifdead (ref) (Addmemo(f,o)) (fn x => (x,f)))

Intuitively this function should fit our definition of locally well-
behaved. We need to prove that each branch of the ifdead ex-
pression will produce the same result in any heap H such that
ref, Lookupmemo and Addmemo have the appropriate types.
This is not possible because we need to make use of the dynamic
semantics of Addmemo to make the argument, not merely its
type. In order to make the argument, we assume that the defini-
tion of Addmemo is available and we reason as if it were in-
lined. We need letrec H in ((λx.〈x, f〉) y)

R−→∗ letrec H ′ in z

iff letrec H in Addmemo(f, o)
R−→∗ letrec H ′′ in z with

result(H ′, z) = result(H ′′, z). If ref is dead then

letrec H in Addmemo(f, o)

re-adds the corresponding dead entry, if ref is still alive then
letrec H in ((λx.〈x, f〉) y) still has the corresponding entry and
returns the same pair that letrec H in Addmemo(f, o) does. So
this example is locally well-behaved, so it is well-behaved.

7. Related Work
Morrisett, Felleisen and Harper’s [10] was the first work to fully
specify the static and dynamic semantics of a language with
garbage collection and was followed up by [11], which further
develops the theory in the context of a polymorphic language.

Most of the work specifically related to weak references is in
actual implementations of programming languages and in their
informal descriptions. Aside from that, Peyton Jones, Marlow, and
Elliot use weak references (and some other GHC Haskell features)
to implement memoized functions in [8]. Marizen, Zendra and
Colnet discuss the addition of weak and soft references to the
Eiffel language and the advantages parametric polymorphism in
this context [9]. Neither of these papers contain formal semantics
and we are aware of no other attempt to formalize the semantics of
weak references.

8. Conclusion and Future Work
In this paper we introduce and investigate a formal semantics of
a functional language with weak references. We show the flexi-
bility of the semantic framework by extending it to the case of
the key/value weak references found in GHC Haskell. We extend
type-inference based reachable garbage collection to allow collec-
tion of additional weak references without incurring computational
overhead to recompute data stored in them. We address the well-
behaved usage of weak references by proving that a syntactically
restricted set of programs has a unique program result, regardless
of garbage collection.

The method of proof of the preceding result is of independent
interest. We use a relation to prove the correctness of a transforma-
tion which removes all ifdead expressions. Such a transformation is

fairly easy for a programmer to do in mind in order to see what the
final outcome of the program will be. In addition, we have provided
a general semantic criterion which can be used by programmers to
create well-behaved programs without having to adhere to a strict
syntactic discipline.

In the future we hope to be able to use this formal semantics
for weak references to investigate more complex languages which
combine weak references with other programming features, such as
reference mutation and finalization. We would also like to extend
our calculus to formalize variants of weak references which are
garbage collected according to different heuristics, similar to those
found in Java. A good approach may be to include several types of
weak references in our formalism which are treated differently by
the garbage collection rule.

Acknowledgments
Adam Bakewell, Sebastien Carlier, Chiyan Chen, Likai Lui, Pe-
ter Møller Neergaard, Greg Morrisett, Franklyn Turbak, Joe Wells,
Hongwei Xi and anonymous reviewers all offered valuable sugges-
tions and opinions.

References
[1] APPEL, A. W. Runtime tags aren’t necessary. Lisp and Symbolic

Computation 2, 2 (1989), 153–162.
[2] BAKER, H. G. Unify and conquer. In LFP ’90: Proceedings of the

1990 ACM conference on LISP and functional programming (New
York, NY, USA, 1990), ACM Press, pp. 218–226.

[3] CHAILLOUX, E., MANOURY, P., AND PAGANO, B. Developing
Applications with Objective Caml. O’Reilly, France, 2000.

[4] DONNELLY, K., AND KFOURY, A. J. Some considerations on formal
semantics for weak references. Technical Report Don+Kfo:BUCS-
TR-2005-X, Department of Computer Science, Boston University,
July 2005. http://types.bu.edu/reports/Don+Kfo:BUCS-TR-2005-
X.html.

[5] HALLETT, J. J., AND KFOURY, A. J. A formal semantics for
weak references. Technical Report Hal+Kfo:BUCS-TR-2005-X,
Department of Computer Science, Boston University, May 2005.
http://types.bu.edu/reports/Hal+Kfo:BUCS-TR-2005-X.html.

[6] HAYES, B. Ephemerons: a new finalization mechanism. In OOPSLA
’97: Proceedings of the 12th ACM SIGPLAN conference on Object-
oriented programming, systems, languages, and applications (New
York, NY, USA, 1997), ACM Press, pp. 176–183.

[7] THE HUGS/GHC TEAM. Hugs/GHC Extension Libraries: Weak.
http://www.dcs.gla.ac.uk/fp/software/ghc/lib/hg-libs-15.html.

[8] PEYTON JONES, S. L., MARLOW, S., AND ELLIOTT, C. Stretching
the storage manager: Weak pointers and stable names in haskell.
In IFL ’99: Selected Papers from the 11th International Workshop
on Implementation of Functional Languages (London, UK, 2000),
Springer-Verlag, pp. 37–58.

[9] MERIZEN, F., ZENDRA, O., AND COLNET, D. Designing efficient
and safe non-strong references in eiffel with parametric types.
Research Report A04-R-149, INRIA Lorraine / LORIA UMR 7503,
Sep 2004.

[10] MORRISETT, G., FELLEISEN, M., AND HARPER, R. Abstract
models of memory management. In FPCA ’95: Proceedings of
the seventh international conference on Functional programming
languages and computer architecture (New York, NY, USA, 1995),
ACM Press, pp. 66–77.

[11] MORRISETT, G., AND HARPER, R. Semantics of memory
management for polymorphic languages. In Higer Order Operational
Techniques in Semantics, A. Gordon and A. Pitts, Eds. Newton
Institute, Cambridge University Press, 1997.

[12] THE SMLOFNJ TEAM. SML of NJ Structure Documentation: The
WEAK signature. http://www.smlnj.org/doc/SMLofNJ/pages/weak.html.

[13] SUN MICROSYSTEMS. Java 2 Platform SE v1.3.1: package
java.lang.ref. http://java.sun.com/j2se/1.3/docs/api/java/lang/ref/package-

135

summary.html.
[14] TOLMACH, A. P. Tag-free garbage collection using explicit type

parameters. In LISP and Functional Programming (1994), pp. 1–11.
[15] WRIGHT, A. K., AND FELLEISEN, M. A syntactic approach to type

soundness. Information and Computation 115, 1 (1994), 38–94.

A. Proofs for Inference GC
Theorem A.1 (Inference GC). Let

Γ1 = {x1 : t1, ..., xn : tn},
H1 = {x1 �→ h1, ..., xn �→ hn}, and

H ′
1 = {x1 �→ 0, ..., xn �→ 0}.

If

1. Γ1 � Γ2 � e : τ (τ /∈ Tvar), and
2. Γ1 � H2 : Γ2, and
3. ∃S.∅ � H1 : SΓ1, and
4. letrec H1 �H2 in e is well behaved (i.e. the timing of garbage

collection cannot affect the final result)

then letrec H1 � H2 in e ≡ letrec H ′
1 � H2 in e.

Proof sketch. Since we are dealing with a well-behaved program,
we can ignore the (garb) rule for the purpose of showing equiva-
lence. Since, the other rules only add bindings, we have that if

letrec H1 � H2 in e
R-{garb}−−−−−→∗ letrec H1 � H2 � H3 in e′

then for any Γ1 � Γ2 � H3 : Γ3 we have Γ1 � Γ2 � Γ3 � e′ : τ by
Theorem 5.4. By Lemma 5.6, none of x1, ..., xn can appear in an
active position in e′. The reduction rules only depend on the value
of references in an active position, so we will never reduce to a state
whose next transition depends on the value of any of x1, ..., xn,
therefore letrec H1 � H2 in e ≡ letrec H ′

1 � H2 in e.

Theorem A.2 (Inference Weak GC). Let
Γ1 = {x1 : t1, ..., xn : tn},
Hs

1 = {x1 �→ h1, ..., xn �→ hn},
Hw

1 = {y1 �→ weak xi1 , ..., ym �→ weak xim},
H ′s

1 = {x1 �→ 0, ..., xn �→ 0},
H ′w

1 = {y1 �→ d′, ..., ym �→ d′},
H1 = Hs

1 � Hw
1 , and

H ′
1 = H ′s

1 � H ′w
1 .

If

1. Γ1 � Γ2 � e : τ (τ /∈ Tvar), and
2. Γ1 � H2 : Γ2, and
3. ∃S.∅ � H1 : SΓ1, and
4. letrec H1 � H2 in e is well behaved

then letrec H1 � H2 in e ≡ letrec H ′
1 � H2 in e.

Proof sketch. Observe that any ifdead reduction step on some yi

which takes the live branch has the following form

letrec H � {yi �→ weak xk} in E[ifdead yi e1 e2]
R-{garb}−−−−−→

letrec H � {yi �→ weak xk} in e2 xk

If yi had been tombstoned to d′ we would have

letrec H � {yi �→ d′} in E[ifdead yi e1 e2]
R-{garb}−−−−−→

letrec H � {yi �→ d′} � {z �→ 0} in e2 z

Since xk is assigned a type variable in Γ1, by Theorem 5.4 we
can still assign it a type variable when typing letrec H � {yi �→
weak xk} in e2 xk, so we can replace the binding of xk

with 0 without affecting the reduction of the program. Therefore
letrec H1 � H2 in e ≡ letrec H ′

1 � H2 in e.

B. Proofs for Recoving Uniqueness of Program
Result

For the following lemma we define equivalence of heaps H1, H2,
with respect to expressions e1, . . . , en, H1 ≡{e1,...,en} H2 by:

1. FV(e1, . . . , en) ∩ Dom(H1) = FV(e1, . . . , en) ∩ Dom(H2)
(call this set V)

2. H1[V] = H2[V], and
3. (H1 \ V) ≡H1[V] (H2 \ V)

where (H \ V) is defined by (H \ V)(x) = H(x) if x /∈ V and
undefined otherwise.

So H1 ≡{e} H2 if and only if H1 is equal to H2 on all of the
variables that are reachable from e.

Lemma B.1. If Γ � e1 : τ = τ1 → ... → τn weak and
Γ � e2 : τ1 → ... → τn and for all H such that � H : Γ
there are e′1, e

′
2 and H ′ such that

1. letrec H in ei
R−→∗ letrec H ′ in e′i, and

2. All evaluations of letrec H in ei lead to letrec H ′′ in e′i (for
some H ′′) with H ′′ ≡{e1,e2} H ′

3. (e′1, e
′
2) ∈ Confτ

then (e1, e2) ∈ Confτ

Proof Sketch. By induction on τ .

The conditions imply that all reductions of letrec H in ei are
equivalent to an extension of the given reductions

letrec H in ei
R−→∗ letrec H ′ in e′i.

For τ = τ1 weak the result is immediate because all reductions
of letrec H in e1 and letrec H in e2 are equivalent to reduc-
tions of letrec H ′ in e′1 and letrec H ′ in e′2 and membership in
Confτ1 weak depends only on the final results of reductions.

For τ = τ ′ → τ ′′, because [] e is an evaluation context, the
reductions above are also reductions of letrec H in ei e to
letrec H in e′i e, so we can apply the IH to get (e1 e, e2 e) ∈
Confτ ′′ .

For using the above lemma, note that if we have evaluations

letrec H in e1
R-{ifdead}−−−−−−→∗ letrec H ′ in e′1

and letrec H in e2
R-{ifdead}−−−−−−→∗ letrec H ′ in e′2

in which no weakly referenced garbage gets collected then all
evaluations of letrec H in ei lead to letrec H ′′ in e′i with
H ′′ ≡ {e1, e2}H ′.

Lemma B.2. (e1, e2) ∈ ExpPair and Γ � e1 : τ implies
(e1, e2) ∈ Confτ

Proof. By induction on the derivation of (e1, e2) ∈ ExpPair

case :
e ∈ Exp∗

(weak e, e) ∈ ExpPair

By inversion on derivation of Γ � weak e : τ , τ = τ ′ weak for
some τ ′. So we need (weak e, e) ∈ Confτ ′ weak. Since weak [] is
an evaluation context all evaluations of weak e and e match with
the exception of the last step of halting evaluations, which allocate
the weak pointer satisfying the definition for Confτ ′ weak.

case :
(e1, e2) ∈ ExpPair

(λx.e1, λx.e2) ∈ ExpPair

136

By inversion on derivation of Γ � λx.e1 : τ , τ = τ1 → τ2 for
some τ1,τ2.
Suppose e ∈ Exp∗ and Γ � e : τ1. Then we also have Γ �
(λx.e1) e : τ2 and we need ((λx.e1) e, (λx.e2) e) ∈ Confτ2 .
There are reductions

letrec H in (λx.ei) e
R-{ifdead}−−−−−−→∗

letrec H ′ � {f �→ λx.ei} in f x

which collect no garbage. The result then steps to letrec H ′�{f �→
λx.ei} in ei and we can garbage collect f , which cannot be
free in ei since it was allocated fresh for (λx.ei) and it can-
not be weakly referenced (λx.ei) was in head position at the
time of allocation. By IH (e1, e2) ∈ Confτ2 , so by Lemma B.1
((λx.e1) e, (λx.e2) e) ∈ Confτ2 .

case :
(e1, e2) ∈ ExpPair e3 ∈ Exp∗

(e1 e3, e2 e3) ∈ ExpPair

Follows immediately from inversion on typing and the IH.

case :
(e1, e2) ∈ ExpPair (e3, e4) ∈ ExpPair

(ifdead e1 (e3 e2) e3, ifdead e1 (e4 e2) e4) ∈ ExpPair

By inversion on Γ � ifdead e1 (e3 e2) e3 : τ we have
Γ � e1 : τ1 weak and Γ � e3 e2 : τ and Γ � e3 : τ1 → τ .

Suppose H is a heap with � H : Γ. There are reductions:

letrec H in ifdead e1 (e3 e2) e3
R-{ifdead}−−−−−−→∗

letrec H ′ � {x �→ weak y} in ifdead x (e3 e2) e3

and letrec H in ifdead e1 (e4 e2) e4
R-{ifdead}−−−−−−→∗

letrec H ′ � {x �→ weak y} in ifdead x (e4 e2) e4

which collect no garbage, so all reductions are equivalent to
extensions of these reductions. All reductions proceed by either
collecting some garbage and causing x to be tombstoned or by
taking the live branch of the ifdead. By IH on (e1, e2) ∈ ExpPair,
we have (e1, e2) ∈ Confτ1 weak. We know x cannot be free in H ′,
e2, e3, or e4 since it was allocated fresh. Therefore, by (e1, e2) ∈
Confτ1 weak all reductions of these are equivalent to reductions of
letrec H ′ in e3 y and letrec H ′ in e4 y. By type preservation, we
have Γ′ � e3 y : τ for � H ′ : Γ′. By IH on (e3, e4) ∈ ExpPair,
we have (e3, e4) ∈ Confτ1→τ and therefore (e3 y, e4 y) ∈ Confτ .
By lemma B.1 (ifdead e1 (e3 e2) e3, ifdead e1 (e4 e2) e4) ∈
Confτ .

Lemma B.3. Suppose e0 ∈ ExpConf and Γ � e0 : τ then for any
H such that � H : Γ, letrec H in e0 ≡ letrec H in e◦0.

Proof Sketch. By structural induction. The only interesting case is
e0 = ifdead e1 (e e2) e because the IH carries through immedi-
ately in all other cases.

By inversion on typings we have Γ � e1 : τ1 weak and by
inversion on ExpConf we have (e1, e2) ∈ Confτ1 weak. Since
bindings allocated during evaluation of e1 cannot effect evaluation
of e2, (e1, e2) ∈ Confτ1 weak tells us ifdead e1 (e e2) e ≡ (e e2).
Therefore the programs are equivalent.

137

