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Abstract

The “small scope hypothesis” argues that a high pro-
portion of bugs can be found by testing the program for all
test inputs within some small scope. In object-oriented pro-
grams, a test input is constructed from objects of different
classes; a test input is within a scope ofs if at mosts ob-
jects of any given class appear in it. If the hypothesis holds,
it follows that it is more effective to do systematic testing
within a small scope than to generate fewer test inputs of a
larger scope.

This paper evaluates the hypothesis for several imple-
mentations of data structures, including some from the Java
Collections Framework. We measure how statement cov-
erage, branch coverage, and rate of mutant killing vary
with scope. For systematic input generation and correct-
ness checking of Java programs, we use the Korat frame-
work. This paper also presents the Ferastrau framework
that we have developed for mutation testing of Java pro-
grams. The experimental results show that exhaustive test-
ing within small scopes can achieve complete coverage and
kill most of the mutants, even for intricate methods that ma-
nipulate complex data structures. The results also show that
Korat can be used effectively to generate inputs and check
correctness for these scopes.

1. Introduction
The “small scope hypothesis” argues that a high propor-

tion of bugs can be found by testing the program for all test
inputs within some small scope [13]. In object-oriented pro-
grams, a test input is constructed from objects of different
classes; a test input is within ascopeof s if at mosts ob-
jects of any given class appear in it. If the hypothesis holds,
it follows that it is more effective to do systematic testing
within a small scope than to generate fewer test inputs of
a larger scope. This is one of the justifying principles of
model checking [8].

Several case studies [14,16] used the Alloy specification

language [12] to develop software models and exhaustively
check them for small scopes with the Alloy Analyzer. These
case studies showed that the hypothesis holds for those soft-
ware models, but they did not consider the actual implemen-
tations.

This paper evaluates the “small scope hypothesis” for
several benchmark programs, including some data struc-
ture implementations from the Java Collections Frame-
work [29]. Evaluating the hypothesis requires determining
the scope up to which each program should be checked, i.e.,
the sufficient scope that gives significant confidence that the
program has no bugs. We use code coverage and mutation
testing criteria to determine the sufficient scope.

Code coverageis a common criterion for assessing the
quality of a set of test inputs [5]. Measuring code coverage
involves executing the program on each input and record-
ing parts of the program (e.g., statements, branches, paths)
that get executed. Statement (branch) coverage is then the
ratio of the number of executed statements (branches) to the
number of total statements (branches) in the program;com-
plete coverageis the ratio of 100%.

Mutation testingis another criterion for assessing the
quality of a set of test inputs [11,26]. Mutation testing pro-
ceeds in two steps. In the first step, severalmutants are gen-
erated from the original (correct) program, by performing
one or more syntactic modifications. These modifications
are specified bymutation operators, e.g., replacing a vari-
able with another variable (of a compatible type), say re-
placingn.left with n.right . For several languages, in-
cluding Java, possible mutation operators are characterized
in [2, 17–19, 27]. In the second step, the original program
and each mutant are executed on each input and the corre-
sponding outputs are compared. If a mutant generates an
output different than the original program, the test input is
said tokill the mutant. For a given set of inputs, the rate of
mutant killing is the ratio of the number of killed mutants to
the total number of mutants. Mutation testing frameworks
were implemented for some languages, such as Mothra [19]
for Fortran and Proteum [10] for C. We have implemented



Ferastrau (Section 4) for Java; to the best of our knowledge,
the first framework for mutation testing of Java programs.

To perform exhaustive testing of Java programs, we use
Korat [6] (Section 3), an automated framework for system-
atic input generation and correctness checking. Korat uses
specification-based (or black-box) testing [5]. Given a for-
mal specification for a method, Korat automatically gen-
erates all nonisomorphic test inputs (within a given small
scope) that satisfy the method precondition. Korat then ex-
ecutes the method on each test input and uses the method
postcondition as a test oracle to check the correctness of
each output. For specifications, Korat currently uses the
Java Modeling Language (JML) [20], and for checking cor-
rectness, Korat builds on the JML tool-set [7].

The experimental results show that systematic testing
within small scopes can achieve complete coverage and kill
almost all of the mutants, even for intricate methods that
manipulate complex data structures. Furthermore, evaluat-
ing the “small scope hypothesis” is not simply about deter-
mining the actual value of the sufficient scope (be it 3 or
3000000) for each benchmark, but determining whether a
framework that does systematic testing can be practically
used for that scope. The experimental results also show
that for all benchmarks and their sufficient scopes, Korat
can generate all inputs and check correctness in less than
an hour, often within a few seconds. These results provide
evidence in support of the “small scope hypothesis”. We
believe that Korat and other frameworks that perform ex-
haustive checking within a small scope, such as JAlloy [15]
and TestEra [24], are worth pursuing.

The main contributions of this paper are:� Evaluation of the “small scope hypothesis” for several
data structure implementations;� Design and implementation of Ferastrau, a framework
for mutation testing of Java programs;� Evaluation of the Korat framework.

2. Example
This section illustrates how programmers can use Ko-

rat to test their programs. As a running example, we use
a method for removing an element from a set implemented
as a binary search tree. The example illustrates testing a
method that manipulates linked data structures. Korat can
be also used to test array-based data structures [6].

Consider the following Java code that declares a binary
tree and itsremove method:
class SearchTree {

Node root; // root node
int size; // number of nodes in the tree
static class Node {

Node left; // left child
Node right; // right child
Comparable info; // right child

}

boolean remove(Comparable info) { ... }
}

Each object of the classSearchTree represents a binary
search tree. Thesize field contains the number of nodes in
the tree. Objects of the inner classNode represent nodes
of the trees. The elements of the set are stored in theinfo

fields. The elements implement the interfaceComparable ,
which provides the methodcompareTo for comparisons.
Appendix A shows the full code for theremove method.

The following JML annotations specify partial correct-
ness for the exampleremove method:
class SearchTree {

/*@ normal_behavior // specification
@ // precondition
@ requires repOk();
@ // postcondition
@ ensures repOk() && !contains(info) &&
@ \result == \old(contains(info));
@*/

boolean remove(Comparable info) { ... }

boolean repOk() {
// checks that empty tree has size zero
if (root == null) return size == 0;
// checks that the input is a tree
if (!isAcyclic()) return false;
// checks that data is ordered
if (!isOrdered(root)) return false;
return true;

}
}

The normal behavior annotation specifies that if the
precondition, annotated usingrequires , is satisfied at the
beginning of the method, then the postcondition, annotated
usingensures , is satisfied at the end of the method and the
method returns without raising an exception. The method
repOk (also known ascheckRep [23]) is a Java predicate
that checks the representation invariant of the correspond-
ing data structure. For illustrative purposes, we putrepOk

in the precondition and postcondition; in practice, it is usu-
ally given as a class invariant, annotated usinginvariant ,
that is implicitly conjugated with the precondition and post-
condition [20]. Good programming practice [23] suggests
that implementations of abstract data types provide these
predicates, as they are useful for checking correctness of
the implementations.

In this example,repOk checks if the input is a valid bi-
nary search tree with the correctsize . First,repOk checks
if the tree is empty. If not,repOk checks that there are no
undirected cycles and that the elements are in order, i.e.,
all elements in the left (right) subtree of a node are smaller
(larger) than the element in that node. Appendix A shows
the full code forrepOk .

The methodcontains checks that the tree contains the
given element. The JML keywordnresult denotes the re-
turn value of the method. In this example,remove returns
true iff it removes an element from the tree. The JML key-
word nold denotes that its expression should be evaluated
in the pre-state.

To test theremove method, Korat first generates valid
inputs for the method. Each input is a pair of a tree and an
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Figure 1. Trees generated for scope three.

element. The precondition defines valid inputs: the tree is
valid, and the element is unconstrained. To limit the number
of inputs, Korat uses afinitization (Section 3.1.1) descrip-
tion that specifies bounds on both the number of objects to
be used to construct instances of the data structures and the
values stored in the fields of these objects. Two trees are
isomorphicif they have the same branching structure and
isomorphic elements, irrespective of the identity of the ac-
tual objects in the trees.

Given a finitization, Korat generates all nonisomorphic
input pairs, within the specified bounds, that satisfy the pre-
condition. For example, in the scope three, i.e., using a
maximum of three nodes and three elements, Korat gener-
ates 45 input pairs. These pairs are the Cartesian product of
the 15 trees shown in Figure 1 and the three elements. For
theSearchTree benchmark, we use Korat to generate in-
puts and check correctness ofremove andadd methods. As
another example, in the scope seven, Korat generates 41300
input pairs for both these methods in less than ten seconds.

Korat uses the JML tool-set to translate method postcon-
ditions into runtime assertions [7]. After generating the in-
puts, Korat invokes the method instrumented with runtime
assertions on each input and reports a counterexample if
the method fails to satisfy the postcondition. This process
checks the correctness of the method for the given scope.
For example, for scope seven, Korat takes less than two sec-
onds to check bothremove andadd methods for all 41300
inputs.

We evaluate the “small scope hypothesis” by measuring
how coverage and the rate of mutant killing vary with the
scope. We use our Ferastrau framework for mutation test-
ing. The “output” forremove consists of both itsboolean

return value and the post-state, i.e., the value of the re-
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Figure 2. Variation of statement coverage
(thick line) and rate of mutant killing (thin line)
with scope.

ceiver tree in the post-state. Figure 2 shows the variation for
theSearchTree benchmark. Observe that a certain small
scope is sufficient to achieve complete coverage and kill
most of the mutants for this benchmark. Furthermore, Korat
generates inputs and checks correctness for these scopes in
less than 10 seconds.

3. Test generation and correctness checking
This section describes Korat [6], a framework for

specification-based testing of Java programs. Korat auto-
mates both test-input generation and correctness checking.
To check a method, Korat first systematically generates in-
puts that satisfy the method precondition. It then executes
the method on these inputs and checks each output using the
method postcondition as a test oracle.

3.1. Test input generation
The heart of Korat is a technique for generation of test

inputs: given a Java predicate and a bound for its input,
Korat automatically generates all nonisomorphic inputs for
which the predicate returnstrue . Korat uses afinitiza-
tion (described in Section 3.1.1) to bound thestate space
(Section 3.1.2) of predicate inputs. Korat uses backtrack-
ing (Section 3.1.3) to systematically explore the state space.
Korat generatescandidate inputsand checks their validity
by invoking the predicate on them. Korat monitors accesses
that the predicate makes to the fields of a candidate input.
To monitor the accesses, Korat instruments the predicate
and all the methods that the predicate transitively invokes.
If the predicate returns without reading some fields of the
candidate, the validity of the candidate must be independent
of the values of those fields. Korat uses this observation to
prune the search. Korat also uses an optimization that gen-
erates only nonisomorphic test inputs.

To generate inputs for a method, Korat first constructs
a Java predicate corresponding to the method precondition.
Next, Korat generates inputs for which the predicate returns
true ; each of these inputs corresponds to a valid test input
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Finitization finSearchTree_remove(int numNode,
int minSize, int maxSize,
int minInfo, int maxInfo) {

Finitization f =
new Finitization(SearchTree_remove.class);

ObjSet trees = f.createObjects(SearchTree.class);
f.set("this", trees.getElement());
ObjSet nodes =

f.createObjects(SearchTree.Node.class, numNode);
nodes.add(null);
f.set(SearchTree.class, "root", nodes);
f.set(SearchTree.class, "size",

new IntSet(minSize, maxSize));
f.set(SearchTree.Node.class, "left", nodes);
f.set(SearchTree.Node.class, "right", nodes);
f.set(SearchTree.Node.class, "info",

new IntegerSet(minInfo, maxInfo));
f.set("info", new IntegerSet(minInfo, maxInfo));
return f;

}
Finitization finSearchTree_remove(int scope) {

return finSearchTree_remove(scope, 0, scope, 1, scope);
}

Figure 3. Finitization for the remove method.

for the method. For theremove method from Section 2,
the corresponding predicate,preRemove , simply invokes
repOk on the (implicit)this parameter.

3.1.1 Finitization

To generate a finite state space for the predicate’s inputs, the
search algorithm needs a finitization. Finitization is a setof
bounds that limits the size of the inputs. Since the inputs
can consist of objects from several classes, the finitization
specifies the number of objects for each of those classes. A
set of objects from one class forms aclass domain. The
finitization also specifies a set of values for each field; this
set forms afield domain, which is a union of some class
domains.

In the spirit of using the implementation language famil-
iar to programmers for specification and testing [3,4], Korat
provides aFinitization class that allows finitizations to
be given in Java. Korat automatically generates a finitiza-
tion skeletonfrom the type declarations in the Java code [6].
Programmers can further specialize or generalize the skele-
ton.

Figure 3 shows two finitizations for the examplere-

move method. ForfinSearchTree remove(s) , Korat
generates all inputs within scopes . ThecreateObjects

method specifies that the input contains at mostnumNode

objects from the classNode. The set method specifies
a field domain for each field: the fieldsroot , left , and
right can point to eithernull or aNode object; thesize

field ranges betweenminSize andmaxSize (specified us-
ing the utility classIntSet ); the info field and theinfo

parameters areInteger s betweenminInfo andmaxInfo

(specified using the utility classIntegerSet ). The Korat
package provides several additional classes for easy con-
struction of class domains and field domains.
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Figure 4. Candidate that is a valid SearchTree .
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Figure 5. Candidate that is not a valid
SearchTree .

3.1.2 State space
We continue with theSearchTree example to illus-
trate how Korat uses the finitization presented in Fig-
ure 3 to construct the state space of inputs to method
remove . Consider the case when Korat is invoked for
finSearchTree remove(3) . Korat first allocates one
SearchTree object and threeNode objects. The three
Node objects form theNode class domain. Korat then as-
signs a field domain and a unique identifier to each field.
The identifier is the index into thecandidate vector. In
this example, the vector has 12 elements. The first 11 ele-
ments correspond to the fields of objects that form the input
tree: the singleSearchTree object has two fields (root

andsize ) and the threeNode objects have three fields each
(left , right , andinfo ). The last element represents the
value of the method parameterinfo .

A candidateinput is represented by a valuation of the
candidate vector. The state space of inputs consists of all
possible valuations of the candidate vector; each element of
the vector represents a value from the corresponding field
domain. In this example, the domain for fieldsroot , left ,
andright has four elements (null and threeNodes from
theNode class domain), the domains for fieldinfo and pa-
rameterinfo have three elements, and the domain for field
size has four elements. The state space, therefore, has4�4�(4�4�3)3�3 = 5308416 > 222 potential candidates.
Forscope = n, the state space has(n+1)2(n+1) �nn+1 po-
tential candidates. Figure 4 shows an example candidate
tree (from an input pair) that is a valid binary search tree
with three nodes. Not all valuations represent valid binary
search trees. Figure 5 shows an example candidate tree that
is not a tree;repOk returnsfalse for this candidate.

3.1.3 Search
To systematically explore the state space, Korat orders all
the elements in every class domain and every field domain.
The ordering in each field domain is consistent with the or-
derings in the class domains, and all the values that belong
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to the same class domain occur consecutively in the order-
ing of each field domain.

Each candidate input is a vector offield domain indices
into the corresponding field domains. For our running ex-
ample withscope = 3 , assume that: theNode class do-
main is ordered as [N0,N1,N2]; the field domain for fields
root , left , and right is ordered as [null ,N0,N1,N2]
(null by itself forms a class domain); the domain of
the size field is ordered as[0,1,2,3] ; and the do-
main of the fieldinfo and parameterinfo is ordered as
[Int(1) ,Int(2) ,Int(3) ]. According to this ordering, the
candidate input that represents the candidate tree in Fig-
ure 4 (Figure 5) and valueInt(1) for parameterinfo cor-
responds to the valuation[1,3,2,3,1,0,0,0,0,0,2,0]

([1,3,2,2,0,0,0,0,0,0,0,0] ) for candidate vector.
The search starts with the candidate vector set to all ze-

ros. For each candidate, Korat sets fields in the objects
according to the values in the vector. Korat then invokes
the predicate to check the validity of the current candidate.
During the execution of the predicate, Korat monitors the
fields that the predicate accesses. Specifically, Korat builds
a field-ordering: a list of the field identifiers ordered by the
first time the predicate accesses the corresponding field. As
an illustration, consider the invocation ofpreRemove on
the candidate tree shown in Figure 5 with valueInt(1) for
parameterinfo . In this case,preRemove accesses only the
fields [root ,N0.left ,N0.right ] (in that order) before re-
turning false . Hence, the field-ordering that Korat builds
is [0,2,3] .

After the predicate returns, Korat generates the next can-
didate vector backtracking on the fields accessed by the
predicate. Korat first increments the field domain index for
the field that is last in the field-ordering. If the domain in-
dex exceeds the domain size, Korat resets that index to zero,
and increments the domain index of the previous field in the
field-ordering, and so on. Continuing with our example,
the next candidate takes the next value forN0.right , which
is N2 by the above order, whereas the other fields do not
change. This prunes from the search all45 � 34 = 82944
candidate vectors of the form[1, ,2,2, , , , , , , , ]

that have the (partial) valuation:root =N0, N0.left =N1,
N0.right =N1. This pruning does not rule out any valid data
structure becausepreRemove did not read the other fields,
and it would have returnedfalse irrespective of the values
of those fields. If the predicate returnstrue , Korat outputs
all (nonisomorphic) candidates that have the same values
for the accessed fields as the current candidate. The search
then backtracks to the next candidate.

Recall that Korat orders the values in the class and field
domains. Additionally, each execution of the predicate on
a candidate imposes an order on the fields in the field-
ordering. Together, these orders induce a lexicographic or-
der on the candidates. The Korat search algorithm gener-

testing framework
testing activity JUnit JML+JUnit Korat

generating test inputs p
generating test oracle p p

running tests p p p
Table 1. Comparison of several testing frame-
works for Java. Automated testing activities
are indicated with ‘ p’.

ates inputs in the lexicographical order. Moreover, Korat
avoids generating multiple candidates that are isomorphicto
one another. Isomorphism between candidates partitions the
state space intoisomorphism partitions. For each isomor-
phism partition, Korat generates only the lexicographically
least candidate in that partition.Conceptually, Korat avoids
generating multiple candidates from the same isomorphism
partition by incrementing field domain indices by more than
one. More details on Korat can be found in [20].

3.2. Checking correctness
To check a method, Korat first generates all valid inputs

for the method using the process explained above. Korat
then invokes the method on each of the inputs and checks
each output with atest oracle. To check partial correctness
of a method, a simple test oracle could just invokerepOk in
thepost-state(i.e., the state immediately after the method’s
invocation) to check if the method preserves its class invari-
ant. If the result isfalse , the method under test is incor-
rect, and the input provides a concrete counterexample.

The current Korat implementation uses the JML tool-set
to automatically generate test oracles from method postcon-
ditions, as in the JML+JUnit framework [7]. The JML tool-
set translates JML postconditions into runtime Java asser-
tions. If an execution of a method violates such an assertion,
an exception is raised to indicate a violated postcondition.
Test oracle catches these exceptions and reports correctness
violations. These exceptions are different from the excep-
tions that the method specification allows, and Korat lever-
ages on JML to check both normal and exceptional behavior
of methods. More details on the JML tool-set and transla-
tion can be found in [20].

Korat can also use JML+JUnit to combine JML test ora-
cles with JUnit [4], a popular framework for unit testing of
Java modules. JUnit automates test execution and error re-
porting, but requires programmers to provide test inputs and
test oracles. Korat additionally automates generation of test
inputs, thus automating the entire testing process. Table 1
summarizes the comparison of these testing frameworks.

4. Mutation testing
This section presents design and implementation of

Ferastrau, our framework for mutation testing of Java pro-
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grams.Mutation testingis a criterion for assessing the qual-
ity of a set of test inputs [11,26]. Mutation testing proceeds
in two steps. In the first step, a set ofmutants is gener-
ated from the original program by performing one or more
syntactic modifications. These modifications are performed
by applyingmutation operators. Section 4.1 presents mu-
tant generation in Ferastrau. In the second step, the original
program and each mutant are executed on each input and
the corresponding outputs are compared. If a mutant gen-
erates an output different than the original program, the test
input is said tokill the mutant. Section 4.2 presents how
Ferastrau executes mutants and compares the outputs.

4.1. Mutant generation
We have implemented mutant generation in Ferastrau by

changing the Sun’sjavac compiler. Ferastrau performs
a source-to-source translation: it first uses the compiler to
parse each class of the original program into an abstract syn-
tax tree; it then applies some mutation operators to the trees;
and it finally uses the compiler to output the source of the
mutants.

Ferastrau performs the following mutation operators:� Replacing a Java operator with another operator (of the
same type), e.g., ‘+’ with ‘ - ’, ‘ ==’ with ‘ != ’, ‘ <’ with
‘<=’ etc.� Replacing a variable with another variable (of a com-
patible type), e.g., a local variablei with a local vari-
ablej or an instance variablen.left with an instance
variablen.right .� Replacing an invocation of a method with another
method (of the same signature) from the same class.
Ferastrau does not replace invocation with some spe-
cial methods, such asnotify or wait , since program-
mers typically do not make such mistakes.

The above operators modify only the code of methods, and
not classes, e.g., by adding/removing a method or a field.
It is easy to add new operators to Ferastrau to test differ-
ent kind of mistakes. We believe that the current operators
are representative for mistakes that programmers typically
make in the benchmarks listed in Section 5.1, which is the
focus of this paper. Moreover, some of the operators corre-
spond to subtle mistakes that manifest only for non-trivial
inputs, as the results in Section 5.3 show.

4.2. Mutant execution
After generating the mutants, Ferastrau uses a set of test

inputs to perform mutation testing. These inputs can be pro-
vided manually or generated automatically. In our experi-
ments, we use inputs generated by Korat. Ferastrau exe-
cutes the original program and the mutants for each input
and compares their respective outputs. Ferastrau assumes
that the original program is correct, that it terminates (ei-
ther normally or exceptionally) for all test inputs, and that it

produces a deterministic output. The executions of mutants
do not need then to check the (JML) postconditions.

For mutation testing of Java programs, several questions
arise:� How to compare outputs and therefore name mutated

classes?� Whether to execute the original program and the mu-
tants in a single run or in separate runs?� How to handle non-termination of the mutants?� How to handle exceptional termination of the original
program and the mutants?

We next describe how Ferastrau addresses these questions
and the rationale behind our decisions. We then list the cri-
teria that Ferastrau uses to kill a mutant.

Ferastrau usesequals for comparing outputs, following
Java convention of usingequals for equality comparisons
of objects. Recall that “output” for a method refers to both
the return value and (the objects in) the post-state. Using
equals allows comparisons based on abstract values. For
example, two binary search trees that implement sets may
be structurally different, but if they represent the same set,
they would be considered equal according to theequals

method. For most benchmarks, we have found theirequals

methods to suffice for comparing (non-exceptional) outputs;
in general, another method may be used.

For a class, sayC, equals is often implemented as:

public boolean equals(Object o) {
if (!(o instanceof C)) return false;
C c = (C)o;
...

}

Note that usingequals for comparing outputs requires
that mutant classes have the same name as the correspond-
ing original classes, and Ferastrau generates such mutant
classes. An alternative would be to rename the classes dur-
ing the mutant generation, sayC to C mutant . However,
that would require the users of Ferastrau to provide special
methods for comparing outputs.

Ferastrau executes the original program and the mutants
in a single run. This introduces different classes with the
same name in a single Java Virtual Machine (JVM). Feras-
trau achieves this by using a differentClassLoader [29]
to load in the classfiles of each mutant. To compare objects
between these loaders and the original program (which is
in the defaultClassLoader ), Ferastrau uses serialization
through a buffer in memory. An alternative to the single
run would be to first execute the original program for all in-
puts and serialize all outputs, and then execute each mutant.
However, that would require storing all outputs, which can
produce very large files, especially for inputs exhaustively
generated by Korat.

Ferastrau handles non-termination of mutants by setting
a time limit for execution. For each input, a mutant is run
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in a separate thread. If the mutant runs longer than it is al-
lowed, the corresponding thread is stopped. Ferastrau sets
the time limit toTm = 10To+1se
, whereTo is the time the
original program runs for that input. We have found these
constants sufficient to account for fluctuations in the execu-
tion time of Java programs, e.g., due to garbage collection.

Ferastrau assumes that the original program terminates
for all test inputs, either normally or exceptionally. Note
that these exceptions are allowed by the specification, and
they are not errors. Similarly, the mutants can terminate
either normally or exceptionally. Ferastrau catches all the
exceptions that these executions raises, and it takes them
into account when comparing outputs.

Ferastrau catches all exceptions (or, in terms of Java,
all Throwable objects), and thus all the errors that the
mutant executions may raise. This handles the situations
when the mutant runs out of stack or heap memory and
JVM raisesStackOverflowError or OutOfMemoryEr-

ror . Although the JVM specification [22] does not pre-
cisely specify the behavior of JVMs whenOutOfMemory-

Error is raised, we found several Sun’s Java 2 SDK1.3.x
JVMs to be able to continue execution after garbage collec-
tion of the objects allocated by the erroneous mutant.

Ferastrau uses the following criteria to kill a mutant for
some test input:� The mutant’s output does not satisfy some class invari-

ant (repOk ), which is a precondition forequals to
compare outputs.� The mutant’s output is different from the output of the
original program; any of these outputs can be normal
or exceptional.� The mutant’s execution exceeds the time limit.� The mutant’s execution runs out of memory.

5. Experimental results
This section presents the experiments that evaluate the

“small scope hypothesis” and the Korat framework. We
first present Korat’s performance results for test input gen-
eration and checking method correctness. We then present
how the coverage and the rate of mutant killing vary with
the scope. We performed all timed experiments on a Linux
machine with a Pentium 4 1.8GHz processor using Sun’s
Java 2 SDK1.3.1 JVM.

5.1. Benchmarks and methods
Table 2 lists the benchmarks and methods that we use

to measure Korat’s performance. We use Korat to generate
inputs and check the correctness of outputs for the “tested”
methods. These methods implement the standard operations
on their corresponding data structures [9]. Executing these
methods also tests some “helper” methods because they are
invoked either from the code for “tested” methods or while

checking the correctness of those methods (i.e., from post-
conditions).

SearchTree is presented in Section 2.DisjSet is
an array-based implementation of the fast union-find data
structure [9]; this implementation uses both path compres-
sion and rank estimation heuristics to improve efficiency.
HeapArray is an array-based implementation of the heap
(priority queues) data structure..BinomialHeap andFi-

bonacciHeap are dynamic data structures that also im-
plement heaps, but differ in complexity for certain opera-
tions [9].

LinkedList is the implementation of linked lists in the
Java Collections Framework, a part of the standard Java li-
braries [29]. This implementation uses doubly-linked, cir-
cular lists The elements inLinkedList are arbitrary ob-
jects from a given set.SortedList is structurally identi-
cal to LinkedList , but the elements inSortedList are
(sorted)Integer s. This benchmark is similar to the exam-
ples used in some shape analyses [21,25].TreeMap imple-
ments theMap interface using red-black trees [9].HashSet

implements theSet interface, backed by a hash table [9].
AVTree implements theintentional nametrees that de-

scribe properties of services in the Intentional Naming Sys-
tem (INS) [1], an architecture for service location in dy-
namic networks. Each node in an intentional name has an
attribute , a value , and a set of child nodes. Attributes
and values are arbitraryString s (except that ‘* ’ matches
all other values). The original implementation of INS had
errors [24]; in these experiments we use the corrected ver-
sion.

5.2. Test generation and correctness checking
Table 3 shows Korat’s performance for test generation

and correctness checking for some scopes. Appendix B
presents the results also for other scopes. For each bench-
mark, all size parameters and maximum elements are set to
the scope value. For each benchmark, the tabulated scopes
are sufficient to achieve the maximum coverage and kill al-
most all the mutants. We also tabulate the time Korat takes
to generate all valid test inputs, the number of inputs, and
the time Korat takes to check the correctness of methods.
All times are elapsed real times in seconds from the start of
Korat to its completion, without the JVM initialization that
takes around 0.5 seconds.

Number of inputs that is generated is the sum of num-
bers of inputs for all “tested” methods. Similarly, the gener-
ation and checking times are sums of times for all “tested”
methods. We use Korat to separately generate inputs for
each method. However, when two methods have the same
precondition (e.g., anadd and aremove that only require
their input data structure to be valid), we could reuse the
inputs and thus even reduce the generation time. The post-
conditions for all methods specify typical partial correct-
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benchmark “tested” methods some “helper” methods # ncnb # #
lines branches mutants

SearchTree add , remove contains 85 20 271
DisjSet union , find compressPath 29 8 284

HeapArray insert , extractMax heapifyUp , heapifyDown 51 9 274
BinomialHeap insert , extractMin contains , decrease 182 33 295

union , delete merge , findMin
FibonacciHeap insert , extractMin contains , decrease 171 31 302

union , delete cascadingCut , cut , consolidate
LinkedList add , remove , reverse contains , ListIterator.next 102 16 253
SortedList insert , remove contains 176 29 253

sort , merge
TreeMap put , remove get , containsKey 230 47 294

fixAfterInsertion
fixAfterDeletion

rotateLeft , rotateRight
HashSet add , remove contains , HashMap.containsKey 113 20 285

HashMap.put , HashMap.remove
HashMap.rehash

AVTree lookup extract 199 26 203

Table 2. Benchmarks and tested methods. Each benchmark is na med after the main class; Korat
generates data structures that also contain objects from ot her classes. Korat generates inputs and
checks outputs for the “tested” methods, thereby also testi ng “helper” methods. For each bench-
mark, we tabulate the number of non-comment non-blank lines of source code in those methods, the
number of branches, and the number of mutants generated by Fe rastrau.

benchmark scope generation # checking statement branch mutants
[sec] inputs [sec] cov. [%] cov. [%] killed [%]

SearchTree 6 1.38 8772 0.43 100.00 100.00 99.26
DisjSet 4 0.31 18280 0.44 100.00 100.00 95.77

HeapArray 6 1.02 118251 1.94 100.00 100.00 95.98
BinomialHeap 7 232.33 2577984 67.05 100.00 100.00 95.93

FibonacciHeap 5 1258.95 941058 26.45 100.00 100.00 89.07
LinkedList 3 0.01 169 0.10 90.57 84.38 99.20
SortedList 6 2.55 73263 2.59 92.50 89.66 96.44

TreeMap 6 1.00 3924 0.39 100.00 91.49 89.11
HashSet 5 0.43 3638 0.29 100.00 100.00 92.28
AVTree 5 84.51 417878 148.05 94.12 92.31 93.10

Table 3. Korat’s performance for test generation and correc tness checking; also, statement and
branch coverage and rate of mutant killing. All times are ela psed real times in seconds from the
start of Korat to its completion. For all benchmarks and thei r sufficient scopes, Korat takes less than
0.5 hour to generate all inputs and check correctness.

ness properties; they require resulting data structures tobe
valid and either to contain or not contain the input elements,
depending on the method.

For these scopes, the size of the search space is between225 and2100. The actual size of search spaces for several
data structures can be found in [6]; for some scopes in those
experiments, as well as for some scopes in Appendix B, Ko-
rat explores search spaces with size over2200. In all cases,
Korat completes in less than 0.5 hour, often in just a few
seconds.

These results show that Korat can efficiently generate
all inputs even for very large search spaces, primarily be-
cause the search pruning allows Korat to explore only a tiny
fraction of these spaces. The key to effective pruning is
backtracking based on fields accessed duringrepOk ’s exe-

cutions. Without backtracking, and even with isomorphism
optimization, Korat would consider infeasibly many struc-
tures. Isomorphism optimization further reduces the num-
ber of considered structures, but it mainly reduces the num-
ber of valid structures. As shown in [6], Korat generates ex-
actly the number of nonisomorphic structures given in the
On-Line Encyclopedia of Integer Sequences [28].

5.3. Coverage and mutant testing
Figure 6 shows graphs that relate scope with the state-

ment coverage and the rate of mutant killing. The coverage
is measured for all “tested” and “helper” methods, since
they are all executed. For most benchmarks, Korat gener-
ates inputs that achieve complete coverage, both for state-
ments and branches. For other benchmarks, the coverage is
not complete because no input for “tested” methods could
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Figure 6. Variation of statement coverage (thick line) and r ate of mutant killing (thin line) with scope.
For all benchmarks, Korat generates inputs that achieve the maximu m coverage that is possible
without directly generating inputs for “helper” methods.

trigger some exceptional behavior of “helper” methods.

For example, the (“tested”)reverse method for lists
creates aListIterator and invokes some (“helper”)
methods on it, but in a way that precludes raising certain ex-
ceptions, such asConcurrentModificationException

or NoSuchElementException . In terms of JML spec-
ifications, the “tested” methods typically invoke “helper”
methods in pre-states that satisfy the precondition fornor-

mal behavior , and notexceptional behavior .

For mutant testing, we use Ferastrau to generate between
200 and 300 mutants for each benchmark. We instruct
Ferastrau to mutate the “tested” methods and their “helper”
methods, but not “helper” methods that are invoked only
from specifications. For most benchmarks, Korat gener-
ates inputs that kill over 90% of the mutants. Our manual
inspection of the surviving mutants indicates that most of
them are semantically equivalent to the original programs
and thus no input could kill them; due to the complexity

of the benchmark methods, we were not able to definitely
establish the equivalence for all mutants that are not killed.

Notice that for some of the benchmarks the rate of mu-
tant killing increases with scope even after achieving com-
plete coverage. This can be expected because complete
statement and branch coverage (or for that matter, any cov-
erage criteria) do not guarantee absence of bugs [5]. As
an illustration, consider the following code snippet from
SearchTree.remove :

Node temp = left;
while (temp.right.right != null) {

temp = temp.right;
}

Suppose that the mutation changes only the loop body:
Node temp = left;
while (temp.right.right != null) {

temp = left/*temp*/.right;
}

If the loop body is executed zero or one times, the orig-
inal program and the mutant have the same behavior. For
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trees that have up to four nodes, the loop cannot execute
more than once; these trees also happen to achieve com-
plete coverage. However, executing the method for a tree
that has five nodes can execute the loop twice in the origi-
nal program, thus making the mutant loop infinitely. (Recall
that Ferastrau detects mutants that loop infinitely.)

Because of the above, we take as sufficient the scope for
which almost all mutants are killed, and not the scope that
just achieves complete coverage. For all benchmarks and
their respective sufficient scopes, Korat can generate all in-
puts and check correctness using these inputs in less than
an hour, often within a few seconds. Korat can therefore be
used effectively for systematic testing of these benchmarks.

6. Conclusions
The “small scope hypothesis” argues that a high propor-

tion of bugs can be found by testing the program for all
test inputs within some small scope. In object-oriented pro-
grams, a test input is constructed from objects of different
classes; a test input is within a scope ofs if at mosts ob-
jects of any given class appear in it. If the hypothesis holds,
it follows that it is more effective to do systematic testing
within a small scope than to generate fewer test inputs of a
larger scope.

This paper evaluated the hypothesis for several imple-
mentations of data structures, including some from the Java
Collections Framework. We measured how statement cov-
erage, branch coverage, and rate of mutant killing vary with
scope. To perform exhaustive testing, we used Korat, an
automated framework for systematic input generation and
correctness checking of Java programs. This paper also
presented the Ferastrau framework that we developed for
mutation testing of Java programs. The experimental re-
sults show that exhaustive testing within small scopes can
achieve complete coverage and kill almost all of the mu-
tants, even for intricate methods that manipulate complex
data structures. The results also show that Korat can be
used effectively to generate inputs and check correctness
for these scopes. We believe that frameworks that perform
exhaustive checking within a small scope, such as Korat,
are worth pursuing.
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A. Full code for the example
import java.util.*;
class SearchTree {

Node root; // root node
int size; // number of nodes in the tree
static class Node {

Node left; // left child
Node right; // right child
Comparable info; // right child

}

/*@ normal_behavior // specification
@ // precondition
@ requires repOk();
@ // postcondition
@ ensures repOk() && !contains(info) &&
@ \result == \old(contains(info));
@*/

boolean remove(Comparable info) {
Node parent = null;
Node current = root;
while (current != null) {

int cmp = info.compareTo(current.info);
if (cmp < 0) {

parent = current;
current = current.left;

} else if (cmp > 0) {
parent = current;
current = current.right;

} else {
break;

}
}
if (current == null) return false;
Node change = removeNode(current);
if (parent == null) {

root = change;
} else if (parent.left == current) {

parent.left = change;

} else {
parent.right = change;

}
return true;

}

Node removeNode(Node current) {
size--;
Node left = current.left, right = current.right;
if (left == null) return right;
if (right == null) return left;
if (left.right == null) {

current.info = left.info;
current.left = left.left;
return current;

}
Node temp = left;
while (temp.right.right != null) {

temp = temp.right;
}
current.info = temp.right.info;
temp.right = temp.right.left;
return current;

}

boolean repOk() {
// checks that empty tree has size zero
if (root == null) return size == 0;
// checks that the input is a tree
if (!isAcyclic()) return false;
// checks that data is ordered
if (!isOrdered(root)) return false;
return true;

}

private boolean isAcyclic() {
Set visited = new HashSet();
visited.add(root);
LinkedList workList = new LinkedList();
workList.add(root);
while (!workList.isEmpty()) {

Node current = (Node)workList.removeFirst();
if (current.left != null) {

// checks that the tree has no cycle
if (!visited.add(current.left))

return false;
workList.add(current.left);

}
if (current.right != null) {

// checks that the tree has no cycle
if (!visited.add(current.right))

return false;
workList.add(current.right);

}
}
// checks that size is consistent
if (visited.size() != size) return false;
return true;

}

private boolean isOrdered(Node n) {
return isOrdered(n, null, null);

}

private boolean isOrdered(Node n, Comparable min, Compara ble max) {
if (n == null) return true;
if (n.info == null) return false;
if ((min != null && n.info.compareTo(min) <= 0) ||

(max != null && n.info.compareTo(max) >= 0))
return false;

if (n.left != null)
if (!isOrdered(n.left, min, n.info))

return false;
if (n.right != null)

if (!isOrdered(n.right, n.info, max))
return false;

return true;
}

}
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B. Experimental results

benchmark scope generation # checking statement branch mutants
[sec] inputs [sec] cov. [%] cov. [%] killed [%]

1 0.03 4 0.05 38.46 40.00 26.19
2 0.04 20 0.06 79.49 87.50 69.74
3 0.06 90 0.06 87.18 92.50 79.70

SearchTree 4 0.17 408 0.13 97.44 97.50 92.61
5 0.38 1880 0.23 100.00 100.00 98.52
6 1.38 8772 0.43 100.00 100.00 99.26
7 8.96 41300 1.24 100.00 100.00 99.26
1 0.01 4 0.04 23.08 25.00 0.35
2 0.01 30 0.04 69.23 68.75 32.04

DisjSet 3 0.04 456 0.08 100.00 100.00 89.78
4 0.31 18280 0.44 100.00 100.00 95.77
5 14.24 1246380 20.98 100.00 100.00 95.77
1 0.01 16 0.04 79.31 66.67 38.68
2 0.01 75 0.05 79.31 66.67 43.43
3 0.01 396 0.08 93.10 83.33 69.70

HeapArray 4 0.08 2240 0.16 96.55 88.89 86.13
5 0.23 15352 0.38 96.55 94.44 89.78
6 1.02 118251 1.94 100.00 100.00 95.98
7 9.51 1175620 18.09 100.00 100.00 95.98
1 0.01 12 0.06 52.87 57.58 31.52
2 0.01 54 0.07 87.36 84.85 63.05
3 0.13 336 0.12 98.85 96.97 89.49

BinomialHeap 4 0.45 1800 0.23 100.00 98.48 93.22
5 2.02 16848 0.63 100.00 100.00 94.91
6 13.90 159642 4.07 100.00 100.00 95.59
7 232.33 2577984 67.05 100.00 100.00 95.93
1 0.01 12 0.06 35.48 43.55 15.23
2 0.08 108 0.08 75.27 80.64 43.70

FibonacciHeap 3 0.79 1632 0.23 95.70 98.39 76.49
4 20.07 34650 1.14 95.70 98.39 82.11
5 1258.95 941058 26.45 100.00 100.00 89.07
1 0.01 15 0.07 64.15 68.75 57.31
2 0.01 50 0.07 90.57 84.38 98.81
3 0.01 169 0.10 90.57 84.38 99.20

LinkedList 4 0.08 627 0.14 90.57 84.38 99.20
5 0.18 2584 0.24 90.57 84.38 99.20
6 0.36 11741 0.49 90.57 84.38 99.20
7 1.00 58175 1.60 90.57 84.38 99.20
1 0.02 7 0.10 62.50 50.00 31.22
2 0.02 36 0.11 80.00 74.14 49.01
3 0.07 188 0.14 92.50 89.66 90.51

SortedList 4 0.22 1066 0.27 92.50 89.66 94.07
5 0.56 7427 0.50 92.50 89.66 96.04
6 2.55 73263 2.59 92.50 89.66 96.44
7 33.12 1047608 38.16 92.50 89.66 96.44
1 0.02 6 0.06 14.41 14.89 5.78
2 0.02 28 0.06 45.95 50.00 28.57
3 0.08 96 0.09 63.96 73.40 60.88

TreeMap 4 0.18 328 0.14 89.19 85.11 77.89
5 0.37 1150 0.24 100.00 91.49 87.07
6 1.00 3924 0.39 100.00 91.49 89.11
7 3.33 12754 0.78 100.00 91.49 89.11
1 0.01 4 0.03 51.92 50.00 35.08
2 0.01 34 0.04 96.15 95.00 80.35
3 0.07 212 0.08 100.00 100.00 91.57

HashSet 4 0.25 1170 0.19 100.00 100.00 91.92
5 0.43 3638 0.29 100.00 100.00 92.28
6 1.15 12932 0.59 100.00 100.00 92.28
7 5.08 54844 1.96 100.00 100.00 92.28
1 0.01 2 0.06 55.29 51.92 40.88
2 0.04 86 0.13 75.29 78.85 62.06

AVTree 3 0.20 1702 0.75 88.23 84.61 74.38
4 2.69 27734 8.32 94.12 92.31 90.64
5 84.51 417878 148.05 94.12 92.31 93.10

Table 4. Korat’s performance for test generation and correc tness checking; also, variation of state-
ment and branch coverage and rate of mutant killing with scop e. All times are elapsed real times in
seconds from the start of Korat to its completion. For all ben chmarks and their sufficient scopes,
Korat takes less than 0.5 hour to generate all inputs and chec k correctness.
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