Korat: Automated Testing Based on Java Predicates

Chandrasekhar Boyapati, Sarfraz Khurshid, and Darko Marinov
MIT Laboratory for Computer Science
200 Technology Square
Cambridge, MA 02139 USA

{chandra,khurshid,marinov}@Ics.mit.edu

ABSTRACT phic test cases. This optimization reduces the search time without
This paper presents Korat, a novel framework for automated testing compromising the exhaustive nature of the search.
of Java programs. Given a formal specification for a method, Korat
uses the method precondition to automatically generate all noniso-Korat uses backtracking to systematically explore the input space
morphic test cases bounded by a given size. Korat then executef the predicate. Korat generatesndidateinputs and checks their
the method on each of these test cases, and uses the method postalidity by invoking the predicate on them. Korat monitors accesses
condition as a test oracle to check the correctness of each output. that the predicate makes to all the fields of the candidate input. If
the predicate returns without reading some fields of the candidate,
To generate test cases for a method, Korat constructs a Java predithen the validity of the candidate must be independent of the values
cate (i.e., a method that returns a boolean) from the method'’s pre-of those fields—Korat uses this observation to prune the search.
condition. The heart of Korat is a technique for automatic test case
generation: given a predicate and a bound on the size of its inputs,Korat lets programmers write specifications in any language as long
Korat generates all nonisomorphic inputs for which the predicate as the specifications can be automatically translated into Java pred-
returns true. Korat exhaustively explores the input space of the icates (i.e., methods that return booleans). The current Korat imple-
predicate but does so efficiently by monitoring the predicate’s exe- mentation uses the Java Modeling Language (JML) [20] for spec-
cutions and pruning large portions of the search space. ifications. Programmers can use JML to write method precondi-
tions and postconditions, as well as class invariants. JML uses Java
This paper illustrates the use of Korat for testing several data struc- syntax and semantics for expressions, and contains some exten-
tures, including some from the Java Collections Framework. The sions such as quantifiers. A large subset of JML can be automat-
experimental results show that it is feasible to generate test casedcally translated into Java predicates. Programmers can thus use
from Java predicates, even when the search space for inputs is veryKorat without having to learn a specification language much dif-
large. This paper also compares Korat with a testing framework ferent than Java. Moreover, since JML specifications can call Java
based on declarative specifications. Contrary to our initial expec- methods, programmers can use the full expressiveness of the Java
tation, the experiments show that Korat generates test cases mucheanguage to write specifications.
faster than the declarative framework.
To illustrate the use of Korat, consider a method that removes the
minimum element from a balanced binary tree. The precondition
1. INTRODUCTION for this method requires the input to satisfy its class invariant: the
Manual software testing, in general, and test data generation, ininput must be a binary tree and the tree must be balanced. Korat
particular, are labor-intensive processes. Automated testing canuses this precondition as the predicate for generating all noniso-
significantly reduce the cost of software development and main- morphic balanced binary trees bounded by a given size. Good pro-
tenance [3]. This paper presents Korat, a novel framework for au- gramming practice [22] suggests that implementations of abstract
tomated testing of Java programs. Korat uses specification-basecdata types provide predicates that test class invariants (known as the
testing [4,12,14,26,29]. Given a formal specification for a method, repOk orcheckRep methods)—Korat then generates test cases al-
Korat uses the method precondition to automatically generate all most for free. Korat invokes the method on each of the generated
nonisomorphic test cases bounded by a given size. Korat then ex-trees and checks the postcondition in each case. If a method post-
ecutes the method on each of the test cases, and uses the methagbndition is not specified, Korat can still be used to test partial cor-
postcondition as a test oracle to check the correctness of each outrectness of the method. In the binary tree example, Korat can be
put. used to check the class invariant at the end of the remove method,
to verify that the input tree remains a balanced binary tree after
To generate test cases for a method, Korat constructs a Java prediremoving the minimum element from it.
cate (i.e., a method that returns a boolean) from the method’s pre-
condition. One of the key contributions of Korat is a technique for We have used Korat to test several data structures, including some
automatic test case generation: given a predicate, and a bound orfrom the Java Collections Framework. The experimental results
the size of its inputs, Korat generates all nonisomorphic inputs for show that it is feasible to generate test cases from Java predicates,
which the predicate returngsie . Korat exhaustively explores the even when the search space for inputs is very large. In particu-
input space of the predicate but does so efficiently by monitoring lar, our experiments indicate that it is practical to generate inputs
the predicate’s executions and pruning large portions of the searchto achieve complete code coverage, even for intricate methods that
space. Korat also uses an optimization to generate only nonisomor-

import java.util.*; public static Finitization finBinaryTree(int NUM_Node) {

class BinaryTree { Finitization f = new Finitization(BinaryTree.class);
private Node root; // root node ObjSet nodes = f.createObjects("Node", NUM_Node);
private int size; // number of nodes in the tree /I #Node = NUM_Node
static class Node { nodes.add(null);
private Node left; // left child f.set("root", nodes); /I root in null + Node
private Node right; // right child f.set("size", NUM_Node); /I size = NUM_Node

f.set("Node.left", nodes); // Node.left in null + Node

} f.set("Node.right", nodes); // Node.right in null+ Node
public boolean repOk() { return f;
/I checks that empty tree has size zero }
if (root == null) return size == 0;
Set visited = new HashSet(); Figure 2: Finitization description for the BinaryTree example

visited.add(root);
LinkedList();
workList.add(root);
while ('workList.isEmpty()) {
Node current = (Node)workList.removeFirst();
if (current.left != null) {
/I checks that tree has no cycle
if (lvisited.add(current.left))
return false;
workList.add(current.left);

@ right lef @ lef @ e @ right
CIC NG CEENC
C CINC
}

it (currentright 1= null) { Figure 3: Trees generated forfinBinaryTree(3)

/I checks that tree has no cycle
if (lvisited.add(current.right))

return false;
workList.add(current.right): field contains the number of nodes in the tree. Objects of the in-

} ner classNode represent nodes of the trees. The methgmbDk
o _ first checks if the tree is empty. If nakpOk traverses all nodes
/I checks that size is consistent reachable fromoot , keeping track of the visited nodes to detect
if (visited.size() != size) return false; . . .
return true; cycles. (The methoddd from java.util.Set returnsfalse if
} the argument already exists in the set.)

To generate trees that have a given number of nodes, the Korat
Figure 1: BinaryTree example search algorithm uses tfiaitizationdescription shown in Figure 2.
The statements in the finitization description specify bounds on the

. . number of objects to be used to construct instances of the data struc-
manipulate complex data structures. This paper also compares Ko+,re a5 well as bounds on the possible values stored in the fields of

rat with the Alloy Analyzer [15], which can be used to generate test yhqge gpjects. Most of the finitization description shown in the fig-
cases from declarative predicates. Contrary to our initial expecta- ;g s automatically generated from the type declarations in the Java
tion, the experiments show that Korat generates test cases much,,qe. |n Figure 2, the paramefetMNode specifies the bound on
faster than the Alloy Analyzer. number of nodes in the tree. Each reference field in the tree is either

. null or points to one of thélode objects. Note that the identity
The rest of this paper is organized as follows. Section 2 illustrates ¢ these objects is irrelevant—two trees m@morphidf they have

the use of Korat on two examples. Section 3 presents the algorithmye same branching structure, irrespective of the actual nodes in the
that Korat uses to explore the search space. Section 4 describeggeag.

how Korat checks method correctness. Section 5 presents the ex-

perimental results. Section 6 reviews related work, and Section 7 g4t automatically generates all nonisomorphic trees with a given
concludes. number of nodes. For example, fomBinaryTree(3) , Korat
generates the five trees shown in Figure 3. As another example, for
2. EXAMPLES finBinaryTree(7) , Korat generates 429 trees in less than one
This section presents two examples to illustrate how programmers second.
can use Korat to test their programs. These examples, a binary tree
data structure and a héapata structure, illustrate methods that We now illustrate how programmers can use Korat to check correct-
manipulate linked data structures and array-based data structurespess of methods. The JML annotations in Figure 4 specify partial
respectively. correctness for the examplemove method that removes from a
BinaryTree a node that is in the tree. Th®rmal _behavior
annotation specifies that if the preconditioaglires conjoined
This section illustrates the generation and testing of linked data \t/\kllléh ;;g\é?gggtditi 0) nf(nssitrlessﬂe(cj:c?r:j:)r;r?et:je\?\;i?ail:v%s;:the r??sthsoa(ii,st_hen

structures using simple blnary. trees. The Java code in Figure 1fied at the end of the method and the method returns without throw-
declares a binary tree and definesrégOk method. TheepOk ing an exception. The helper methoas checks that the tree con-

?;?i}ggsj ?n?/i;]r?é\l/r?t)pg??fllcea::i:PeaSt %hn%ciﬁs tg‘;g?{ﬁ:& r:t:onzr] '?r\]/?tr]'gntains the given node. Korat uses the JML tool-set to translate anno-
P 9 : tations into runtime Java assertions.

case, theepOk method checks if the input is a valginaryTree

2.1 Binary tree

To test a method, Korat first generates test inputsréreve , each
input is a pair of a tree and a node. The precondition defines valid

1The term “heap” refers to the data structure (priority queues) and inputs for the method: the tree must be valid and the node must
not to the garbage-collected memory. be in the tree. Given a finitization for inputs (which can be written

Each object of the cla®inaryTree represents a tree. Thize

/l@ public invariant repOKk(); // class invariant public static Finitization finHeapArray(int MAX_size,

/I for BinaryTree int MAX_length,
/*@ public normal_behavior /I specification for remove int MAX_elem) {
@ requires has(n); I precondition Finitization f = new Finitization(HeapArray.class);
@ ensures 'has(n); 1 postcondition /I size in [0..MAX_size]
@* f.set("size", new IntSet(0, MAX_size));
public void remove(Node n) { f.set("array",
/I ... method body /I array.length in [0..MAX_length]
} new IntSet(0, MAX_length),
/I array[] in null + Integer([0..MAX_elem])
Figure 4: Partial specification for BinaryTree.remove . fneW IntegerSet(0, MAX_elem).add(null));
return f;

public class HeapArray { }

private int size; // number of elements in the heap

private Comparable[] array; // heap elements Figure 6: Finitization description for the HeapArray example
public boolean repOk() {
/I checks that array is non-null size = 0, array =
if (array == null) return false; size = 0, array = [null]
/I checks that size is within array bounds size = 1, array = [Integer(0)]
if (size < 0 || size > array.length) size = 1, array = [Integer(1)]
return false;
for (int i = 0; i < size; i++) {
/I checks that elements are non-null . §
it (array[i] == null) return false; Figure 7: Heaps generated forfinHeapArray(1,1,1)
/I checks that array is heapified
if (i>0 &&
f‘gsg’rg']'f‘:ji‘l’srg?areTo(a"ay[("1)/2]) > 0) In Figure 6, the parametek#AXsize , MAXlength , andMAXelem
) ' bound the size of the heap, the length of the array, and the ele-
/I checks that non-heap elements are null ments of the array, respectively. The elements of the array can ei-
for (int i = size; i < array.length; i++) i ; B
' 28) ther benull or containinteger objects where the integers can
if (array[i] '= null) return false;
return true; range from0 to MAXelem .
}
} Given values for the finitization parameters, Korat automatically

generates all heaps. For example, fiaHeapArray(1,1,1) ,

Korat generates the four heaps shown in Figure 7. As another ex-
ample, in less than one second, fiaHeapArray(5,5,5) , Korat
reusing the finitization description for trees presented in Figure 2), generates 1919 heaps.

Korat generates all nonisomorphic inputs. Fanove , the number

of input pairs is the product of the number of trees and the number Note that Korat requires only thepOk method and finitization

of nodes in the trees. After generating the inputs, Korat invokes to generate all heaps. Writing a dedicated heap generator is much
the method (with runtime assertions for postconditions) on each more involved than writingepOk . Note also that Korat allows
input and reports a counterexample if the method fails to satisfy repOk to use the full Java language.

the correctness criteria.

Figure 5: HeapArray example

We now illustrate how programmers can use Korat to check partial
2.2 Heap array correctness of thextractMax method that removes and returns

This section illustrates the generation and checking of array-basedt':he Iargéest ele_ment f_r olm tdeapArray f Th;e‘]ML annotatlorr:s dm
data structures, using the heap data structure [7]. The (bihagyp igure 8 specify partial correctness for theractMax method.

data structure can be viewed as a complete binary tree—the tree is! "€formal _behavior specifies that if the input heap is valid and

completely filled on all levels except possibly the lowest, which is Uon-empty, then the method relums the Iarges.t elementin the orig-
filled from the left up to some point. Heaps also satisfy tieap inal heap and the resulting heap after execution of the method is

property—for every noden other than the root, the value afs valid. The JML keyworddresult _and\old denote, respeciively,
parent is greater than or equal to the value:ofThe Java code in the object returned by the method and the expressions that should

Figure 5 declares an array-based heap and defines the correspon&)-e evaluated in the pre-state. JML annotations can also express

ingrepOk method. TheepOk method checks if the input is a valid excepFionaI bghaviqr of methqu. Theceptional ~ _behavior
HeapArray specifies that if the input heap is empty, the method throwis an

legalArgumentException

The elements of the heap are storedriay . The elements imple-
ment the interfac€omparable , providing the methodompareTo
for comparisons. The methadpOk first checks for the special
case wherarray isnull . If not, repOk checks that theize of
the heap is within the bounds of theray . Then,repOk checks
that the array elements that belong to the heap arenbt and
that they satisfy the heap property. FinalgpOk checks that the
array elements that do not belong to the heamatte .

To check the methodxtractMax , Korat first uses a finitization

to generate all nonisomorphic heaps that satisfy eithemtine

mal _behavior precondition or thexceptional ~ _behavior pre-
condition. Next, Korat invokes the method (with runtime assertions
for postconditions) on each input and reports a counterexample if
any invocation fails to satisfy the correctness criteria.

3. TEST CASE GENERATION
To generate heaps, the Korat search algorithm uses the finitizationThe heart of Korat is a technique for test case generation: given a
description shown in Figure 6. We again emphasize that most of the Java predicate and a finitization for its input, Korat automatically
finitization description shown in the figure is automatically gener- generates all nonisomorphic inputs for which the predicate returns
ated from the type declarations in the Java code. true . Figure 9 gives an overview of the Korat search algorithm.

/l@ public invariant repOKk();
/*@ public normal_behavior

@ requires size > 0;

@ ensures \result == \old(array[0]);

@ also public exceptional_behavior

@ requires size == 0;

@ signals (lllegalArgumentException e) true;
@*/

public Comparable extractMax() {
/I ... method body
}

Figure 8: Partial specification for HeapArray.extractMax

void koratSearch(Predicate p, Finitization f) {
intialize(f);
while (hasNextCandidate()) {
Object candidate = nextCandidate();
try {
if (p.invoke(candidate))
output(candidate);
} catch (Exception e) {}
backtrack();

Figure 9: Pseudo-code of the Korat search algorithm

Korat uses backtracking to exhaustively explorestae spacef
predicate inputs. Korat generatendidateinputs and checks their
validity by invoking the predicate on them. Korat monitors accesses
that the predicate makes to all the fields of the candidate input.

To monitor the accesses, Korat instruments the predicate and all

public static Finitization finBinaryTree(int NUM_Node,

int MIN_size,
int MAX_size) {

Finitization f = new Finitization(BinaryTree.class);

ObjSet nodes = f.createObjects("Node", NUM_Node);

nodes.add(null);

f.set("root", nodes);

f.set("size", new IntSet(MIN_size, MAX_size));

f.set("Node.left", nodes);

f.set("Node.right", nodes);

return f;

}

Figure 10: Generated finitization description for BinaryTree

or aNode object. Thesize field is specified to range between
MIN_size andMAXsize using the utility classntSet . The Korat
package provides several additional classes for easy construction of
class domains and field domains.

Once Korat generates a finitization skeleton, programmers can fur-
ther specialize or generalize it. For example, the skeleton shown in
Figure 10 can be specialized by settMiN_size to0 andMAXsize

to NUMNode. We presented another specialized finitization in Fig-
ure 2. Note that programmers can use the full expressive power of
the Java language for writing finitization descriptions.

3.2 State space
We continue with th@&inaryTree example to illustrate how Korat
constructs the state space for the inputefgOk using the finitiza-

the methc_)ds that th‘? predlcate_ transitively |nv0I_<es. If the prt_ad_lcate tion presented in Figure 2. Consider the case when Korat is invoked
returns without reading some fields of the candidate, the validity of g . '
th didat t be ind dent of th | fth field for finBinaryTree(3) ,i.e.,NUMNode = 3. Korat first allocates

€ candidate must be independent o the values of those Nelds—y, specified objects, orgnaryTree object and thre@lode ob-
Korat uses this observation to prune the search. Korat also uses a

A . . r}ects. The threélode objects form theNode class domain. Korat
optimization that generates only nonisomorphic test cases. then assigns a field domain and a unique identifier to each field of
these objects. The identifier is the index into ttendidate vec-
tor. In this example, the vector has eight elements; there are total
of eight fields: the singl@inaryTree object has two fieldspot
andsize , and each of the threode objects also has two fields,
left andright

This section first illustrates how Korat generates valid inputs for
predicate methods that take only the implibis argument. Sec-

tion 3.6 shows how Korat generates valid inputs for Java predicates

that take multiple arguments.

3.1 Finitization

For this example, aandidateBinaryTree input is a sample valu-

To generate a finite state space of a predicate’s inputs, the searchation of those eight fields. The state space of inputs consists of all

algorithm needs #éinitization i.e., a set of bounds that limits the
size of the inputs. Since the inputs can consist of objects from

several classes, the finitization specifies the number of objects for left

possible assignments to those fields, where each field gets a value
from its corresponding domain. Since the domain for fietds ,
, andright has four elementsn¢ll and threeNodes from

each of those classes. A set of objects from one class is called atheNode class domain), the state space hia$+(4x4)% = 2'* po-

class domainThe finitization also specifies for each field of those
objects dield domaini.e., a set of values that the field can take.

In the spirit of using the implementation language (which program-
mers are familiar with) for specification and testing, Korat provides
a Finitization class that allows finitizations to be written in
Java® Korat automatically generates a finitizatiskeletonfrom

the type declarations in the Java code. ForrpOk method of
the BinaryTree example presented in Figure 1, Korat automati-
cally generates the skeleton shown in Figure 10.

In Figure 10, thecreateObjects method specifies that the in-
put contains at motUMNode objects from theNode. The set

method specifies the field domain for each field. In the skeleton, the

fieldsroot , left , andright are specified to contain eitheull

2The initial version of Korat provided a special-purpose language
for more compact descriptions of finitizations, sketched in the com-
ments in the examples in Figures 2 and 6.

tential candidates. FOWUMNode= n, the state space h&s+1)3"
potential candidates. Figure 11 shows an example candidate that is
a valid binary tree on three nodes. Not all valuations are valid bi-
nary trees. Figure 12 shows an example candidate that is not a tree;
repOk returnsfalse for this input.

3.3 Search

To systematically explore the state space, Korat orders all the ele-
ments in every field domain and every class domain. Each candi-
date inputis then a vector of indices into the corresponding field do-
mains. For our running example wittUMNode = 3, assume that

the Node class domain is ordered asy[N;,N2], and the field do-
mains forroot , left , andright are ordered asill ,No,leN21-3

The domain of thesize field has a single elemens, Accord-

ing to this ordering, the candidate vectdts0, 2, 3,0, 0, 0, 0] and

3Each field domain order has to preserve the respective class do-
main orders.

BinaryTree NO N1 N2 @
root size left right left right left right lef right

@ e

Figure 11: Candidate input that is a valid BinaryTree
BinaryTree NO N1 N2

root size left right left right left right lef @

right
& @

Figure 12: Candidate input that is not a valid BinaryTree

[1,0,2,2,0,0,0,0] correspond to candidate inputs in figures 11
and 12, respectively.

The search starts with the candidate vector set to all zeros. For
each candidate, Korat sets fields in the objects according to the val-
ues in the vector. Korat then invokespOk to check the validity

of the current candidate. During the executionrgOk , Korat
monitors the fields thakpOk accesses. Specifically, Korat builds

a field-ordering a list of the field identifiers ordered by the first
timerepOk accesses the corresponding field. Consider the invoca-
tion of repOk on the candidate shown in Figure 12. In this case,
repOk accesses only the fieldspt No.left ,No.right] (in that
order) before returnintplse . Hence, the field-ordering that Korat
builds is[0,2,3]

After repOk returns, Korat generates the next candidate vector back-or point to other objects i®.) Let P be the set ofwll

tracking on the fields accessedreypOk . Korat first increments the
domain index for the field that is last in the field-ordering. If the
domain index exceeds the domain size, Korat resets that index to
zero, and increments the domain index of the previous field in the
field-ordering, and so on. (The next section presents how Korat

nal input. Similarly, our algorithm assumes that the result of the
predicate method is solely determined by the candidate input.

WhenrepOk returnstrue , Korat outputs all (nonisomorphic) can-
didates that have the same values for the accessed fields as the cur-
rent candidate. (Note thadgpOk may not access all reachable fields
before returningrue .) The search then backtracks to the next can-
didate. Recall that Korat orders the values in the class and field
domains. Additionally, each execution mpOk on a candidate
imposes an order on the fields in the field-ordering. Together, these
orders induce a lexicographic order on the candidates. The search
algorithm described here generates inputs in the lexicographical or-
der.

In practice, our search algorithm prunes large portions of the search
space, and thus enables Korat to explore very large state spaces.
The efficiency of the pruning depends on teeOk method. An
ill-written repOk , for example, might always read the entire in-
put before returning, thereby forcing Korat to explore almost every
candidate. However, our experience indicates that naturally written
repOk methods, which returfalse as soon as the first invariant
violation is detected, induce very effective pruning.

3.4 Nonisomorphism

To further optimize the search, Korat avoids generating multiple
candidates that are isomorphic to one another. Our optimization is
based on the following definition of isomorphism.

Definition: LetOq, ..., O, be some sets of objects fronclasses.
LetO = O1U...UO,, and suppose that candidates consist only of
objects fromO. (Pointer fields of objects i® can either bewull

and all
values of primitive types (such as) that the fields of objects i®

can contain. Further, lete O be a special root object, and 18t

be the set of all objects reachable frerm C'. Two candidates;
andC’, areisomorphiciff there is a permutatiom on O, mapping
objects fromO; to objects fromO; for all 1 < ¢ < n, such that

generates only nonisomorphic candidates by resetting a domain in-Vo, o’ € Oc¢, Vf € fields(o), Vp € P:
dex for a field to zero even when the index does not exceed the size

of the field domain.)

Continuing with our example, the next candidate takes the next
value forNy.right , which isN; by the above order, whereas the
other fields do not change. This prunes from the searctf alan-
didate vectors of the forrft, _2,2, _, _, _,] that have the (par-
tial) valuation:root =Ng, No.left =N;, No.right =N;. This prun-

ing does not rule out any valid data structure becagigek did not
read the other fields, and it would have returfesk irrespective

of the values of those fields.

Continuing further with our example, the next candidate is the valid
tree shown in Figure 11. For this inpugpOk returnstrue and

the field-ordering built by Korat i$0,2,3,4,5,6,7,1] . Note

that the first three fields in the field-ordering are the same as be-
fore. This is because thhepOk method accesses fields in a deter-
ministic order and because the values of the first two fields in the
field-ordering were not changed when the current candidate was
constructed from the previous candidate.

Our algorithm assumes deterministic executions of predicate meth-
ods and all the methods that the predicates transitively invoke. In

particular, our algorithm assumes that the order of field accessesfield domain indext for root

is solely determined by the candidate input and not by any exter-

o.f==0" in Ciiff n(0).f==m(0) in C’ and
o.f==pin Ciff w(0).f==pinC’.

The operator= is Java’s comparison by object identity. Note that
isomorphism is defined with respect to a root object. Two candi-
dates are defined to be isomorphic if the parts of their object graphs
reachable from the root object are isomorphic. In casebk ,

the root object is thénis object that is passed as an implicit argu-
ment torepOk .

Isomorphism between candidates partitions the state spadednto
morphism partitions Recall the lexicographic ordering induced
by the ordering on the values in the field domains and the field-
ordering built byrepOk executions. For each isomorphism parti-
tion, Korat generates only the lexicographically smallest candidate
in that partition.

Conceptually, Korat avoids generating multiple candidates from the
same isomorphism partition as follows. For each field in the field-

ordering, Korat uses the field domain index to compute the cor-
responding current class domain and class domain index. For in-
stance, in the example ordering used abovériBinaryTree(3) ,

corresponds to the class domain
Node and class domain index Further, for each field in the

class SomeClass { class BinaryTree_remove {

boolean somePredicate(X x, Y y) {...} BinaryTree This; /I the implicit "this" parameter
BinaryTree.Node n; // the Node parameter
} public boolean repOk() {
return This.repOk() && This.has(n);
Figure 13: Predicate method with multiple arguments } }
class SomeClass_somePredicate { . .
SomeClass This: Figure 15: Class representingBinaryTree.remove
X X
Yy public static Finitization
boolean repOk() { finBinaryTree_remove(int NUM_Node) {
return This.somePredicate(x, y); Finitization f =
} new Finitization(BinaryTree_remove.class);
} Finitization g = BinaryTree.finBinaryTree(NUM_Node);
f.includeFinitization(g);
Figure 14: Equivalent repOk method f.set("This", g.getObjects(BinaryTree.class));
f.set("n", /***/),
return f;

field-ordering, Korat findsny: the maximum domain index of 1}
fields in the field-ordering befor¢ that have the same class do-
main asf. For all fieldsf that have no preceding field in the field-
ordering with the same class domain gsKorat setsmy = —1.
Then, during backtracking on the field-ordering, Korat checks if in-
crementing the field domain index for a fiefdexceedsn; + 1.

If it does, Korat resets that index to zero and continues backtrack-
ing on the previous field in the field-ordering. The actual Korat
implementation uses caching to speed up the computatiesof

Figure 16: Finitization skeleton for BinaryTree _remove

presents how Korat builds on this technique to check correctness of
methods. Korat uses specification-based testing: to test a method,
Korat first generates test inputs from the method’s precondition,
then invokes the method on each of those inputs, and finally checks
the correctness of the output using the method'’s postcondition.

For example, Korat fofinBinaryTree(3) generates only the
five trees shown in Figure 3. Each tree is a representative from
an isomorphism partition that has six distinct trees, one for each of
3! permutations of nodes.

The current Korat implementation uses the Java Modeling Lan-
guage (JML) [20] for specifications. Programmers can use JML
annotations to express method preconditions and postconditions, as
well as class invariants; these annotations use JML keywerds

. quires , ensures , andinvariant , respectively. Each annotation
3.5 Instrumentation contains a boolean expression; JML uses Java syntax and semantics
To monitorrepOk 's executions, Koratinstruments all classes whose for expressions, and contains some extensions such as quantifiers.
objects appear in finitizations by doing a source to source transla-

tion. For each of the classes, Korat adds a special constructor. ForjML specifications can express severatmalandexceptional be-

each field of those classes, Korat adds an identifier field and specialhaviorsfor a method. Each behavior has a precondition and a post-

get andset methods. In the code faepOk and all the meth- condition: if the method is invoked with the precondition (and class
ods thatrepOk transitively invokes, Korat replaces each field ac- invariant) being satisfied, the behavior requires that the method ter-
cess with an invocation of the correspondifg or set method. minate with the postcondition (and class invariant) being satisfied.
Arrays are similarly instrumented, essentially treating each array Additionally, normal behaviors require that the method return with-
element as a field. out an exception, whereas exceptional behaviors require that the

method return with an exception. Korat generates inputs for all
To monitor the field accesses and build a field-ordering, Korat uses method behaviors using tlmmpletemethod precondition that is
an approach similar to thebserverpattern [10]. Korat uses the 3 conjunction of: 1) the class invariant and 2) a disjunction of the
special constructors to initialize all objects in a finitization with preconditions for all behaviors. In the text that follows, we refer to
an observer. The search algorithm initializes each of the identifier complete precondition simply as precondition.
fields to a unique index into the candidate vector. Spegialand
set methods first notify the observer of the field access using the
field’s identifier and then perform the field access (return the field’s
value or assign to the field).

4.1 Generating test cases

Valid test cases for a method must satisfy its precondition. To gen-

erate valid test cases, Korat creates a class that represents method’s

36 Predicat ith ltipl t inputs. This class has one field for each parameter of the method
o re_ Icates wi _mu Iple arguments . (including the implicitthis parameter) and@pOk predicate that

The discussion so far described how Korat generates inputs that,ses the precondition to check the validity of method’s inputs. Given

satisfy arepOk method. This section describes how Korat gener- 5 finitization, Korat then generates all inputs for which tleisOk

alizes this technique to generate inputs that satisfy any Java predi-eymstrue : each of these inputs is a valid input to the original
cate, including predicates that take multiple arguments. Figure 13 athod.

shows a Java predicate that takes two arguments. In order to gener-

ate inputs for this predicate, Korat generates an equivaipaik We illustrate generation of test cases usingrémeove method for
method shown in Figure 14. Korat then generates inputs tethe pjnaryTree from Section 2. For this method, each input consists
pOk method using the technique described earlier. of a pair ofBinaryTree this and aNode n. The complete pre-
condition isrepOk() && has(n) . Figure 15 shows the class that
4., TESTING METHODS Korat creates for the method’s inputs. For this class, Korat also

The previous section focused on automatic test case generatiorcreates the finitization skeleton that reuses the finitizatiomfor
from a Java predicate and a finitization description. This section naryTree , as shown in Figure 16.

To create finitization forBinaryTree _remove, the programmer Testing framework
can modify the skeleton, e.g., replacitig/ with g.get("root") [testing activity [JUnit | JML+JUnit [Korat
or g.getObjects(BinaryTree.Node.class) to set the domain generating test cases M M A
for parameten to the domain for the fieltroot" or to the set of generating test oracle M A A
nodes from the finitizationy, respectively. Given a value:) for running tests A A A

NUMNode, Korat then generates all valid test cases, each of which
is a pair of a tree (witlh nodes) and a node from that tree.
Table 1: Comparison of several testing frameworks for Java.

4.1.1 Dependent and independent parameters Each testing activity is either manual (M) or automated (A).
For theremove method, the precondition makes the parameters
This andn explicitly dependent. When the parameters are in-
dependent, programmers can instruct Korat to generating all test™t [2], a popular framework for unit testing of Java moqules. JUnit

cases by separately generating all possibilities for each parameten"’““o"][ates te_zt etxeiqtlontand ir{ortreportllng, \l;)kjﬂtl_rf?tjlristﬂrogram-
and creating all valid test cases as the Cartesian product of thesd'€rs 10 provide test Inputs and test oracles. nit, thus, au-

possibilities. We next compare Korat with several straightforward f]ol\rAnLath\(]aa b.?th tefSt execution and c?rrectngdss chteck;ng. Hg};_/tgver,
approaches for generating all valid (nonisomorphic) test cases. nit requires programmers 1o provide Sets of possibiiities
for all method parameters: it generates all valid inputs by gener-

ating the Cartesian product of possibilities and filtering the tuples
eLﬂsing preconditions. Korat additionally automates generation of
test cases, thus automating the entire testing process. Table 1 sum-
marizes the comparison of these testing frameworks.

A straightforward approach for generating all valid test cases is to
use the Cartesian product even for dependent parameters. Consid
a methodn with n parameters and preconditiop... Suppose that
a set of possibilities;, 1 < i < n, is given for each of the param-
eters. All valid test cases froi$y x ... x .S, can be then generated
by creatingall n-tuples from the product, followed by filtering each 5. EXPERIMENTAL RESULTS
of them throughm,... (This approach is used in the JML+JUnit ~ This section presents the performance results of our current Korat
testing framework [5] that combines JML and JUnit [2].) Note that implementation. We have used Java to implement the search for
this approach requires manually constructing possibilities for all valid nonisomorphicepOk inputs. For automatic instrumentation
parameters, some of which can be complex data structures. of repOk (and transitively invoked methods), we have modified
the sources for the Sunjavac compiler. We have also modified
Korat, on the other hand, constructs data structures from a simplejavac to automatically generate finitization skeletons. For check-
description of the fields in the structures. Further, in terms of Ko- ing method correctness, we have slightly modified the JML tool-
rat’s search ofepOk ’s state space, the presented approach would set, building on the existing JML+JUnit framework [5].
correspond to the search that tries every candidate input. Korat
improves on this approach by: 1) pruning the search based on theThis section first presents Korat's performance for test case gener-
accessed fields and 2) generating only one representative from eaclation. We then compare these results with the test generation that
isomorphism partition. uses Alloy Analyzer [15]. We next present Korat's performance for
checking method correctness.

4.2 Checking correctness _ _ o
All experiments were performed on a Linux machine with a Pen-

To check a method, Korat first generates all valid inputs for the * ¢ :
method using the process explained above. Korat then invokes theflum 1l 800 MHz processor using Sun's Java 2 SDK1.3.1 JVM.

method on each of the inputs and checks each output withtar-
acle To check partial correctness of a method, a simple test oracle 5.1 Benchmarks
could justinvokeepOk in thepost-statdi.e., the state immediately Table 2 lists the benchmarks for which we show Korat’s perfor-
after the method’s invocation) to check if the method preserves its mance.BinaryTree andHeapArray are presented in Section 2.
class invariant. If the result ifalse , the method under test is (HeapArray s are similar to array-based stacks and queues, as well
incorrect, and the input provides a concrete counterexample. Pro-asjava.util.Vector S.)
grammers could also manually develop more elaborate test oracles.
Programmers can also check for properties that relate the post-stateinkedList is the implementation of linked lists in the Java Col-
with the pre-state(i.e., the state just before the method’s invoca- lections Framework, a part of the standard Java libraries. This im-
tion). plementation uses doubly-linked, circular lists that haventiagler
node as a sentinel node. Each list also hsigea field. (The meth-
The current Korat implementation uses the JML tool-set to auto- ods that linked lists provide allow them to be used as stacks and
matically generate test oracles from method postconditions, as inqueues.)
the JML+JUnit framework [5]. The JML tool-set translates JML
postconditions into runtime Java assertions. If an execution of a TreeMap implements theMap interface using red-black trees [7].
method violates such an assertion, an exception is thrown to indi- This implementation uses binary trees witlvent fields. Each
cate a violated postcondition. Test oracle catches these exceptionsiode (implemented with inner clagstry) also has &ey and a
and reports correctness violations. These exceptions are differentvalue . (Setting allvalue fields tonull corresponds t¢ava.-
from the exceptions that the method specification allows. Korat util. TreeSet J)
therefore uses JML to check both normal and exceptional behavior
of methods. More details of the JML tool-set and translation can HashSet implements the&et interface, backed by a hash table [7].
be found in [20]. This implementation builds collision lists for buckets with the same
hash code. ThéadFactor parameter determines when to in-
Korat also uses JML+JUnit to combine JML test oracles with JU- crease the size of the hash table and rehash the elements.

’ benchmark ‘ package ‘ finitization parameters ‘ benchmark size time structures Candjdates state
- (sec) generated| considered| space
BinaryTree korat.examples NUM ,I\!Ode 3 153 1430 taa1g | 259
HeapArray korat.examples MAX _size, MAX length, 9 3.97 4862 210444 | 263
MAX _elem BinaryTree 10 14.41 16796 815100 | 272
- " N B T T 82
LinkedList java.util MIN _size, MAX size, E 22?;?,3 Zggﬁg 1’;}212%3 392
. . NUM ,I_Entry, NUM_Object 6 121 13139 64533 | 220
TreeMap java.util MIN _size, NUMEntry, HeapArray 7 521 | 117562 519968 | 227
MAX _key, MAX _value 8 42,61 | 1005075| 5231385 229
HashSet java.util MAX _capacity, MAX count, 8 1.32 4140 5455 %2;
MAX _hash. | E r) . 9 3.58 21147 26635 | 2
- as - oad acto_ LinkedList 10 16.73 | 115975 142646 | 2120
AVTree ins.namespace NUM AVPalr, MAX _child, 11 | 10175| 678570 821255 | 2185
NUM _String 12 | 690.00 | 4213597 | 5034894 | 2150
7 8.81 35 256763 | 272
TreeMap 8 90.93 64 2479398 | 211!
.. . 130
Table 2: Benchmarks and finitization parameters. Each bench- 3 214??-753 2;232 501283388 ;m
mark is named after the class for which data structures are gen- 8 1668 9355 008568 | 2142
erated; the structures also contain objects from other classes. HashSet 9 56.71 26687 | 3004597 | 2166
10 | 208.86 79451 | 10029045| 21°°
11 926.71| 277387 | 39075006| 22%!°
AVTree implements théntentional namerees that describe prop- AVTree 5 62.05] 598358 1330628] 2°°

erties of services in the Intentional Naming System (INS) [1], an

architecture for service location in dynamic networks. Each node .

in an intentional name has anribute |, avalue , and a set of Table 3: Korat's performance on several benchmarks. All fini-
children nodes. INS uses attributes and values to classify servicesiZation parameters are set to the size value. Time is the elapsed
based on their properties. The names of these properties are imple/€@! time in seconds for the entire generation. State size is
mented with arbitrangtring s, except that is a wildcard that ~ rounded to the nearest smaller exponent of two.

matches all other values. The finitization bounds the number of

AVPair objects that implement nodes, the number of children for

each node, and the total numbersifing s (including the wild- be found in [23]. These models specify class invariants in Alloy,

card). which corresponds teepOk methods in Korat, and also declare
field types, which corresponds to setting field domains in Korat
finitizations.

5.2 Korat's test case generation

Table 3 presents the results for generating valid structures with our given a model of a data structure ands@ope—a bound on the
Korat implementation. For each benchmark, all finitization param- , ,mper of atoms in the universe of discourse—AA can generate
eters are set o the same (size) véliar arange of size values, we | (nonisomorphic)nstancesf the model. An instance valuates
tabulate the time that Korat takes to generate all valid structures, theine relations in the model such that all constraints of the model

number of structures genergted, the number of candidate structures; g satisfied. Setting the scope in Alloy corresponds to setting the
checked byepOk , and the size of the state space. finitization parameters in Korat.

Even for very large state spaces, Korat can effectively generate all pp transiates the input Alloy model into a boolean formula and
structures, because the search pruning aI_Iows Korat to explore only,qas an off-the-shelf SAT solver to find a satisfying assignment to
a tiny fraction of the state space. The ratios of the number of can- the formula. Each such assignmentis translated back to an instance
didate structures and the sizes of state space show that the key t the input model. AA adds symmetry-breaking predicates [30] to
effective pruning is backtracking based on fields accessed duringihe poolean formula so that different satisfying assignments to the

repOk 's executions. Without backtracking, and even with isomor- ¢5rmyla represent (mostly) nonisomorphic instances of the input
phism optimization, Korat would generate infeasibly many candi- ,qdel.

dates. Isomorphism optimization further reduces the number of

candidates, but it mainly reduces the number of valid structures. Taple 4 summarizes the performance comparison. Since AA can-

)]] 5 not handle arbitrary arithmetic, we do not genetadshSet s with
ForBinaryTree , LinkedList ,TreeMap,andHashSet °,thenum- — aa_ For all other benchmarks, we compare the total number of
bers of nonisomorphic structures appear in the Sloane’s On-Line gircures/instances and the time to generate them for a range of
Encyclopedia of Integer Sequences [31]. For all these benchmarks,parameter values. We also compare the time to generate only one
Korat generates the expected numbers. structure/instance by instructing Korat and AA to stop after gener-
ating the first structure/instance.
5.2.1 Comparison with Alloy Analyzer
We next compare the performance of Korat's test case generationTime presented is the total elapsed real time (in seconds) that each
with that of the Alloy Analyzer (AA) [15], an automatic tool for ~ experiment took from the beginning to the end, including staft-up.
analyzing Alloymodels Alloy [16] is a first-order, declarative lan- Start-up time for Korat is approximately 0.5 sec. (That is why in
guage based on relations. Alloy is suitable for modeling structural Some cases it seems that generating all structures is faster than gen-
properties of software. Alloy models of several data structures can

I) SWe include start-up time, because AA does not provide generation
_ForHashSet , theloadFactor ~ parameter is set to 0.75. time only for generating all instances. We eliminate the effect of
°With theloadFactor ~ parameter set to. cold start by executing each test twice and taking the smaller time.

Korat Alloy Analyzer benchmark method max. | testcases gen. test
benchmark ‘ size struc.‘ total ‘ one inst. ‘ total ‘ one size | generated| time time
gen. | time | struc. gen. time inst. BinaryTree remove 3 15 0.64] 0.73
3 5] 056 0.62 6 263] 263 HeapArray extractMax 6 13139 0.87 | 1.39
) 4 14 | 0.58 | 0.62 28 391 | 278 LinkedList reverse 2 8 0.67 | 0.76
BinaryTree 5 42| 069 | 067| 127 2442 421 TreeMap put 8 19912 | 136.19| 2.70
6 132 | 079 | 0.66| 643 | 269.99| 6.78 HashSet add 7 13106 | 3.90| 1.72
7 429 | 0.97 | 0.62 | 3469 | 3322.13| 12.86 AVTree Tookup 4 27734 | 433 | 14.63
3 66 | 0.53 | 0.58 78 11.99 | 6.20
HeapArray 4 320 | 057 | 059 | 889 | 171.03| 16.13
5 | 1919 | 0.73 | 063 | 1919 | 473.51| 39.58 ,
3 5 | 058 0.60 10 261 239 Table 5: Korat's performance on several methods. All upper-
‘ _ 4 15 | 055 | 0.65 46 347 | 277 limiting finitization parameters for method inputs are set to the
LinkedList 5 | 521057) 065 324 1409 351 given maximum size. These sizes give complete code coverage.
6 203 | 0.73 | 0.61 | 2777 | 14873| 5.74 ' ; . i
7 877 | 0.87 | 061 | 27719 | 2176.44| 1051 Times are the elapsed real times in seconds for the entire gener-
4 8 | 0.75| 0.69 16 1210 | 6.35 ation of all valid test cases and testing of methods for all those
TreeMap 5 141 087 | 088 42| 98.09| 18.08 inputs. These times include writing and reading of files with
6 20 | 1.49| 098 | 152 | 1351.50| 50.87 test cases
2 2 055| 065 2 235| 243 :
AVTree 3 84 | 0.65| 061 132 425| 276
4 | 5923 | 1.41| 061 | 20701 | 504.12| 3.06 o
are similar for other methods. Methodsmove and extract-
Max are presented in Section 2. Methaderse , from java.-
Table 4: Performance comparison. For each benchmark, per- util.Collections , uses list iterators to reverse the order of list
formances of Korat and AA are compared for a range of fini- elements; this method is static. Methpat , from java.util.-
tization values. For values larger than presented, AA does not ~ TreeMap, inserts a key-value pair into the map; this method has
complete its generation within 1 hour. Korat’s performance for three parametergh{s , key, andvalue) and invokes several helper
larger values is given in Table 3. methods that rebalance the tree after insertion. Me#utd in-

serts an element into the set. MetHookup , from INS, searches
a database of intentional names for a givequery intentional
erating one structure or that generating all structures for a larger name. The correctness specifications for all methods specify sim-
input is faster than generating all structures for a smaller input.) ple containment properties (beside preservation of class invariants).
Start-up time for AA is somewhat higher, approximately 2 sec, as
AA needs to translate the model and to start a SAT solver. AA uses For each method, thelIN finitization parameters are set to zero
precompiled binaries for SAT solvers. and theMAXandNUMparameters to the same size value. Thus, the
methods are checked for all valid inputs up to the maximum size,
In all cases, Korat outperforms AA; Korat is not only faster for not only for the maximum size. For tabulated sizes, these inputs
smaller inputs, but it also completes generation for larger inputs give complete code coverage: they execute all reachable statements
than AA. There are several reasons that could account for this dif- for each of the methods (including methods that they transitively in-
ference. Since AA translates Alloy models into boolean formulas, voke in all classes being tested). The results show that it is practical
it could be that the current (implementation of the) translation gen- to use Korat to exhaustively check correctness of intricate methods
erates unnecessarily large boolean formulas. Another reason is thathat manipulate complex data structures.
often AA generates a much greater number of instances than Korat,
which takes a greater amount of time by itself. One way to reduce AA can also be used to check correctness of Java methods by writ-
the number of instances generated by AA is to add more symmetry-ing method specifications as Alloy models and defining appropriate
breaking predicates. However, this would further increase the size translations between Alloy instances and Java objects, as demon-
of the boolean formulas, and it is not clear how this trade-off would strated in the TestEra framework [23]. However, the large number
affect AA's performance. of instances generated by AA makes TestEra less practical to use
than Korat. For example, maximum sizes six and eightefor
Our main argument for developing Korat was simple: for Java pro- tractMax andput methods, respectively, are the smallest that give
grammers not familiar with Alloy, it is easier to write rapOk complete code coverage. As shown in Table 4, for these sizes, AA
method than an Alloy model. (From our experience, for researchers cannot in a reasonable time even generate data structures that are
familiar with Alloy, it is sometimes easier to write an Alloy model parts of the inputs for these methods.
than arepOk method.) Before conducting the above experiments,
we expected that Korat would generate structures slower than AA.§, RELATED WORK
Our intuition was that Korat depends on the executioneepdk This section presents work that is related to Korat.
to “learn” the invariants of the structures, whereas AA uses a SAT
solver that can “inspect” the entire formula (representing invari- 6
ants) to decide how to search for an assignment. The experimentaLl_
results show that our assumption was incorrect—Korat generates
structures much faster than AA. We are now exploring a translation
of Alloy models into Java (or even C) and the use of Korat (or a
similar search) to generate instances.

.1 Specification-based testing

here is a large body of research on specification-based testing. An
early paper by Goodenough and Gerhart [12] emphasizes its impor-
tance. Many projects automate test case generation from specifica-
tions, such as Z specifications [14, 32], UML statecharts [26, 27],
or ADL specifications [4,29]. These specifications typically do not

. consider linked data structures, and the tools do not generate Java
5.3 Checking correctness test cases.

Table 3 presents the results for checking methods with Korat. For

each benchmark, a representative method is chosen; the result§he TestEra framework [23] generates Java test cases from Al-

loy [16] specifications of linked data structures. TestEra uses the 6.3 Software model checking
Alloy Analyzer (AA) [15] to automatically generate method inputs There has been a lot of recent interest in applying model checking
and check correctness of outputs, but it requires programmers toto software. JavaPathFinder [33] and VeriSoft [11] operate directly
learn a specification language much different than Java. Korat gen-on a Java, respectively C, program and systematically explore its
erates inputs directly from Java predicates and uses the Java Modstate to check correctness. Other projects, such as Bandera [6] and
eling Language (JML) [20] for specifications. The experimental re- JCAT [8], translate Java programs into the input language of ex-
sults also show that Korat generates test cases faster and for largeisting model checkers like SPIN [13] and SMV [24]. They handle
scopes than AA. a significant portion of Java, including dynamic allocation, object
references, exceptions, inheritance, and threads. They also provide
Cheon and Leavens [5] describe automatic translation of IML spec- automated support for reducing program’s state space through pro-
ifications into test oracles for JUnit [2]. This framework automates gram slicing and data abstraction.
execution and checking of methods. However, the burden of test
case generation is still on programmers: they have to provide sets ofHowever, most of the work on applying model checking to software
possibilities for all method parameters. Korat builds on this frame- has focused on checking event sequences and not linked data struc-
work by automating test case generation. tures. Where data structures have been considered, the purpose has
been to reduce the state space to be explored and not to check the
data structures themselves. Korat, on the other hand, checks cor-
6.2 Static analysis rectness of methods that manipulate linked data structures.

Several projects aim at developing static analyses for verifying pro-
gram properties. The Extended Static Checker (ESC) [9]usesathe-7. CONCLUSIONS

orem prover to verify partial correctness of classes annotated with g paper presented Korat, a novel framework for automated test-
JML specifications. ESC has been used to verify absence of suching of java programs. Given a formal specification for a method,
errors as null pointer dereferences, array bounds violations, and di-orat uses the method precondition to automatically generate all
vision by zero. However, tools like ESC cannot verify properties of nonisomorphic test cases bounded by a given size. Korat then exe-
complex linked data structures. cutes the method on each of the generated test cases, and uses the

) method postcondition as a test oracle to check the correctness of
There are some recent research projects that attempt to address this, ., output.

issue. The Three-Valued-Logic Analyzer (TVLA) [21, 28] is the

first static analysis system to verify that the list structure is pre- 14 generate test cases for a method, Korat constructs a Java predi-
served in programs that perform list reversals via destructive updat- -5t (i.e., a method that returns a boolean) from the method's pre-
ing of the input list. TVLA has been used to analyze programs that qngition. The heart of Korat is a technique for automatic test case
manipulate doubly linked lists and circular lists, as well as some generation: given a predicate and a finitization for its inputs, Korat
sorting programs. While TVLA is primarily intraprocedural, Role generates all nonisomorphic inputs for which the predicate returns
Analysis [19] supports compositional interprocedural analysis and e . Korat exhaustively explores the input space of the predicate,
verifies similar properties. but does so efficiently by: 1) monitoring the predicate’s executions

. .) .) to prune large portions of the search space and 2) generating only
The pointer assertion logic engine (PALE) [25] can verify a large nonisomorphic inputs.

class of data structures, namely all those that can be expressed as

graph types [18]. Graph types consist of data structures that can bérpe cyrrent Korat implementation uses the Java Modeling Lan-
represented by a spanning tree backbone, with possibly additionaly,age (JML) for specifications, i.e., class invariants and method
pointers that do not add extra information. Graph types |r)clude preconditions and postconditions. Good programming practice sug-
data structures like doubly linked lists, trees with parent pointers, gests that implementations of abstract data types should already
and threaded trees. provide methods for checking class invariants—Korat then gener-
)) . o o ates test cases almost for free.
While static analysis of program properties is a promising approach
for ensuring program correctness in the long run, the current static Thjs paper illustrated the use of Korat for testing several data struc-
analysis techniques can only verify limited program properties. For y,res including some from the Java Collections Framework. The
example, none of the above techniques can verify correctness ofgyperimental results show that it is feasible to generate test cases
implementations of balanced trees, such as red-black trees. Testinggom Java predicates, even when the search space for inputs is very
on the other hand, is very general and can verify stronger program arge. This paper also compared Korat with the Alloy Analyzer,
properties, but for inputs bounded by a given size. which can be used to generate test cases from declarative predi-
. . cates. Contrary to our initial expectation, the experiments show that
Jackson and Vaziri propose an approach [17] for analyzing meth- i orat generates test cases much faster than the Alloy Analyzer. The
ods that manipulate linked data structures. Their approach is 10 regyits for checking correctness indicate that it is practical to gen-

first build an Alloy model of bounded initial segments of compu- gate inputs to achieve complete code coverage, even for intricate
tation sequences and then check the model exhaustively with AA. yaihods that manipulate complex data structures.

This approach provides static analysis, but it is unsound with re-

spect to both the size of input and the length of computation. Korat

not only checks the entire computation, but also handles largerin-8. REFERENCES

puts and more complex data structures than those in [17]. Further, [1] W. Adjie-Winoto, E. Schwartz, H. Balakrishnan, and

Korat does not require Alloy, but JIML specifications, and more im- J. Lilley. The design and implementation of an intentional
portantly, unlike [17], Korat does not require specifications for all naming system. liProc. 17th ACM Symposium on Operating
(helper) methods. Systems (SOSHiawah Island, Dec. 1999.

(2]

(3]

[4] J. Chang and D. J. Richardson. Structural specification-based

[5]

[10]

[11]

(12]

(13]

(14]

[15]

(16]

[17]

K. Bech and E. Gamma. Test infected: Programmers love
writing tests.Java Report3(7), July 1998.

B. Beizer.Software Testing Techniqudaternational
Thomson Computer Press, 1990.

testing: Automated support and experimental evaluation. In

Proc. 7th ACM SIGSOFT Symposium on the Foundations of [20]

Software Engineering (FSEpages 285-302, Sept. 1999.

Y. Cheon and G. T. Leavens. A simple and practical
approach to unit testing: The JML and JUnit way. Technical
Report 01-12, Department of Computer Science, lowa State
University, Nov. 2001.

J. Corbett, M. Dwyer, J. Hatcliff, C. Pasareanu, Robby,

S. Laubach, and H. Zheng. Bandera: Extracting finite-state
models from Java source code.Rroc. 22nd International
Conference on Software Engineering (ICSE)ne 2000.

T. H. Cormen, C. E. Leiserson, and R. L. Rivdstroduction
to Algorithms The MIT Press, Cambridge, MA, 1990.

C. Dematrtini, R. losif, and R. Sisto. A deadlock detection
tool for concurrent Java progranfoftware - Practice and
ExperienceJuly 1999.

D. L. Detlefs, K. R. M. Leino, G. Nelson, and J. B. Saxe.
Extended static checking. Research Report 159, Compaq
Systems Research Center, 1998.

E. Gamma, R. Helm, R. Johnson, and J. Vlissid#ssign
Patterns: Elements od Reusable Object-Oriented Software
Addison-Wesley Professional Computing Series.
Addison-Wesley Publishing Company, New York, NY, 1995.

P. Godefroid. Model checking for programming languages
using VeriSoft. InProc. 24th Annual ACM Symposium on the
Principles of Programming Languages (POPpages
174-186, Paris, France, Jan. 1997.

J. Goodenough and S. Gerhart. Toward a theory of test data
selectionlEEE Transactions on Software Engineeridgne
1975.

G. Holzmann. The model checker SPIREE Transactions
on Software Engineerin@3(5), May 1997.

H.-M. Horcher. Improving software tests using Z
specifications. IfProc. 9th International Conference of Z
Users, The Z Formal Specification Notatjdrd95.

D. Jackson, I. Schechter, and I. Shlyakhter. ALCOA: The
Alloy constraint analyzer. IfProc. 22nd International
Conference on Software Engineering (ICSEHjnerick,
Ireland, June 2000.

D. Jackson, I. Shlyakhter, and M. Sridharan. A
micromodularity mechanism. IRroc. 9th ACM SIGSOFT
Symposium on the Foundations of Software Engineering
(FSE) Vienna, Austria, Sept. 2001.

D. Jackson and M. Vaziri. Finding bugs with a constraint
solver. InProc. International Symposium on Software Testing
and Analysis (ISSTAPortland, OR, Aug. 2000.

[18] N. Klarlund and M. I. Schwartzbach. Graph typesPiroc.

[19]

[21]

[22]

(23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]

[31]

[32]

[33]

20th Annual ACM Symposium on the Principles of
Programming Languages (POPL)an. 1993.

V. Kuncak, P. Lam, and M. Rinard. Role analysisProc.
29th Annual ACM Symposium on the Principles of
Programming Languages (POPLBortland, OR, Jan. 2002.

G. T. Leavens, A. L. Baker, and C. Ruby. Preliminary design
of JML: A behavioral interface specification language for
Java. Technical Report TR 98-06i, Department of Computer
Science, lowa State University, June 1998. (last revision:
Aug 2001).

T. Lev-Ami and M. Sagiv. TVLA: A system for
implementing static analyses. Rroc. Static Analysis
SymposiumSanta Barbara, CA, June 2000.

B. Liskov. Program Development in Java: Abstraction,
Specification, and Object-Oriented Desidgxddison-Wesley,
2000.

D. Marinov and S. Khurshid. TestEra: A novel framework
for automated testing of Java programsPhoc. 16th IEEE
International Conference on Automated Software
Engineering (ASE)San Diego, CA, Nov. 2001.

K. McMillan. Symbolic Model Checkindglluwer Academic
Publishers, 1993.

A. Moeller and M. I. Schwartzbach. The pointer assertion
logic engine. IProc. SIGPLAN Conference on
Programming Languages Design and Implementation
Snowbird, UT, June 2001.

J. Offutt and A. Abdurazik. Generating tests from UML
specifications. IfProc. Second International Conference on
the Unified Modeling Languag®ct. 1999.

J. Rumbaugh, I. Jacobson, and G. Boote Unified
Modeling Language Reference Manuatidison-Wesley
Object Technology Series, 1998.

M. Sagiv, T. Reps, and R. Wilhelm. Solving shape-analysis
problems in languages with destructive updatitGM
Trans. Prog. Lang. Systlanuary 1998.

S. Sankar and R. Hayes. Specifying and testing software
components using ADL. Technical Report SMLI TR-94-23,
Sun Microsystems Laboratories, Inc., Mountain View, CA,
Apr. 1994.

I. Shlyakhter. Generating effective symmetry-breaking
predicates for search problems.Rroc. Workshop on Theory
and Applications of Satisfiability Testingune 2001.

N. J. A. Sloane, S. Plouffe, J. M. Borwein, and R. M.
Corless. The encyclopedia of integer sequeng&sM
Review 38(2), 1996 http://www.research.att.
com/"njas/sequences/Seis.html

J. M. Spivey.The Z Notation: A Reference Manu&rentice
Hall, second edition, 1992.

W. Visser, K. Havelund, G. Brat, and S. Park. Model
checking programs. IRroc. 15th IEEE International
Conference on Automated Software Engineering (ASE)
Grenoble, France, 2000.

