
Requirements

for a Dataflow Diagramming Tool

Version 0.1

January 2006

Contents

1. Introduction ...1

1.1. Problem Statement ..1

1.2. Project Personnel ...1

1.3. Operational Setting ...1

1.4. Impact Analysis ...1

2. Functional Requirements ...3

2.1. User Interface Overview ...3

2.2. Drawing and Editing Diagram Nodes ...6
2.2.1. Sizing New Nodes by Click and Drag ..10

2.2.2. Using Already-Defined Nodes ..10

2.2.3. Port Positioning ...10

2.2.4. Moving Nodes ...12

2.2.5. Resizing Nodes ...12

2.2.6. Reshaping Nodes ...12

2.2.7. Editing the Node Label ...12

2.2.8. Repositioning the Label ..12

2.3. Drawing and Editing Diagram Edges ...12
2.3.1. Edges and Ports ...17

2.3.2. Multi-Point Edges ...18

2.3.3. Reshaping Edges ...18

2.3.4. Editing Edge Labels ..18

2.4. Leveling a Diagram ...19

2.5. Data Stores and User-Supplied Data ...19

2.6. Diagram Annotations ..20

2.7. Node and Edge Properties ...20

2.8. Source Text for Nodes and Edges ...21

2.9. Validation ..22

2.10. Execution ...23

2.11. Debugging ...23

2.12. Viewing Controls ..23

2.13. Formating ..23

2.14. Options ..23

2.15. File Commands ...24

2.16. Edit Commands ...24

2.17. Help ...24

ii

Page 1

1. Introduction

This document defines requirements for a dataflow diagraming tool, called "dftool". The tool provides function-

ality for drawing and editing dataflow diagrams (DFDs). It also supports the translation of DFDs to and from their

textual representation in a formal modeling and specification language (FMSL).

Some basic requirements for dftool are presented in the users manual for a previous implementation of RSL sup-

port tools. Sections 7 and 8 of that manual discuss features of the dataflow editing.

The set of tools described in the old manual were implemented in C and C++ to run in an X Windows environment,

and are not portable to other platforms. A key objective of the current dftool project is to design and implement a

multi-platform version of the dftool in Java. Initially, the Java-based dftool will be a stand-alone application. At

some later point, it may be integrated into an Eclipse environment for FMSL.

The requirements presented here refine and extend the earlier tool’s features. Particular new features of note are the

following:

a. The new dftool can operate as a fully stand-alone application, in addition to operating as a component of a

larger integrated FMSL development environment; the requirements here focus on its stand-alone interface.

b. These requirements have significant enhancements for the connectivity of dataflow nodes in a diagram, in par-

ticular the explicit display of input/output ports, and incremental validation of inter-node connections.

c. The FMSL textual representation of a dataflow diagram has been enhanced since the implementation of the

earlier RSL-based tool. These new requirements describe the formal mapping from a graphical dataflow dia-

gram to its underlying FMSL specification.

1.1. Problem Statement

The problems to be solved stem from the inadequacies of the earlier version of the dataflow tool, which are:

a. non-portability;

b. smaller-than-desired set of features;

c. lack of support for updated FMSL dataflow syntax and semantics.

1.2. Project Personnel

The primary end users are students in Cal Poly undergraduate software engineering classes, specifically CSC 307,

308, and 309.

The primary developer for January through June 2006 is Cal Poly senior project student Tim Ober, supervised by

Gene Fisher. Ober will do design and implementation, Fisher will do requirements.

1.3. Operational Setting

The stand-alone version of dftool is designed to run on any major computing platform, in particular Microsoft

Windows, Apple Mac OSX, and Linux. The necessary Java support must be installed on the running platform.

As a component of an integrated development environment, the most likely setting will be as a plug-in to the Eclipse

IDE. These requirements do not address this aspect of dftool integration.

1.4. Impact Analysis

The desired positive impacts are these:

a. increased use of DFDs in software engineering courses

b. better support for formal modeling in FMSL

Regarding the increased use of DFDs in courses, this is desirable insofar as DFD use is appropriate to the class

projects and curriculum. The "insofar as" qualification means that DFDs are not necessarily a major part of the cur-

rent course curricula, however their use can be beneficial in many cases. Having a graphical tool for DFD editing is

Page 2

likely to enhance their utility, in the same way that other kinds of software support tools enhance the utility of the

technologies that the tools support.

Potential negative impacts are:

a. DFDs are elevated to an exaggerated level of importance in the specification process

b. students waste time playing with dftool in unproductive ways

c. a flawed tool frustrates rather than assists students

The first negative impact is essentially the flip-side of the "insofar as" qualifier above. It can be mitigated by making

it clear to students how DFDs fit into the scope of a particular project. This negative impact is based to a large

extent on the choice of class projects. In the specific projects that have been chosen by Fisher in recent CSC

308/309 offerings, DFDs are of some use, but not as much as say UML diagrams. However, there are many other

projects where the use of DFDs would be prominent, in particular projects chosen by other faculty.

Page 3

2. Functional Requirements

The dftool provides functionality to draw, edit, and execute dataflow diagrams (DFDs). It also provides function-

ality to translate a DFD to and from its textual representation in a formal modeling and specification language

(FMSL).

Following an overview of the dftool user interface, details of tool usage are presented in the following scenarios:

• drawing and editing DFD nodes

• drawing and editing DFD edges

• defining hierarchical DFD levels

• data stores and user-supplied data

• graphical annotations to the DFD

• editing node and edge properties

• FMSL source text for nodes and edges

• validation of DFDs

• execution of DFDs

• debugging DFDs

• viewing details

• formating details

• tool options

• file-related commands

• edit commands

• help

2.1. User Interface Overview

When the user initially invokes the stand-alone version of the Dataflow Tool, the screen appears as shown in Figure

1.

Figure 2 is an expansion of the command menus. The File menu contains commands for manipulating data files

and performing other tool-level functions. ‘File New’ creates a new empty DFD drawing canvas, in its own win-

dow. ‘File Open’ opens an existing DFD from a previously saved file. ‘File Close’ closes the currently

active canvas, offering to save if it has been modified since opening. ‘File Close All’ closes all open can-

vases, offering to save any that have been modified.

‘File Save’ sav es the currently active canvas on the file from which it was opened, or on a new file if it was cre-

ated from a new display. ‘File Save As’ allows the current canvas to be sav ed on a different file from which it

was opened or most recently saved upon. ‘File Save All’ sav es all currently open canvases.

‘Print Setup’ allows the user to set printing parameters for particular operating environments. ‘File Print’

prints the contents of one or more active display windows, per the setup parameters. ‘File Exit’ exits the

Dataflow Tool, offering to save any modified calendars if necessary.

The Edit menu contains commands for manipulating DFD data during editing. ‘Edit Undo’ undoes the most

recently completed undoable command. ‘Edit Redo’ redoes the most recently undone command. The undo and

redo commands can be repeated successively to undo/redo a sequence of commands.

‘Edit Cut’ removes and copies the currently selected datum in the current display window. ‘Edit Copy’

copies the currently selected datum without removing it. ‘Edit Paste’ inserts the most recently cut or copied

datum at the currently selected edit point in the current display. ‘Edit Delete’ removes the currently selected

datum without copying it. ‘Edit Select All’ selects all editable data in the current display.

‘Edit Find’ performs a search for a text string. The search is performed in all open canvases. Successive inv oca-

tions of search with an unchanged search string search for further occurrences of the string until all occurrences are

Page 4

File Edit

Dataflow Tool

Elements Lewels Tools FormatView

Unnamed diagram

Figure 1: Initial screen.

P
ag

e 5

New
Levelize
Expand
Set

About ...
Show Roll-Over Help
Detailed Help ...

Node
Edge
Data Store
Annotation ...

Properties ...
Source Text ...

Validate
Execute ...
Debug ...

Auto-Validate Off

File Edit Help

Dataflow Tool

Elements Lewels Tools Options

Elements
Levels
Tools
View
Format
File and Edit

Format

Font ...
Color ...
Dimensions ...
Shapes ...

Zoom In
Zoom Out
Normal Size
Reduce to Fit
Wrap

Hide All Text
Hide Node Names
Hide Edge Names
Hide Ports
Hide Port Names

View

Page 6

Figure 2: Expanded menus.

found.

The last two commands on the edit menu allow the user to add and delete points to DFD edges. The edges them-

selves are added to the DFD with the ‘Elements->Edge’ command.

The Elements menu has commands to add elements to a DFD in the current drawing canvas. The elements are a

Node, Edge, Data Store, and free-form graphical annotation. The Properties command displays a

dialog for editing properties of DFD elements. Source Text allows the user to edit the FMSL textual form of the

DFD show in the drawing canvases.

The Levels menu has commands for managing different levels of a DFD. New creates a new empty level in a new

canvas window. Levelize creates a new lev el out of a user-selected set of nodes in the current canvas. Expand

opens the level canvas for a selected node. Set allows the user to define the expansion of an existing node to be

another DFD canvas.

The Tools menu provides commands to operate on the DFD and its underlying FMSL specification. Validate

checks the consistency and other properties of the DFD. Execute runs the DFD, providing visual tracing and

other features. Debug provides commands to set breakpoints, examine runtime data, and other debugging function-

ality. Auto-Validate is a toggle that enables and disables incremental validation as the DFD is edited.

The View menu has commands to control the physical display of the DFD. The commands apply to the current

canvas or all canvases, based on a user option setting. Zoom In and Zoom Out enlarge and decrease the size of

the DFD display contents. Normal Size returns the display to its normal size. Reduce to Fit zooms the

DFD to a size that fits entirely within the canvas window. Wrap changes the size of the display window so the DFD

fits in it exactly, changing the zoom level only if the window size exceeds the available space on the computer

screen.

The bottom five commands on the View menu are toggles that show and hide specific components of the DFD dis-

play. Show/Hide All Text operates on the text for all nodes, edges, and other elements of the display.

Show/Hide Node Names operates only on the text of nodes names, leaving other text unaffected. Show/Hide

Edge Names operates similarly on edge names only. Show/Hide Ports operates on the arrow-shaped icons

for node ports. Show/Hide Port Names operates on port-name text only.

The Format menu has commands to control additional display details. Font allows the user to set the font for the

text elements of the display. Color applies to the coloring of display elements. Dimensions allows the user to

set the default dimensions of display elements. Shapes has commands to select the default shapes for nodes and

edges.

Options commands allow the user to set various tool options. They are organized into categories that correspond

to the other command menus.

2.2. Drawing and Editing Diagram Nodes

When the user selects the ‘node’ command in the ‘Elements’ menu, the tool displays a node-addition cursor

under the current mouse position on the dataflow canvas, as shown in Figure 3. The arrow-shaped cursor has a small

circle attached to its lower end, indicating that the dftool is in node mode. As the user moves the mouse, the cur-

sor follows it on the canvas in the normal way.

To create a node, the user positions the cursor at the desired placement location, then presses and releases the left

mouse button at that location. In response, the tool draws the node, with the upper left corner of the smallest enclos-

ing rectangle at the pressed location, as shown in Figure 4. After placing the node, the tool displays an active text

cursor in the center of the node, as shown Figure 5. "Active" means that the user may immediately begin typing the

text string for the name of the node. Figure 5 shows the user having typed the node name "ActivateAutopilot", with

a newline character separating the words "Activate" and "Autopilot".

As the user types, the text remains centered within the node. If the user presses the Enter key while typing, a new

line of text begins, with the text remaining centered within the node. If as the user types, the horizontal or vertical

Page 7

Unnamed diagram

Figure 3: Adding a new node.

Page 8

Unnamed diagram

Figure 4: New node placed on the canvas.

Page 9

Unnamed diagram

Autopilot
Activate

Figure 5: New node placed on the canvas.

size of the text becomes larger than the diameter of the node, the tool dynamically resizes the node so that the text

does not extend beyond the node boundary. The minimum distance between any portion of the text and the node

boundary is the value of the node-name margin, which by default is 1 em in the current node-name font. The the

user can change the default node-name margin with an option setting, as described in ???.

If the user deletes text to make the size of the name smaller, the system dynamically contracts the size of the node,

such that the distance between the text and node boundary is no larger than the current node-name margin value.

The tool stops node contraction whenever the text reaches a size where it fits within a node of the node diameter set-

ting, which by default is 10 em of the current font. The the user can change the default node diameter with an option

setting, as described in ???.

The user signals the completion of node-name typing by clicking the mouse some place other than within the text of

the name. If the user performs such a click without having typed any text for the node name, the tool types a default

name of the form "NodeN", where N is a positive integer ... (see the phrasing in the cal tool rqmts).

Node names may contain only the following characters:

ο lowercase and uppercase letters

ο digits

ο underscores

ο blank and newline characters (referred to as "whitespace")

Whenever the user types any other character in a node name, the tool ignores the character and sounds a short

Page 10

audible alert.

Formally, the name of a node does not include any whitespace characters. Therefore, the formal name of a node

consists of the concatenation of all of its characters with all whitespace removed. So, for example, the following are

the same name formally:

"ActivateAutopilot"

"Activate Autopilot"

"Activate

Auto

pilot"

Uppercase and lowercase letters are considered distinct within node names. So, for example, "ActivateAu-

topilot" and "ActivateAutoPilot" are two different names, due to the uppercase versus lowercase "p"

character.

2.2.1. Sizing New Nodes by Click and Drag

When the user specifies the placement of a new node with a single mouse click, the tool places a node of the current

default diameter. If the user places a node with a click and drag operation, the position and size of the node are

determined by the location of the initial click plus the length and direction of the drag.

2.2.2. Using Already-Defined Nodes

When entering the text for a node name, the user may type the name of a new node that has not yet been defined, or

the name of an already-defined node. Sketch of the remainder:

ο Allow the normal kind of emacs completion thing here.

ο Explain how nodes can be defined by loading an fmsl spec.

ο Describe how existing nodes have ins and outs displayed as little iconic ports, shown as ingoing and outgoing

arrow heads (illustrated in sketch figure below).

ο Probably provide some form of "show port names" command, that displays names of ports, probably in roll-

over form; i.e., when "show port names" is on, moving the cursor over a port shows its (type) name; or maybe

this’ll happen when Elements->Edge is selected, and to see output ports otherwise, use Ele-

ment->Properties. YES, I think I like the idea of port names appearing roll-over style during edge cre-

ation; see the edges section for details.

2.2.3. Port Positioning

The idea I have right now is that the default appearance of port icons will be as follows:

ο the icon is a small black right-pointing arrow

ο the presumed normal positioning for output icons is on the right of nodes, inputs on the left; "presumed nor-

mal" means that the relative ordering of input ports is clockwise from 0 degrees and the relative ordering of

outputs is counterclockwise from 0 degrees; that said, there is no restriction on the positioning of ports around

the circumference of nodes, including intermixing of input and output ports; the relative ordering rules apply

separately to input and output ports, as illustrated in Figure 6

ο an output icon is positioned such that the invisible line for its edge is a radius from the center of the circle

(ellipse), making the base of the arrow head parallel to a chord on the edge of the circle, with the center point

of the arrow head base exactly on the circumference of the circle (ellipse)

ο inputs have the tip of the arrow head exactly on the circumference, and are rotated in an analogous way to out-

put arrow heads

ο a single input or output port is positioned on the horizontal diameter of the circle (ellipse)

Page 11

aaaaaaa

aaaaaaa

Autopilot
Activate

Autopilot
Activate

Autopilot
Activate

Control
Lock

port label box width = 15

port label box width = 10

Autopilot
Activate

TimeTo
Activation

TimeToActivation

TimeToActivation

Time

Activation
To

ControlLock

port label box width >= 18

port label box width <= 6

TimeTo
Activation

port label box width >= 7, <= 17

port label box width >= 18

Figure 6: DRAFT -- Example to clarify port ordering (and other aspects of node display).

ο multiple outputs are positioned some number of degrees apart

ο with an even number of ports, there is nothing on the horizontal axis, just equi-distance above and below it

ο we need to come up with a reasonable way to deal with ops that have more ports than can be displayed for a

Page 12

given size node; some kind of ellipses-labeled drop-down menu, as either the only icon, or the bottommost

icon seems like it should (could) work pretty well.

ο we need to make sure that there’s always enough space between ports to allow new ports to be created,

between any two extant ports; AND, it would seem, that the ordinal position of the click to create a new port

defines a new input or output in the relative position clicked on; e.g., if the user clicks between ports 3 and 4,

then a new parameter is added at position 4; two ways to ensure ample between-port spacing are:

-- define (as a settable option) the minimum distance between two ports, and auto-enlarge the diameter of a

node as necessary when new ports are added;

-- some form of overflow menu; open reflection, this seems to be an unworkable solution, since it makes it hard

to draw all edges clearly

ο to get down and dirty with the precision, it would seem the the degrees of separation have to be based on the

fixed base width of the port arrow icons and the diameter of the node

Other port-related functionality:

ο When ‘Options->Show Ports’ is on, the edge arrowheads are off, and vice versa. Ports can be moved

around the circumference of the circle; we may want an option to allow/disallow crossing lines

2.2.4. Moving Nodes

Nodes may not overlap. When the node cursor moves over any part of an existing node, it turns grey.

2.2.5. Resizing Nodes

2.2.6. Reshaping Nodes

2.2.7. Editing the Node Label

Clicking anywhere within label causes cursor to become vertical text-edit bar. This can happen at any time, includ-

ing during initial creation. Can change the name to something other than an existing node. Can change the name to

that of an existing node, as long as it has the same signature of the node with the changing name. In the latter case,

the completion list contains only the names of other same-signature nodes. (I think this is pretty cool, actually.)

2.2.8. Repositioning the Label

2.3. Drawing and Editing Diagram Edges

When the user selects the ‘Edge’ command in the ‘Elements’ menu, the tool displays an edge-addition cursor

under the current mouse position on the dataflow canvas, as shown in Figure 7. The cursor has a small edge icon

attached to its lower end, indicating that the dftool is in edge mode. As the user moves the mouse, the cursor fol-

lows it on the canvas in the normal way.

To create an edge, the user starts by moving the mouse to an edge starting position. This position must be on the

boundary of a node, including on one of its output ports. Whenever the user moves the mouse to a valid edge start-

ing position, the tool highlights the node by widening its boundary, as shown in Figure 8. To draw the edge, the user

clicks and releases the mouse button at the starting position. The user then moves the mouse to the desried edge

ending position, then clicks and releases again. The ending position must be on the boundary of a node, including

on one of its input ports. Whenever the user moves the mouse off the boundary of a node, the tool unhighlights the

node by restoring its boundary to the normal width.

As the user moves the mouse, the tool tracks it with a line that extends from the edge starting position to the current

mouse position. During edge drawing, the user is simply moving the mouse, with no button depressed. Figure 9

illustrates the user having dragged the edge cursor approximately halfway between starting and ending positions on

the "Activate Autopilot" and "Check Autopilot" nodes. To complete the edge, the user drags the

mouse to a valid ending position, then clicks and releases. Again, the tool widens the boundary of any node that the

Page 13

Unnamed diagram

Autopilot
Check

Autopilot
Activate

Figure 7: Adding a new edge.

Page 14

Unnamed diagram

Autopilot
Check

Autopilot
Activate

Figure 8: Edge cursor at valid starting position.

Page 15

Unnamed diagram

Autopilot
Check

Autopilot
Activate

Figure 9: Edge cursor halfway between starting and ending positions.

user reaches with the mouse. In response to user’s click, the tool draws the edge line, with an arrowhead on its end-

ing point. The tool then places an active text cursor above the center of the edge, as shown in Figure 10.

Finish details of labeling; there are some notes below.

The user can create three types of edges, based on the canvas locations of the starting and ending positions. The

three types are defined in the following table:

Start Position End Position Type of Edge

on a node on a node node-to-node connection

external inputnot on any node on a node

external outputon a node not on any node

A node-to-node connection defines an input/output relationship between the two nodes. An external input defines an

edge that must have its value provided by an external source, rather than coming from another node. Similarly, an

external output defines an edge whose output goes to an external source, rather than to another node. Further details

on external data sources are covered in ???.

User may start anywhere within or at the boundary of an node. If the edge-drawing starts within a node, then the

starting point of the finished edge is where the edge line intersects the boundary of the node. End point is similar. If

the intersection point crosses any part of a port icon, then the edge is considered to be connected to that port (see

Page 16

Unnamed diagram

Autopilot
Check

Autopilot
Activate

Figure 10: New edged placed on the canvas.

below for more on ports and edges).

Details of label cursor placement: Tool puts text cursor in center of edge, with center defined as the position on the

edge equal to 1/2 edge length, as measured along the edge spline. The background of the text is the current bg color,

which is white by default. The text color is black by default. The background size is As the user types, the cen-

ter of the label text remains positioned on center of the edge.

The same type of completing for edge names is provided as for node names. Viz., the names of existing objects are

available. If the typed text is not an existing object, than the dftool creates an opaque object of that name and adds it

to the underlying fmsl spec.

The following forms of edges are illegal:

1. both starting and ending position are not on a node

2. starting and ending positions forming an edge that crosses any part of a node

To avoid the second form, the user can use multi-point edges, as described in the next section.

It is legal to connect a node to itself, i.e., have the input and output ends of an edge be the same node. To do so

graphically, the user must use a multi-point edge.

Page 17

2.3.1. Edges and Ports

Sketch:

Start Point End Point Behavior

off port off port new output port created on

starting node, new input port

created on ending node; type

of ports is object named by

edge name entered by the us-

er

on port off port new input port created on

ending node; edge name is

auto-filled with type of out-

put port

off port on port new output port created on

starting node; edge name is

auto-filled with type of input

port

on port on port type of ports must be the

same; if so, edge name is au-

to-filled with that type

The following roll-over behaviors assist with port connections:

ο When Elements->Edge has been selected but the first click has not yet happened yet, the user can roll over

any port to see its type, and whether it’s an input or an output. If it’s an output, it’s name is displayed and it’s

colored green when rolled over. If it’s an input, it’s name shows up, but it’s colored red. (Note: if we have

arrowheads as port icons, then we probably don’t need to do the coloring thing; rather, only have the roll-over

naming appear for output ports.)

ο Once the first click happens, the same roll-over behavior is exhibited. If the first click is on a port, then the

second click can only happen on a non-port portion of a node, or an input port of the same type as the output

port.

Roll-over display details:

ο Labels in the boxes are formated as follows:

-- There is a value for the width of port label boxes, settable as an option; call this w.

-- There is a value for the margins, settable as an option; call this m.

-- There is a value for the font size of the port label, settable as an option.

-- If the length of the text string for the port type name in the current font is <= w-2m, then the text is displayed

in one line.

-- If the length of the text string for the port type name in the current font is > w-2m, then the text is displayed

in multiple lines, center justified, with line breaks inserted at case-shift boundaries, per the standard word-

processing fill technique, for example emacs’ justify-paragraph function.

-- In all cases, the box is shrunk-wrapped around the text, to the current margin setting.

-- The preceding rules imply that if after justification the length of the text string for the port name is > w-2m,

shrink wrapping results in a box that is wider than w-2m.

-- There are values for the following box formating properties, settable as options:

• label font, default black-plain-courier-12

• box background color, default yellow

• box border color, default black

Page 18

ο Label boxes are placed as follow:

-- One of the four corners of the box is chosen as the placement corner, per the following table:

box placement cornercartesian quadrant

of port connection

1 lower left

2 upper left

3 upper right

4 lower right

-- for input ports, the placement corner is placed in the center of the base of the port arrow

-- for output ports, the placement corner is placed at the tip of the port arrow

2.3.2. Multi-Point Edges

During the mouse drag operation for an edge, the user may press the right mouse button to add graphic control

points to the edge. A graphic control point allows edges to be shaped as curves, to aid in the visual appearance of

the diagram. Formally, edges are drawn as b-spline curves, with each control point interpreted according to the stan-

dard definition of a b-spline.

Figure 11shows the result of the user drawing an edge by left clicking on the boundary of the source node, right

clicking at a middle point while drawing, then left clicking on the boundary of the destination node.

2.3.3. Reshaping Edges

Sketch:

ο Select the edge spline to edit it

ο Spline handles appear when it’s selected, on top of label when necessary

ο Label handles do not appear when spline is selected

ο Use Format->Hide Label when necessary to clearly see or select a spline when the label is over most of it; an

option line auto-hide-edge-label-on-selection might be useful, or auto-grey-edge-label-on-selection.

2.3.4. Editing Edge Labels

When the user selects an edge, the dftool draws small "handles" on and around the line or curve for that edge.

The handles are control points that the user can drag to reshape the edge.

If an edge is a single straight line, then there are two control points, one on each end of the line. If an edge is a

curve, then in addition to the end control points, there are one or more additional control points that defined the cur-

vature of the edge.

The user can click and drag on any edge handle to change its position on the screen, and thereby change the shape of

the edge. When the user drags an edge end point the is connected to a node, the movement of the point is con-

strained to the circumference of the node to which it is attached. When user drags an edge control point that is not

connected to a node, it may be moved to any location on the canvas except within a node.

To add or delete control points to an edge, the user selects the ‘Add Edge Point’ and Delete Edge Point’

commands in the ‘Edit’ menu. Short cuts for these commands are to hold down shift and move the most onto

an edge or one of its handles.

To add a new control point, the user selects ‘Add Edge Point’ (or holds the shift key) and moves the mouse to a

place on an edge that does not have control-point handle. In response, dftool augments the mouse pointing cursor

with a small plus sign, indicating that the user can click at that point to add a new control point. To remove an

Page 19

Unnamed diagram

user right clicked here
while drawing edge

Preflight
Perform

Checks
Takeoff
Initiate

Sequence

Figure 11: Drawing a curved edge.

existing control point, the user selects ‘Delete Edge Point’ (or holds the shift key) and moves the mouse to

the control to be deleted. In response, dftool augments the cursor with a small minus sign, indicating that the user

can click to delete that control point. The three states of the mouse cursor adding or deleting an edge point are illus-

trated in Figure 12.

Notes on label editing, to be more fully elaborated:

ο Select edge text to edit or move it.

ο When moved, it still belongs to the edge, and it (somehow) stays stuck in some controlled way when the edge

spline is reshaped.

ο When text is changed, it redefines the types of both connected ports; if this invalidates any other use of the

node (operation in the spec), then such invalidation shows up when the spec is checked. It might be nice to

have a warning come up when this is possible, but it may be difficult to do it.

2.4. Leveling a Diagram

2.5. Data Stores and User-Supplied Data

Data stores map to concrete value definitions in the spec.

Page 20

+

-

cursor on edge, to add a control point

cursor on a control point, to delete it

cursor off edge, without + or - decoration

Figure 12: Mouse cursor while adding and deleting edge control points.

All external inputs without data stores come from the human user, via a type-specific input dialog. All external out-

puts without data stores are displayed to the human user, via a type-specific output display. There are two built-in

forms for input -- textual terminal-style and GUI. Te xtual inputs are supplied in the form of an FMSL expression

lists, using formal FMSL syntax. GUI inputs are supplied in a tool-generated dialog of a standard form, or by cus-

tom user-defined dialogs, in some appropriate form, e.g., defined using protoj.

More details coming.

2.6. Diagram Annotations

Provide a very simple set of graphic and text tools to allow the user to put arbitrary annotations on the diagram, for

documentation purposes. This functionality is gone if the dftool is provided as a plug-in to a graphic editor. We

need to think through this issue fully, but as a stand-alone tool, I think I’m fine with providing simple general graph-

ics functinoality.

2.7. Node and Edge Properties

To view the properties of a node or edge, the user selects the desired element on the screen and then selects the

‘Properties’ item in the ‘Elements’ menu. When the user selects a node, the tool displaces a node properties

dialog of the form shown in Figure 13.

-------- Properties of Node "ActivateAutopilot" --------

Name Text: Activate

Autopilot

Label Position: center

Shape: circle

Canvas Coordinates: 156,292

Input Dialog: stdin

Output Display: stdout

Figure 13: .

Page 21

2.8. Source Text for Nodes and Edges

Notes:

ο The text editor windows are file-oriented, in that there are separate non-modal windows for each file of the DFD.

ο When the user selects ‘Elements->Source Text’, the dftool displays the file containing the FMSL defini-

tion of the operation of the current canvas.

ο There will be rules for the default creation of files if no fmsl files exist prior to the first File->Save operation.

ο Fancy forms of text editing will be part of the Eclipse plug-in; in the stand-alone version, just simple text editing

will be fine, with perhaps an option setting that allows the user to choose which text editor to use.

Here is the precise correspondence between fmsl source text and dfd:

DFD FMSL

node operation, which must be the compo-

nent of another op unless it’s the level

0 node

level operation, with components and

dataflow attribute

edge a connection element in a dataflow

attribute spec, plus a obj declaration of

the same name as the edge name

data store value declaration of the same name as

the data store name

We need to do something in the realm of context diagrams, since in fmsl we can’t hav e a dfd just sitting around

without an outermost op to contain it. So, I think we need to do something like hav e each canvas always be a level,

with an appropriate name, say in the canvas window banner.

To deal further with the context issue, we need to require that each df canvas corresponds to a unique op definition.

This is related to the "inny" versus "outty" in the semi- and fully-formal chapters of the book. The important point is

that each dfd canvas has to be defined in terms of an op with components that are effectively refs to other ops, so that

the same op can appear in two or more dfd contexts. As it is now, I’m pretty confident that the outty-style notation

makes this happen. So, again, what needs to happen in the dftool is that each canvas correspond to a unique op def.

We can use overloading and module qualification to deal with two or more canvases having the same name. It may

be appropriate, as an option or required, to put the fully qualified, and if necessary signature, in the window banner.

The "if necessary" part for the signature can mean that the signature is not necessary if the op is not overloaded in

the current module context. And then we have to be clear about how module context is reflected in the dfd display.

Here’s a crack:

ο we load up a spec to get all of the modules and other defs

ο we qualify an op name in the window banner in the same way as we do in the data dict, viz., we use the "in

module X" form of disambiguation

ο we can also use the same form of op overload disambiguation as we do in the data dict (if there is any), or we

can do what we said just above, i.e., disambiguate the op name in the dfd canvas banner with its signature if its

overloaded in the module scope in which it’s defined

ο to keep things intuitive for simple dfds, we use the same default-main module convention when we haven’t

loaded any fmsl into the dftool; in this way, we won’t hav e any module disambiguation at all in canvas window

banners, signature disambiguation only when necessary, and disallow two canvases with the same name and

signature

ο to handle the latter disallow case, we need to figure out at exactly what point the disallowance occurs; I think

I’d very much like to opt for it to happen at explicit validation time, rather than having some fancy incremental

Page 22

checking that detects it when, say, an input or output is added or deleted to the diagram

Editing text potentially invalidates dataflow, but this is detected in the normal way in the text. I.e., errors occur when

dataflow connections are type checked. What we need to come up with is the appropriate (aka, clear and helpful)

way to display type checking errors related to dataflow in the dfd itself. It may be some variant of the roll-over dis-

plays for edge connection. E.g., when there’s a type mismatch in any df connection, the edge(s) in the dfd that cor-

respond to that connection are colored red.

2.9. Validation

The following are some notes on the subject that need to be scenarioized.

During the course of diagram editing, the following kinds of invalid conditions can be created. Probably most pre-

dominantly the signature of a node is changed such that uses of the operation in some place other than where it’s

changed go invalid. From a dfd editing perspective, the rule is that changing the signature of a node in any diagram

changes the fmsl definition of that op’s signature. So this means is that we can change an op’s signature from more

than one place in a multi-canvas dfd. The underlying op definition is that which corresponds to the most recently

changed dfd.

Another kind of invalidation may happen when a node or edge name is changed. What we might do to prevent this

(perhaps totally) is to disallow changing the name of a node to an existing node with a different signature than that

shown in the dfd.

I don’t know right this minute if there are other ways dfd editing can invalidate the underlying spec. I’m not (really)

falling off here, it’s just that it’s kind of late and can’t think through clearly what other kinds of spec-invalidating

things can happen during dfd editing.

When we run Tools->Validate, we just let the chips fly where they may. Specifically, we hav e op defs that

correspond to the most recent dfd edits. If an op is used inconsistently in more than one place (within the normal

scoping rules of fmsl), then the checker detects the error in the normal way.

What we now hav e to come up with is the way fmsl checking errors are displayed in the dfds. Here’s a crack at the

invalid cases that arise, where we care from the dfd perspective:

a. An fmsl dataflow attribute fails to type check in some node; in this case, we color the edge(s) that corre-

spond to the type-incorrect df connections in the fmsl

b. We should probably display in some way type checking errors that do not directly correspond to dataflow,

because if we have a type-correct spec to start with, we need to let the user know when df editing changes

cause problems. For starters, we might just make the display textual, with the general indication an error

condition shown in the dfd display by coloring the affected node(s) or edge(s) red.

We do indeed need to deal with the case where we load a spec that is initially invalid. I think we should handle it in

pretty much the same way as the docgen tool. Specifically:

a. we can’t load a spec with any syntax errors; i.e., after the load discovers one or more syntax errors, it pops up

a dialog says the spec cannot be loaded; if we’re running stand-alone, there can be an ‘Show Errors’ but-

ton in the error dialog, that when pressed displays a textual listing of the error messages; in stand-alone

mode, there can also be a message that says to use an fmsl editor (IDE) to fix the errors

b. if the spec has type checking errors, we also pop up a dialog, with buttons

(Proceed with Load) (Cancel Load) (Show Errors ...)

If the user chooses "Proceed with Load", a second warning dialog will pop up explaining that validation will

continue to fail, unless (somehow) dfd editing fixes the entering errors.

c. If the spec checks fine, then everything’s hunky dory for the load, and we can display a "load successful"

message if we care to.

Page 23

2.10. Execution

2.11. Debugging

2.12. Viewing Controls

2.13. Formating

A sketch of functionality follows.

The Font command applies to the current selection(s) if any. Otherwise it sets the current working font for all sub-

sequent operations that create text. When the font of one or more selections are changed, the working font remains

UNchanged.

The Color command applies to selections and the current working color in the same way as the Font command.

The following specific coloring contexts are displayed in the color-setting dialog:

node fill ... on if node selected

node border ... on if node selected

node label ... on if node label selected

edge line ... on if edge selected

edge arrow ... on if edge selected

edge label ... on if edge label selected

port fill ... on if port selected

port border ... on if port selected

The designation "on if X selected" means the color selection is enabled if one or more objects of type X is selected

on the canvas. E.g., if a node is selected on the canvas, than the first three color choosers are enabled, the others are

not. If items of more than one type are selected on the canvas, then a union of the color choosers is enabled. E.g., if

a node an edge are both selected, than the first six color choosers are enabled. If no item is selected on the canvas,

then all color choosers are enabled,

The following are shape selections:

ο Node Shape -- circle, elipse, other

ο Edge Shape -- curve, multiline

The last five Format menu items are show/hide toggles.

At one point, we had ungroup/regroup as formatting commands, with these specs:

Ungroup -- enabled when a grouped node or edge is selected

Regroup -- enabled when one or more ungrouped components of a previously

ungrouped node or edge is selected

Dimensions ... -- diameter, margin

I think I prefer the style that’s now described in the nodes and edges sections where the ungrouping is automatic. A

final decision on this awaits completion of the node and edge scenarios.

2.14. Options

I have in mind options as in the Calendar Tool. Details to come.

• equalize node sizes: find largest required node size and make all nodes that size, where "largest required" is based

on size of all labels, meaning there may be an extant node that is larger, but it won’t be the "larest required" if it’s

larger than its fully shrink-wrapped size

• show/hide ports

• show/hide text -> all, node labels, edge labels

• show/hide roll-over port names

Page 24

The following list looks like an color option thing, where the ‘Format->Color menu applies to the current canvas

selection(s); node background, node border, node label, edge line, edge arrowhead, edge label. Hmm, maybe not,

since we want consistent menu behavior, and the ability to set the current color, but probably should be able to do so

for a particular context.

Submenu (or tab pane) details:

Node Shape -- circle, elipse, other

Edge Shape -- curve, multiline

Ungroup -- enabled when a grouped node or edge is selected

Regroup -- enabled when one or more ungrouped components of a previously

ungrouped node or edge is selected

Dimensions ... -- diameter, margin

Font ... -- the normal font stuff

Other options:

•

2.15. File Commands

I think the convention of two files with ".fmsl" and ".dfd" extentions will work well. The fmsl file has the formal

dataflow defs, and the dfd file has the graphical information, which is: node shapes, node positions, etc.

2.16. Edit Commands

2.17. Help

