Page 1

Requirements for the Spec Validator
an Incremental Specification Validation Tool

Version 0.1
19 February 2009

Contents
R [(o T [Tox 1 T o PP 1
2. FUNCLIONAIREQUIFEMENTScceeiieiiiiiiicies e ettt e e e e e e e e e e e e e e e e eaa e ansn e e e e e aaaeaaeees 1
2.1, USET INTEITACE OVEIMAReeiiiiiiiiiiiiieie ettt e e e e e ettt et e e e e s s bbb et e e e e e e e bbb b b et e e e e e s saabbbeeeeeaeeeans 1
2.2. A Basic Example of Specificatio@NAationcccccciiiimiiiiiiiiiiiiiiiiriieee e ————————— 4
PG T B LY v V] S0 = T TN T 114 T PP
2.4. Details of SpecificationadatiONccccciiiiiiiiiii e —————————————. 6

2.5. Details of Loading and SaVving FilEScccciiiiiiiiiiiic bbb e e aeaaaranraaneees

1. Introduction

These requirements describe a specificatainlation tool, called the "Spe@litdator”. Thepurpose of the tool is to

allow the deeloper of a specification to test the specification incrementalit is keing deeloped. Thespecifica-

tion is written as an object/operation model, with formal behavior defined as preconditions and postconditions on the
operations.

The testing of the specification entails providing sample inputs and outputs to the specified opératotest
inputs are "plugged in" to the precondition, whichval@ated to produce its boolean result. If the precondition is
true, the test outputs are plugged into the postcondition to produce its boolean result. The usantines ¢he
evduated results to confirm that the precondition and postcondit@uage as expected.

For a test case of correct behar, the precondition and postcondition should botHweate to true.For a test case
with invalid inputs, the precondition should be false, and the postconditiorigst case can veal a flav in the
specification if the user expects the results to be true, buvaheton says otherwisel-or example, a postcondi-
tion error is detected when a test case has outputs that are known to be correct, but the postvaluditeste
false.

The functional requirements of the Speait¥ator present examples of typical usage. The examples illustrate ho
the Validator can be a produetipart of specification delopment.

2. Functional Requirements

The Spec Validator provides functionality to load a specification and define test cases for each oj¢hatioone

or more test casesVebeen defined, the tool allows the cases to be individually validated, or validated altogether
The tool also provides an editing inré for the cases themselves, as well as for the preconditions and postcondi-
tions being tested.

Folowing an werview of the Spec Validator user interface, details of tool functionality are presented in the follo
ing usage scenarios:

« an introductory example of specification validation
* details of plan editing
« details of specification validation
* details of file load and sa functions
2.1. Userlinterface Overview

When the user launches the Spatidator the tool displays its initial inteate, as shown in Figure 1. The user may
provide the name of a specification to be tested when the toaldseth e.g., by command-line argument, or other
appropriate platform-specific means to supply an initial working file.

Once a specification is loaded, the user enters the name of an operation to be test@pardtier’ text field. To

do so, the user types the full name of an operation, or an unambiguous leading prefix for an operatigvheame.
the user presses the TAB or ENTE®khe tool locates the operation in the current specification, and completes the
entry in the Operation’ text field. Thecompletion is the full spelling of the operation name, and the operation
input/output signature. If an operation nameverlmaded in the specification, the user can disambiguate by typing
one or more input argument types.

As an alternatie © typing the operation name, the user may pressBt@vse’ button next to the text fieldWhen
the user does so, the tool displays an alphabetic list of operation names, from which the user can select.

When an operation is selected, the tool displays its precondition and postcondition expressionsitehertas
immediately belw the 'Operation’ field. If the operation specification has a description, the tool displays it in the
so-labeled text area.

The 'Operation’ field, and the three text areas elbare all user editable. If the user disets that changes need
to be made to arof the information in these texts, the user may perform the edits emthsachanges.

Page 2

Spec Validator Spec file: none

Operation: | | (Browse ...)

Precondition:
A
]
Vi

Postcondition:
A
]
Vi

Description:
A
]
Vi

Test Plan:

Case Inputs Outputs Remarks Results
A
]
Vi

(Load Spec ...) (Load Tests) ()
(New Case ...) () ()
() (vaidateal)

Figure 1 Initial User Interface.

The Test Plan’ edit area is the primary focus of the inteé. Itis where the user enters test cases to be used to
validate the logic of the precondition and postcondition. Upcoming examples illustrate the details of defining these
test cases.

The eight buttons on the bottom of the display perform the following actions:

*’'Load Spec’ provides a file chooser dialog in which the user selects a specification file to load.

*'Load Tests’ provides a file chooser dialog in which the user selects a previowsy-eating file.

» The 'Save’ button saes any changes the user has made, to the specification and/or test plan; specification changes
are saed in the most-recently loaded specification file; test plan changesvatkisdhe loaded test file, or in a file
of the uses dhoice if no test file has yet been loaded.

»'New Case’ opens a test-case editing dialog in which the user enters the details of a test case

Page 3

» The 'Edit Case’ button is enabled when the user selects an existing test case in one of the rows of the Test Plan;
when the user makes such a selection, preddéivg Case opens the test-case editing dialog on the selected test
case.

» The Delete Case’ button is enabled when the user selectsxéstiag test case in one of the rows of the Test Plan;
when the user makes such a selection, pre§stefe Case removes that test case from the plan.

» The 'Validate Case’ button is enabled when the user selectsxasting test case in one of the rows of thesfT
Plan; when the user me&k such a selection, pressiviglidate Case performs the validatingveluations on that
one case

* 'Validate All' performs the validatingvaluation on all cases of the test plan.
Details of all of these operations are presented in the usage scenarios in the upcoming sections of the requirements.

Page 4

2.2. ABasic Example of Specification Validation

Pick an goeration with three or four inputs, one or two outputs, and gggng but not too-terribly detailed gron-
ditions and postconditions. Show a couple examples of true and false validation ldasesan initial bug in the
postcondition, show how étdscovered, and then fixed.

Page 5

2.3. Detailsof Plan Editing

Cover details of plan editing that war't fully covered in Section 2.2. Since we'doing requirements for a simple
proof-of-concept tool, thermay not be anything to cover in this section, if 2.2 can present enough of what we’
after.

Page 6

2.4. Detailsof Specification Validation

Cover details of spec validation that veart fully covered in Section 2.2. As with Section 2.3, ¢hery not be any-
thing to cover in this section.

Whether or not this section expands furtlhere’s the current thinking on the detection of specification problems:

Validity of Precondition = Paostcondition Problem
Inputs and Outputs Value Value
One or more input values istrue dont care The precondition is too weak, or
known to be imalid. has flawed logic.
All input and output values are true fal se The postcondition logic is flawed.

known to be valid.

All input values are known tq true true The postcondition logic is flawed.
be valid, but one or more out
put values are kman to be in-
valid. This condition is pro-
vided as a challenge to the
postcondition logic.

The third entry in the table seemsdlik might be kind of interesting, in that it | damecall it having been discussed

in the testing literature e read. Thddea is that we provide test cases that are a deliberate challenge to the output
of the function under testf it is an interesting idea, #'doubtless been discussed somewhere, | just damember
seeing it.

Page 7

2.5. Detailsof Loading and Saving Files

Cover details of loading and saving specs and tests, thanltdully covered in Section 2.2. As with 2.3 and 2.4,
there may not be anything to cover teer

Page 8

