
Page 1

Requirements for the Spec Validator
an Incremental Specification Validation Tool

Version 0.1
19 February 2009

Contents

1. Intr oduction ...1

2. FunctionalRequirements ...1
2.1. User Interface Overview ...1

2.2. A Basic Example of Specification Validation ...4

2.3. Details of Plan Editing ..5

2.4. Details of Specification Validation ..6

2.5. Details of Loading and Saving Files ...7

1. Intr oduction

These requirements describe a specification validation tool, called the "Spec Validator". Thepurpose of the tool is to
allow the developer of a specification to test the specification incrementally, as it is being developed. Thespecifica-
tion is written as an object/operation model, with formal behavior defined as preconditions and postconditions on the
operations.

The testing of the specification entails providing sample inputs and outputs to the specified operations.The test
inputs are "plugged in" to the precondition, which is evaluated to produce its boolean result. If the precondition is
true, the test outputs are plugged into the postcondition to produce its boolean result. The user then examines the
evaluated results to confirm that the precondition and postcondition evaluate as expected.

For a test case of correct behavior, the precondition and postcondition should both evaluate to true.For a test case
with invalid inputs, the precondition should be false, and the postcondition nil.A test case can reveal a flaw in the
specification if the user expects the results to be true, but the evaluation says otherwise.For example, a postcondi-
tion error is detected when a test case has outputs that are known to be correct, but the postcondition evaluates to
false.

The functional requirements of the Spec Validator present examples of typical usage. The examples illustrate how
the Validator can be a productive part of specification development.

2. FunctionalRequirements

The Spec Validator provides functionality to load a specification and define test cases for each operation.When one
or more test cases have been defined, the tool allows the cases to be individually validated, or validated altogether.
The tool also provides an editing interface for the cases themselves, as well as for the preconditions and postcondi-
tions being tested.

Following an overview of the Spec Validator user interface, details of tool functionality are presented in the follow-
ing usage scenarios:

• an introductory example of specification validation

• details of plan editing

• details of specification validation

• details of file load and save functions

2.1. UserInterface Overview

When the user launches the Spec Validator, the tool displays its initial interface, as shown in Figure 1. The user may
provide the name of a specification to be tested when the tool is invoked, e.g., by command-line argument, or other
appropriate platform-specific means to supply an initial working file.

Once a specification is loaded, the user enters the name of an operation to be tested in the ’Operation’ text field. To
do so, the user types the full name of an operation, or an unambiguous leading prefix for an operation name.When
the user presses the TAB or ENTER key, the tool locates the operation in the current specification, and completes the
entry in the ’Operation’ text field. Thecompletion is the full spelling of the operation name, and the operation
input/output signature. If an operation name is overloaded in the specification, the user can disambiguate by typing
one or more input argument types.

As an alternative to typing the operation name, the user may press the ’Browse’ button next to the text field.When
the user does so, the tool displays an alphabetic list of operation names, from which the user can select.

When an operation is selected, the tool displays its precondition and postcondition expressions in the two text areas
immediately below the ’Operation’ fi eld. If the operation specification has a description, the tool displays it in the
so-labeled text area.

The ’Operation’ fi eld, and the three text areas below it are all user editable. If the user discovers that changes need
to be made to any of the information in these texts, the user may perform the edits and save the changes.

Page 2

Delete Case

Operation:

Test Plan:

Precondition:

Postcondition:

Validate Case Validate All

Description:

Edit Case ...New Case ...

Inputs Outputs Remarks ResultsCase

Spec Validator Spec file: none

Load Spec ... Load Tests ... Save

Browse ...

Figure 1: Initial User Interface.

The ’Test Plan’ edit area is the primary focus of the interface. Itis where the user enters test cases to be used to
validate the logic of the precondition and postcondition. Upcoming examples illustrate the details of defining these
test cases.

The eight buttons on the bottom of the display perform the following actions:

• ’Load Spec’ provides a file chooser dialog in which the user selects a specification file to load.

• ’Load Tests’ provides a file chooser dialog in which the user selects a previously-saved testing file.

• The ’Save’ button saves any changes the user has made, to the specification and/or test plan; specification changes
are saved in the most-recently loaded specification file; test plan changes are saved in the loaded test file, or in a file
of the user’s choice if no test file has yet been loaded.

• ’New Case’ opens a test-case editing dialog in which the user enters the details of a test case

Page 3

• The ’Edit Case’ button is enabled when the user selects an existing test case in one of the rows of the Test Plan;
when the user makes such a selection, pressingNew Case opens the test-case editing dialog on the selected test
case.

• The ’Delete Case’ button is enabled when the user selects an existing test case in one of the rows of the Test Plan;
when the user makes such a selection, pressingDelete Case removes that test case from the plan.

• The ’Validate Case’ button is enabled when the user selects an existing test case in one of the rows of the Test
Plan; when the user makes such a selection, pressingValidate Case performs the validating evaluations on that
one case

• ’Validate All’ performs the validating evaluation on all cases of the test plan.

Details of all of these operations are presented in the usage scenarios in the upcoming sections of the requirements.

Page 4

2.2. ABasic Example of Specification Validation

Pick an operation with three or four inputs, one or two outputs, and interesting but not too-terribly detailed precon-
ditions and postconditions. Show a couple examples of true and false validation cases.Have an initial bug in the
postcondition, show how it’s discovered, and then fixed.

Page 5

2.3. Detailsof Plan Editing

Cover details of plan editing that weren’t fully covered in Section 2.2. Since we’re doing requirements for a simple
proof-of-concept tool, there may not be anything to cover in this section, if 2.2 can present enough of what we’re
after.

Page 6

2.4. Detailsof Specification Validation

Cover details of spec validation that weren’t fully covered in Section 2.2. As with Section 2.3, there may not be any-
thing to cover in this section.

Whether or not this section expands further, here’s the current thinking on the detection of specification problems:

ProblemValidity of
Inputs and Outputs

Precondition
Value

Postcondition
Value

true don’t careOne or more input values is
known to be invalid.

The precondition is too weak, or
has flawed logic.

true falseAll input and output values are
known to be valid.

The postcondition logic is flawed.

true trueAll input values are known to
be valid, but one or more out-
put values are known to be in-
valid. This condition is pro-
vided as a challenge to the
postcondition logic.

The postcondition logic is flawed.

The third entry in the table seems like it might be kind of interesting, in that it I don’t recall it having been discussed
in the testing literature I’ve read. Theidea is that we provide test cases that are a deliberate challenge to the output
of the function under test.If it is an interesting idea, it’s doubtless been discussed somewhere, I just don’t remember
seeing it.

Page 7

2.5. Detailsof Loading and Saving Files

Cover details of loading and saving specs and tests, that weren’t fully covered in Section 2.2. As with 2.3 and 2.4,
there may not be anything to cover here.

Page 8

