CSC308-F07-L7-8 &e 1

CSC 308 Lectue Notes Weeks 7 and 8
Introduction to Fully Formal Specification

I. Formal specification with preconditions and postconditions.

A.
B.

As model object and operation definitionsdakape, we are ready to formalize the definitions fully.

Theformal technique we will use in 308 is based on opergtieconditionsandpostconditions

1. Aprecondition is a predicate (i.e., boolean-valued expression) that is true before an opexaiies.e
2. Apostcondition is a predicate that is true upon completion of an operation.

3. Sincepre- and postconditions are predicates, this style of formal specificationmaitkcative

. Thepre- and postconditions are used to specify fully what the system does, including-EVelsequire-

ments for the system.

Thisformal specification is part of thev@rall requirements specification process we're following, with these
steps:

cpther user-teel requirements via usage scenarios

identify objects and operations

formalizeoperations with pre- and postconditions

refineuser-level requirements based on formal specs

refineformal specs based on userderefinements

iteratesteps 1-5 until done

o0k wdE

The"until done" step imolves two levds of validation.

1. First,we must validate that the specified system is complete and consistent from the engersget-
tive.
a. Thatis, the system meets all end-user needs and does sainthatis wholly satisfactory to the end
user.
b. This is accomplished by continued consultation with the end user.

2. Thesecond leel of validation irvolves completeness and consistefrom a formal perspeet.
a. Thiscan be accomplished in a number of ways.
b. In the case of mechanized specification languages, such as FMSL, some completeness andyconsistenc
checking is done using a computer-based analyzer.
c. Anothervaluable validation technique is peer ravieia formal walkthroughs.
d. Also,there are techniques for formal specification testing, including the postulation and prat#-of
tive theorems
i. Suchtheorems define properties of the system thatxpect to be true, and which can beyab
true formally with respect to the pre- and postconditions.
ii. We will discuss putatie theorems briefly in 308, but not use them.

II. Formal specification maxims.

A.

B.

In developing ary formal software specification, it is useful to obsehe following two maxims:
1. Nothing is obvious.
2. Never trust the mgrammer.

Thefirst maxim relates primarily to usewk requirements.

1. Itis often easy to think that a requirement is sufficiently obvious that it need not be stated formally.
2. Theproblem with this thinking is that one persoabvious is not akays the same as another’s.

3. To ensure that a specification is sufficiently precise, stating the "obvious" is necessary.

CSC308-F07-L7-8

&ge 2

C. Thesecond maxim is necessary tmid nasty surprises in an implementation.

1. Inmary cases, we might consider an application to bécsertly simple that we can trust the program-
mer to get a useryel requirement right if we forget to specify it.

2. Ingeneral, such trust is a bad idea.
3. ltis better for the specifier to maintain a respectfully and cordially adversarial relationship with the imple-

mentor.

[ll. Overviewn of FMSL predicate notation.

A. Predicatesn FMSL use a variant of formal mathematical logic.

B. Available operations include boolean logic, arithmetic, lists, tuples, unions, and strings.

C. Theseperations are summarized in Table 1.
1. Thepredicate logic operators are used in boolean-valued expressions.

Predicate Logic:

Operator Description
and logicaland
or logicalor
not logicalnot
= logicalimplication
<=>, iff logical equialence
if-then-else conditionathoice
forall universal quantification
exists &istential quantification
Arithmetic:
Operator Description
addition
- subtraction
/ division
* multiplication
length
Lists:
Operator Description
[el,....en] constructiofelementwise)
[el..en] construction (inclug range)
L[n] selection(nth, from 1)
L[m:n] selection(mth - nth)
+ concatenation
- deletion
in membership
length

Tuples:
Operator Description
{el,....en} construction
selection
Unions:
Operator Description
. selection
?. taginterrogation
Strings:
Operator Description
"Xxx" construction
L[n] selection (nth)
L[m:n] selection (mth - nth)
+ concatenation
in membership
length
explode conert to list
implode conert from list
Relational:
Operator Description
= equal
I= notequal
< less than
> greater than
<= lessthan or equal to
>= greater than or equal to

Table 1: FMSL Notation Summary.

CSC308-F07-L7-8 &ye 3

a. Logicaland, or and not hae the same meaning as their e@énts in a programming language, e.g.,
"&&","||", and "I"in C and C++.

b. Logical implication and equélence hae their standard logical meanings, per the following truth

tables

p g9 p=>d p g p<=>q
0|0 1 0| O 1
0|1 1 0|1 0
10 0 1,0 0
11 1 11 1

¢. Theconditional choice operator has the truth tables:

p x y (fpthenxelsey p x ifpthenx
O x|y y 0] x nil
1| x|y X 1| x X

where expressionsandy must hae the same type.

d. Theuniversal and existential quantifiersveatheir standard logical meanings, but will be applied in
specific ways, as upcoming examples illustrate.

2. Thearithmetic operators are used in numeric-valued expressions.
a. Addition,subtraction, division, and multiplicationvetheir standard mathematical meanings.
b. The length operator returns the number of digits in an integer value.

3. Thelist operators are used with values of list-type objects, i.e., objects declaretl’witimposition.
a. Theconstruction operators build lists of particular values.
b. The selection operators select tiir value of a list starting from 1, or thththroughnth values.
c. Theconcatenation operator appends an element to the end of a list.
d. Thedeletion operator remves the first occurrence (if any) of an element in a list.
e. Themembership operator returns true or false if an element is in a list.
f. Thelength operator returns the number of elements in a list.

4. Thetuple operators are used with values of tuple-type objects, i.e., objects declarexhditbdmposi-
tion.
a. Theconstruction operator builds a tuple of particular values.
b. The selection operator selects a named tuple component.

5. Theunion operators are used withlwes of union-type objects, i.e., objects declared with composi-
tion.
a. Theselection operator selects a named union component.
b. The tag interrogation operator returns true if the value of a union-type is that of a specific named com-
ponent.

6. Thestring operators are used with strirgjtied expressions, in the same manner as comparable operators
in programming languages that support strings.

7. Therelational operators ke their standard meanings.
a. \alues of aptype can be compared.
b. Comparison of numeric values is standard.
c. Comparisomf boolean values maps to comparison of 0 for false and 1 for true.
d. Comparisomnf string values is characterwise.
e. Comparisowf list values is elementwise, recwely to atomic types.
f. Comparisorof tuple values is componentwise, recusli to atomic types.
g. Comparisomf union values is based on the selected component value, velguigiatomic types.

CSC308-F07-L7-8 &e 4

D. Furtherdetails of the notation arewsed in the FMSL reference manualai#able online.

E. Thelogic of FMSL is comparable to other formal specification languages.

1.

A difference between FMSL and a number of contemporary languages is the use in FMSL of lists instead
of sets.

. Formally, both lists and sets can be fully axiomatized (i.e., mathematically defined), so there is no lack of

formality in the use of lists.

. Owerall, the use of lists instead of sets results in little difference in a specification.

a. Setotation makes certainuslevel specification easier than with lists, such as operations that can be
modeled with set union and difference.

b. On the other hand, list notation makes other forms of specification easier than with sets, such as speci-
fication of ordering constraints.

IV. "Programming" with predicates.

A. Thelanguage of predicates used in pre- and postconditions can be thoughtoof @®ceduralprogram-
ming.
Therules for this style of "programming" are different than the procedural kind.

B.

1.

2.
3.

We define data, but only in abstract terms and from an end-users 'oed!' \werspectie, not from a
computer efficieng perspectre.

We cefine functions, but only in abstract terms of what the functions do, nathiep work.

Hencethe only "code" we h&e ae boolean xpressions at the beginning and ending of functions, no
code bodies.

. Theclosest thing we he 1 traditional control constructs are theohguantifiersf or al | andexi st s.

a. Havever, these quantifiers are fundamentally different than normal programming language controls.

b. Namely they only return boolean values, and yrdon’t make anything "happen"”.

Insteadbf procedural descriptions of Wwdfunctions work (i.e., what happeimsidea function), we hae

only true/false descriptions of what functions do (i.e., vehiate beforeandafter the function happens).

a. Time does not pass within pre- or postconditiomen@nes with quantifiers.

b. Rather pre- and postconditions are simply statements of mathematical fact, that are instantaneously
true or false.

c. Hencegven though & or al | may seem somewhat éla or-loop, it is just a boolean expression that
is only true or false.

d. Itmay be a big boolean expression that is true in a lot of casessHill itist a boolean expression.

Insome cases, it may be necessary to specify certain procedural aspects of a system, specifically the order in
which operations occur.

1.
2.

However when we do this we need to be careful not to lapse inteeatianal programming.

Thereforewe will specify ordering constraints non-procedurally by writing the precondition of a succes-
sor operation to be dependent on the postcondition of a predecessor operation.
a. E.g.,if operationB must follov operationA, we write the postcondition o such that the only ay
the precondition oB can be true is iA's postcondition is true.
b. In general, this is accomplished byviray A's postcondition require some unique value for one or
more outputs, and then\hiag B's precondition state that its inputs mustéahe values required by
A
c. Inthis way we require thath must eecute beforeB, if B is ever to happen.

. Asalways, we will specify procedural (i.e., step-by-step) behavior only wherubh@&amentato the way

the user operates.

In particular we reed to be careful not to specify procedural details of a particular GUI, when it is only
one particular way to access the abstract operations.

. Heres the way to think about it -- if the userustperform a series of operations in a particular qQrithen

we'll specify the order.

CSC308-F07-L7-8 &e 5

V. An initial example of fully formal specification.

A. For starters with pre- and postconditions, we’ll begin with some Calendar tool operations that are simpler
than the scheduling and viewing operationswee»»amined in recent weeks.

B. Specificallywe’ll look at operations for adding and finding registered Calendar Tool users and groups.
C. Theseperations hae wseful but relatiely straightforward specifications.

D. Next week we'll return to the specification of the moreolied scheduling a viewing operations.

VI. Synopsisof requirements for user database admin functions.

A. Whenthe user selects thelser s . . . "item in the Adnmi n’ menu, the system displays the screen shown in

Figure 1.

1. UserName is a free-form stringt d is a unique system id of eight characters or |Esgj | address is
free-form string; phondér ea code is three digit®\unber is seven digits;

2. TheAdd command adds a weuser;| d field must be unique.

3. TheFi nd command finds bilane or| d or both.
a. Iffind is by name and the name is not unique, the system displays list of ids for users of that name.
b. The user clicks on an item in the list to see the full record for that id.
c. If no user of the gen name or id is found, the system displays a "no users found" pop-up dialog.

4. Change works after the user changes the most recently displayed record.
a. Typically, the user run&i nd command first, then changes.
b. The original record is renved, nav record is added.

5. Del et e removes the most recently displayed record, typically located with ad command; the sys-
tem displays an "are you sure" pop-up dialog for confirmation.

B. Whenthe user selects th&'oups ...’ item in the Adm n’ menu, the system displays the screen in
shown Figure 2.

1. GroupNane is a free-form string that is unique for all groupsader s andG oups are lists of user
| ds for the group leaders and members, respaytiall leaders must be listed as members.

2. TheAdd command adds a wegroup; theNane must be unique.

Mani nt ai n User Dat abase O FE
Nane: [|
area nunber
1d:[__] phone:[_]
Emai | ;| |

[Add J C Fi nd) CChangeJ [Del et e)
[Clear) [Close]

Figure 1 User database maintenance dialog.

CSC308-F07-L7-8 &e 6

Mai ntai n Group Dat abase 0 FEl
Nane: [|
Leaders: Menber s:
A A
v v
[Add] C Fi nd) CChange] [Del et e]
[d ear) [Cancel]

Figure 2 Group database maintenance dialog.

3. TheFi nd command finds a group by name.

4. Change works after the user changes the most recently displayed group record.
a. Typically, the user runs théi nd command first, then changes.
b. The original record is renved, the n& record is added.

5. Del et e removes the most recently displayed record, typically located with ad command; the sys-
tem displays an "are you sure" pop-up dialog for confirmation.

VII. Basic definitions for user database objects and operations.
A. Hereare the releant object and operation definitions:

obj ect User DB
conponents: User Recor d*;
operations: AddUser, FindUser, ChangeUser, Del eteUser;
description: (*
UserDB is the repository of registered user information.
*);
end User DB;

obj ect User Record
conponents: Nane and |d and Enail Address and PhoneNunber ;
description: (*
A UserRecord is the information stored about a registered user of the

Cal endar Tool. The Nanme conponent is the user’s real-world nane. The
Id is the unique identifier by which the user is known to the Cal endar
Tool. The Enmil Address is the electronic nail address used by the

Cal endar Tool to contact the user when necessary. The PhoneNunber is
for information purposes; it is not used by the Cal endar Tool for
contacting the user.
*);
end User;

obj ect Nane = string;
object Id = string;

CSC308-F07-L7-8

obj ect Enmil Address = string;
obj ect PhoneNunber = area: Area and nunber: Nunber;

obj ect Area = integer;
obj ect Nunber = integer;
operati on AddUser

end;

inputs: UserDB, UserRecord;

out puts: User DB;

precondi tion: (* Com ng soon *);

postcondition: (* Com ng soon *);

description: (*
Add the given UserRecord to the given UserDB. The Id of the given user
record nmust not be the same as a user record already in the UserDB.
The 1d conponent is required and nust be eight characters or less. The
enai |l address is required. The phone nunber is optional; if given, the
area code and nunber nust be 3 and 7 digits respectively.

¥

operation Fi ndUser

end;

inputs: UserDB, Id;
out puts: UserRecord;
precondi tion: (* Com ng soon *);
postcondition: (* Com ng soon *);
description: (*

Find a user by unique id.

¥

operation Fi ndUser

end;

inputs: UserDB, Nane;

out puts: UserRecord;

precondi tion: (* Com ng soon *);

postcondition: (* Com ng soon *);

description: (*
Find a user or users by real-world name. |f nore than one is found,
output list is sorted by id.

¥

operation Fi ndUser

end;

inputs: UserDB, |d, Naneg;

out puts: UserRecord;

precondi tion: (* Com ng soon *);

postcondition: (* Com ng soon *);

description: (*
Find a user by both name and id. This overload of FindUser is
presunmably used infrequently. Its utility is to confirmthat a
particular user nane and id are paired as assuned.

¥

operati on ChangeUser

end;

inputs: UserDB, UserRecord, UserRecord;

out puts: UserDB;

precondi tion: (* Com ng soon *);

postcondition: (* Com ng soon *);

description: (*
Change the given old UserRecord to the given new record. The old and
new records nust not be the sane. The old record nust already be in
the input db. The new record nust neet the sane conditions as for the
input to the AddUser operation. Typically the user runs the FindUser
operation prior to Change to locate an existing record to be changed.

¥

&ge 7

CSC308-F07-L7-8 &ye 8

operation Del et eUser

inputs: UserDB, UserRecord;

out puts: User DB;

precondi tion: (* Com ng soon *);

postcondition: (* Com ng soon *);

description: (*
Del ete the given user record fromthe given UserDB. The given record
must already be in the input db. Typically the user runs the FindUser
operation prior to Delete to |l ocate an existing record to delete.

*);

end;

B. For a little practice with UML diagramming, Figure 3 shows diagrams for these definitions, équiwvalent
formats.

One-part box format:

*
UserDB K> Rléig:d < Name

|/ Add
User — Id
| || Email
Address
| Change Phone
| Number < Area
Delet
— Number

Equivalent three-part box format (with operation signature details):

UserDB UserRecord PhoneNumber
UserRecord* Name Area
Id Number
AddUser(UserDB, UserRecord)->UserDB EmailAddress
FindUser(UserDB, Id)->UserRecord PhoneNumber
FindUser(UserDB, Name)->UserRecord*

FindUser(UserDB, Id, Name)->UserRecord
ChangeUser(UserDB,UserRecord, UserRecord)->UserPB
DeleteUser(UserDB, UserRecord)->UserDB

Figure 3 UML diagrams for UserDB objects and operations.

CSC308-F07-L7-8 &e 9

C. Theobjects and operations were ded from the usetevel requirements, per the model detion process
discussed in Lecture Notes 5 last week.

D. Theoperation signatures are quite represerdafithose defined for a collection object.
1. AddUser is aconstructiveoperation, with a signature of the general form
ConstructiveOp(Collection, Elenent)->Collection

with the effect of adding an element to the collection.
2. Theversions ofFi ndUser areselectiveoperations, with signatures of the general form
Sel ectiveOp(Col |l ection, Uni queEl ement Sel ect or) - >El enent
Sel ectiveOp(Col |l ection, NonUni queEl enent Sel ect or) - >El enent *
with the effect of finding zero or more elements in a collection.
a. Inboth forms, the second input is a componeriladnment used as a searclek
b. In the first form,Uni queEl enent Sel ect or is a component whose value is required to be unique
among all elements of the collection.
c. Inthe second form\lonUni queE!l enment Sel ect or is a component whose value is not required to
be unique among all elements of the collection.

3. Del et eUser is adestructiveoperation, with the same signature form as a consteugtieration, it
with the effect of removing rather than adding an element.

4. ChangeUser is amodifyingoperation (combined construgi and destructie), with a general signature
of the form

Edi ti ngOp(Col |l ection, O dEl enent, NewEl enent)->Col | ection
with the effect of removing th@ dEl ement and adding th&lewEl erent .

E. Notethat theFi ndUser operation isoverloadedwith three definitions.
1. Thisis precisely the same kind of@loading supported by most modern programming languages.

2. \iz., an operation of the same name can be defined multiple times, as long as the input tygescate dif
in all definitions.

3. Interms of model accurgcoverloading works well in a case where the same operational widget (e.qg.,
button) can be used with different input values.

4. Inthis case, for example, the user can type in either or both dfitime andl d fields of the dialog and
use the samEi nd button to irvoke theFi ndUser operation.

5. An alternatve raming in lieu of @erloading could beFi ndUser Byl d, Fi ndUser ByNane, and
Fi ndUser ByNaneAndl d.

6. Inthis case, we'll saywerloaded naming gets the nod in terms of modeling acguttsmugh its ot a big
deal.

VIII. An initial formal definition ofAddUser .
A. For operation pre- and postconditions, we will start by stating a predicate in English, and then refine it into
formal logic.
B. Aswe refine the logic, the English version will be retained as a comment, to aid in the human understanding
of the specification.
C. So,here is an initial version of the formal spec for the AddUser operation:

operati on AddUser
i nputs: udb: UserDB, ur:UserRecord
out puts: udb’: User DB

precondition
*
* The id of the given user record nust be unique and | ess than or
* equal to 8 characters; the email address must be non-enpty; the
* phone area code and nunber nust be 3 and 7 digits, respectively.

CSC308-F07-L7-8 &ye 10

*);

post condi ti on:
(*
* The given user record is in the output UserDB.
*);

description: (* As above *);

end AddUser;

D. Beforewe get to the pre- and postcondition logic, we need to address one final notational matter -- naming
inputs and outputs.

1. Inthe initial operation signatures presentedvabonly the typesof inputs and outputs were specified,
e.g.,

operation AddUser
i nputs: UserDB, UserRecord;
out puts: UserDB;

2. Thisis sufficient for defining an operation until we get to the pre- and postconditions.

3. Within the conditions, the input and output objects must be uniquely referenced.
a. Sincein mary cases input and output types may be the same, we neecetthein some form of
unique identifier.
b. We do his by adding nhames as well as types, as described in the section on "Names and Types" in the
specification languageverview; e.g.

operati on AddUser is
i nputs: udb: UserDB, ur:UserRecord;
out puts: udb’: UserDB;

¢. Herethe input names aredb for theUser DB, and ur for theUser Recor d.
d. Theoutput name isidb’ .

4. Input/outputhames in an operation definition selssentially the same purpose as parameter names in a
programming language function or procedure definition.

5. l.e.,they provide the means to identify specific input and output objects by name.

6. Thereare two major syntactic differences between an FMSL operation signature and a comparable func-
tion or procedure declaration in a programming language.
a. Unlike nost programming languages, the single apostrophe characigal is EMSL identifiers.
b. By convention, if an operation uses the same type as both an input and output, the name of the output
is the same as the input with an apostrophe appended; the apostrophe is read "prime".
¢. Theother syntactic difference is the explicit naming of output objects.
i. Most programming languages do not support mudized functions, and the output of a function
is specified operationally withraet ur n statement.
ii. Inan FMSL specification, the formal specification does not contain an operational "return", so the
output object(s) must be explicitly named for reference purposes.
ii. In addition, FMSL supports multi-valued operations, which require outputs to be distinguished by
separate names.

7. Notealso the FMSL comment syntax, which encloses comments in the bracketnd ") .

E. So,now we can get to some logic finally.

1. TheEnglish comment for thé&ddUser postcondition specifies the most fundamental property of an
additive mllection operation -- upon completion of the operation, thengdlement to be added is in the
output collection.

2. Formally,

CSC308-F07-L7-8 &e 11

operation AddUser
i nputs: udb: User DB, ur:UserRecord;
out puts: udb’: UserDB;

precondition: (* Com ng soon. *);

post condi ti on:
(*
* The given user record is in the output UserDB.
*)

ur in udb’;

end AddUser;

3. Thesimple expressiondt i n udb’ "is al there is to it.
a. Thei n operator is built-in list membership.
b. Its operands are a value of an element type and a value of a list type containing the element.
c. Inthis case the operands argser Recor d and aUser DB.

F. As it gands,AddUser still has no precondition formally defined, only a comment indicating what needs to
be defined.

1. Having no explicit precondition is equilent to a precondition of true.

2. Inmary cases, true preconditions are fine/egithat there is no specific condition that must be met before
the operation begins.

3. Inthe case of thA&ddUser operation, a true precondition definitelpmit do, since we can see from the
requirements that a number of conditions must be met baéteser can proceed.

4. We will address these requirements step by step, as we refine the formal definktittister .

IX. Refiningthe AddUser postcondition.

A. Oneof the fundamental questions that must be asked of pre- and postconditionsyisiié gimng enough
1. Ingeneral, adding additional predicate clauses strengthens the conditions.

2. For example, the true precondition faddUser is relatvely weaker than one that specifies that there is
noUser Recor d of the same id already in the input database.

B. Ingeneral, there are tmaims to strengthening a specification.
1. Ensuringhat all user-leel requirements are met (cf. Maxim 1 &bp
2. Ensuringhat a system implementation works properly (cf. Maxim 2).

C. Theformer is accomplished via continued consultation with the end user; the latter requixper@eneed
analyst, who understands the kinds of problems that may arise in a system implementation.

D. Inthe case of the user and group databases, as well as similar database applications, an area of potential
implementation error is the introduction of spurious entries into the database and/or the spurious deletion of
entries.

E. To avoid such spurious effects, the specificatiomdfiUser is strengthened as follows:

operati on AddUser
i nputs: udb: UserDB, ur: UserRecord;
out puts: udb’: User DB;

postcondi ti on:
(*
* The given user record is in the output UserDB.

*

(ur in udb)

and

CSC308-F07-L7-8 &ye 12

(*
* All the other records in the output db are those fromthe input db,

* and only those.

*)

forall (ur’:UserRecord | ur’ != ur)
if (ur’ in udb)
then (ur’ in udb’)
el se not (ur’ in udb');

end AddUser;

F. This specification introduces the use of thevensial quantification operatdror al | .
1. Uniersal quantification in FMSL has the same meaning as in standard (typed) predicate logic.
2. Thegeneral format is the following:
forall (x:t) predicate

3. Thisis read "for all valuex of typet, predicateis true" wherex must appear somewheregredicate
4. Thereare also tw extended forms of or al | , shown in Table 2.

5. In general, uniersal quantification is used frequently when specifying predicates on list objects, as
upcoming examples illustrate.

G. Whilethis example is a good illustration of specification strengthening, there are easier ways to specify the
same meaning logically.

1. For example, the postcondition logic can be simplified to the following:
operation AddUser

i nputs: udb: UserDB, ur:UserRecord;
out puts: udb’: UserDB;

post condi ti on:
(*
* A user record is in the output db if and only if it is the new

* record to be added or it is in the input db.
*)
forall (ur’:UserRecord)
(ur’ inudb’) iff ((ur’ =wur) or (ur’ in udb));

end AddUser;

2. Ingeneral, predicate simplification is beneficial when it helps clarify the specification.
3. Simplificationis not necessaras bng as the logic is clear and accurate.

H. Anotherway to amplify this specification is to use a construetiist operatoras bllows:

Extended Form Reading Equivalent To

forall (x:t | pl) p2 | Foral xof typet, such that | forall (x:t) if pl then p2
plis true,p2is true.

forall (x inl) p For al xin |, pis true. forall (x:basetype(l))
if xinl then p

Table 2: Extended forms of umeérsal quantification..

CSC308-F07-L7-8 &ye 13

operati on AddUser
i nputs: udb: UserDB, ur:UserRecord;
out puts: udb’: UserDB;

post condi ti on:
*

* The given user record is in the output UserDB.
*)
udb’ = udb + ur;

end AddUser;

where '+’ in this context is the list append operator.

1. A constructivespecification such as this describes the output of an operation using a coestpest-
tion on the inputs.

2. Incontrast, aranalytic specification (such as the pi@us spec using thien operation) describes output
without using construate gerations.

3. In308, we will defineanalytic specifications whewer possible.
a. Specificallywe won't used the operations described as "construction” in Table 2.
b. There is debate among software engineers as to theveetadiits of constructie vesus non-con-
structive gecification; we will discuss the issues a bit later.

X. Refiningthe postconditions for the otheser DB operations.

A. Basedon the deelopment of theAddUser specs sodr, we @an provide a comparablevk of formal speci-

B.

D.

fication for the other threlgser DB operations.
For example, here is the idea for formalizing EhiendUser (User DB, | d) postcondition:

operation Fi ndUser
i nputs: udb: UserDB, id:ld;
out puts: ur’: UserRecord;

precondition: (* None yet. *);

post condi ti on:
(*
* |f there is arecord with the given id in the input db, then the
* output record is equal to that record, otherw se the output record
* is enpty.
)
description: (*
Find a user by unique id.

*\ -

end FindUser;

Inlooking at the postcondition comment, we obedhat the postcondition logic will need to refer to the id
field of the input record, i.e., "a record with theegiid".

1. Thismeans that to formalize this operation, we must be able to refer talthemponent of aser -
Recor d.

2. Thisleads to a very common occurrence in the process of formalizing a specification.

3. Namelywe reed to update the definition of axisting object, based on the need to specify a requirement
precisely.

4. Theupdate required here is to provide names for the componentsdgehdecor d object, so that the
components can be individually referenced.

Hereis the updated definition:

CSC308-F07-L7-8 &e 14

obj ect User Record
conponents: nane: Name and id:1d and enmil: Emai | Address and
phone: PhoneNunber ;
description: (*
-- Same as before --
*) :

end User Record;

1. Thisdefinition uses name/type pairs in the same manner as in a full operation signature.

2. Ina predicate, the named fields ofdaer Recor d can be referenced using theo'perator which has a

comparable meaning to its use in a programming language when referencing the data fields of a class or
struct.

3. Thatis, the compoents of an FMSL tuple define basically the same structure as the data fields in a pro-
gramming language class.

4. The'. operator is used to select a field of the tuple in the same way as it is usea inJa+ to select
the data field of a class.

E. With this update to th&ser Recor d object, here are the initial formal specifications for FhexdUser ,
ChangeUser, andDel et eUser operations, with the "no spurious data" requirements.

operation Fi ndUser
inputs: udb: UserDB, id:ld;
out puts: ur’: UserRecord;

precondition: (* None yet. *);

postcondi ti on:
(*
* |f there is arecord with the given id in the input db, then the
* output record is equal to that record, otherw se the output record
* is enpty.
*)
(exists (ur in udb) (ur.id =id) and (ur’ = ur))
or
(not (exists (ur in udb) (ur.id =id)) and (ur’ =nil));

description: (*
Find a user by unique id.
*)s
end Fi ndUser;

operation Fi ndUser
i nputs: udb: User DB, n: Nane;
out puts: url: User Record*;

precondition: (* None yet. *);

postcondi ti on:
(*
* Arecord is in the output list if and only it is in the input UserDB
* and the record nanme equals the Nane being searched for.

*

(forall (ur: UserRecord)
(ur inuwurl) iff (ur in udb) and (ur.nane = n));

description: (*
Find a user or users by real-world name. |f nore than one is found,
output list is sorted by id.
*)s
end Fi ndUser;

operation Fi ndUser
inputs: udb:UserDB, id:Id, n:Nane;

CSC308-F07-L7-8 &ye 15

out puts: ur’:UserRecord;
precondition: (* None yet. *);

post condi ti on:
*
* |f there is a record with the given nane and id in the input db,
* then the output record is equal to that record, otherw se the output
* record is enpty.

*)
(exists (ur in udb) (ur.name = n) and (ur.id =id) and (ur’ = ur))
or
(not (exists (ur in udb) (ur.name = n) and (ur.id =id)) and (ur’ =nil));

description: (*
Find a user by both name and id. This overload of FindUser is
presumably used infrequently. Its utility is to confirmthat a
particular user nane and id are paired as assuned.

*

)

end Fi ndUser;

operati on ChangeUser
i nputs: udb: UserDB, ol d_ur:UserRecord, new_ur: UserRecord;
outputs: udb’: UserDB;

precondition: (* None yet. *);

post condi ti on:
(*
* A user record is in the output db if and only if it is the new
* record to be added or it is in the input db, and it is not the old
* record.
*
forall (ur’:UserRecord)
(ur” inudb) iff (((ur’” = new_ur) or (ur’ in udb)) and
(ur’ !'=old_ur));

description: (*
Change the given old UserRecord to the given new record. The old and
new records nust not be the sane. The old record nust already be in
the input db. The new record nust neet the sane conditions as for the
input to the AddUser operation. Typically the user runs the FindUser
operation prior to Change to locate an existing record to be changed.

*);

end ChangeUser;

operation Del et eUser
i nputs: udb: UserDB, ur:UserRecord;
out puts: udb’: UserDB;

precondi tion: (* None yet. *);

post condi ti on:
(*
* A user record is in the output db if and only if it is not the
* existing record to be deleted and it is in the input db.
*
(forall (ur’:UserRecord)
(ur’ inwudb) iff ((ur’ !'=ur) and (ur’ in udb)));

description: (*
Del ete the given user record fromthe given UserDB. The given record
must already be in the input db. Typically the user runs the FindUser
operation prior to Delete to |l ocate an existing record to delete.
*);
end Del et eUser;

CSC308-F07-L7-8 &ye 16

F.

Observations.

1. All of the preconditions are commentéd " None yet. *)"; we will refine preconditions shortly.

2. Thepostcondition forFi ndUser (User DB, | d) uses the existential quantifieki st s; Table 3 sum-
marizes the formats.

3. Thepostcondition forFi ndUser (User DB, Nane) is missing an important piece of logic vis a vis
user-level requirements. Whas it?

4. Thepostcondition logic foChangeUser andDel et eUser are adaptations of the postcondition logic
for AddUser .
a. Thiskind of logic is sometimes called the "no junk, no confusion"” rule for collection classes.
b. Namely when we put something into or takbomething out of a collection,
i. wedon't put in or tale aut anything superfluous (no junk),
ii. wedo putin or tak aut exactly what we intend to (no confusion).
¢. You should study the logic closely to clarify your understanding of it.

Xl. Onthe use of quantifiers.

A. Universal and existential quantification areotways to state mulitple conditions in a single expression.
1. With universal quantificationf(or al |), the quantifier expression is truelf cases considered are true.
2. With existential quantificationefi st s), the quantifier expression is truealf least oneof the cases is
true.
3. Logically you can think of or al | andexi st s as forms of repeateshd andor , respectiely.
4. Theres even a gneralized DeMaan’s law that makes the twforms of quantifier interchangeable:
forall (x:t) p <=> not (exists (x:t) not p)
and
not (forall (x:t) not p) <=> exists (x:t) p
B. Inthe software modeling task upon which we’re focused, the use of logical quantifiers is focusedym tw
cific objectves:
1. Statinga requirement about all values of a particular type, e.g.,
forall (ur:UserRecord) requirenent-predicate
2. Statinga requirement that must be true for at least one value of a particular type, e.g.,
Form Reading Equivalent To
exists (x:t) p There gists x of typet such
that predicate is true.
exists (x:t | pl) p2 There aistsx of typet, such | exists (x:t) pl and p2
thatplis true andp2is true.
exists (x inl) p There aistsxin| such thap | exists (x:basetype(s)) (x ins) and p
is true.

Table 3: Forms of existential quantification..

CSC308-F07-L7-8 &e 17

C.

D.

exists (ur:UserRecord) requirenent-predicate

Thespecialized forms of qualification provide further focus.
1. Statinga requirement about all values (or at least one value) in a particular list, e.g.,

forall (ur in udb) requirenent-predicate

exists (ur in udb) requirenent-predicate

2. Statinga requirement about allalues (or at least one value) of a particular type, with some further restric-
tions on the alues. E.g.,

forall (i:integer | i > 0) requirement-predicate
exists (i:integer | i > 0) requirenent-predicate

Keeping these specific focuses in mind will help namlown when and hw to use quantifiers.

XIl. Formally specifying user-el requirements.

A.
B.

To this point, we hee formalized some basic requirements for our database operations.

Specifically we havefocused on postconditions related to the second of our formal specification maxims --
not trusting the programmer.

. Itis now time to consider the formal definition of udevel requirements per the first maximnething is

obvious

. To dart, there are a number of "obvious" useeleequirements, including the following:

1. Duplicateentries are not allowed in théser DB.
2. Inputvalues are checked for validity.

3. IftheFi ndUser operation outputs more than one record, the output should be sorted in some appropri-
ate order.

. We haveconsidered these requirements to some extent in the requirementseaarrati

1. However, the process of fully formalizing the specification careatimportant details we may Y& ove-
looked in the requirements scenarios.

2. For example, in the Milestone 6 scenarions we initiallgriooked the sorting requirement for multiple
outputs fromFi ndUser .

3. Suchoversights are common, and one of the main reasons we're doing the fully fovehaff lihe spec.

An historical note is of interest withgerds to such requirements.

1. In software engineering methodologies less formal than whatewssing, the process of formalizing a
specification can takthe form of "firming up" the English prose in which the requirements are stated.

2. For example, the first of the almrequirements could be stated "formally" as follows:
A UserDB shall not contain duplicate entries.

3. Whilethis may not seem to be a substantial impment to the original statement of the requirement, it
represents a seriously-proposed approach to formalization.
a. With this approach, a number of possible forms of natural language are standardized with a restricted
vocabulary.
b. For example, all formal requirements are expressed using "shall" instead of other comparable English
words such as "should", "ought to", or "allowed to".

4. Thisidea of formalizing English is naoterthy because it has been widely used in practice, and significant
documents hzae keen "formalized" in this manner.

5. While such rules can indeed help with the formalization procesg,fttliewell short of a fully formal
basis for requirements specification.

CSC308-F07-L7-8 &ye 18

XIIl. No Duplicates

A.
B.

Analysisof the no duplicates requirement provides fine support for the "nothing-is-obvious" maxim.

While we may expect reasonable people to understand what "no duplicates" means, there are in fact a num-
ber of plausible interpretations here.

Threesuch interpretations are the following:

1. Notwo User Recor ds in aUser DB have exactly the same values for &lser Recor d components.

2. Notwo User Recor ds in aUser DB have the same name.

3. Notwo User Recor ds in aUser DB have the same id.

. Whichof these interpretations to choose is categoricadta matter for a programmer to decide.

1. Ratherit should be decided at the user specificatiorJeby the analyst in consultation with the end
users.

2. We mould even grant that most programmers are reasonably smart, so in this case we might safely assume
that a programmer could malhe correct decision, or kmoenough to consult with the user to resolv
the ambiguity.

3. Supposehowever, we were specifying data records in a much more complicated application domain, such
as aeronautics.

4. Inthis domain we might hv@ a cta object such as an anomaly list, with record fieldsHilkeFl i ght ,
Taxi Qut, I nFl i ght, Appr oach, andLandi ng.
a. Whatdoes it mean to disalloduplicates in an anomalies database?
b. Which field, if ary, could be used as a uniqueyR

5. Thepoint is that such questions need to be answered by end users and/or application domain experts.

6. Suchquestions should most certainly not be left unanswered when the programmer begins work, since the
programmer may well not kmohow to answer them, or\en that the need to be asked.

In our User DB case, we ha dready determined with the customer that kit component of dJser -
Recor d is the unique &y.

1. Thismeans thatUser Recor ds in theUser DB need only differ in the Id value.
2. Inparticulay there may be multiplelser Recor ds with the same name.

The basic strategy for disallowing duplicates is to define a preconditiédaldgser that checks for an ele-
ment of the same Id as thiser Recor d being added.

. Hereis the refined specification féddUser ; for brevity the postcondition is omitted:

operati on AddUser
i nputs: udb: UserDB, ur:UserRecord;
out puts: udb’: UserDB;

precondi ti on:

*

* There is no user record in the input UserDB with the same id as the
* record to be added.

*

(not (exists (ur’ in udb) ur’.id = ur.id));

postcondition: (* Same as above *);

end AddUser;

. A discussion of the exact nature of a precondition is in order here.

1. Bydefinition, failure of a precondition means that the operation \@mied from &ecuting.
2. Moreprecisely precondition failure means that the operation fails and produces a value of nil.

CSC308-F07-L7-8 &ye 19

3. Thenil value in FMSL is defined for all object types, and is a distiatiesfrom ag other value of a
given type.

4. Thisabstract meaning of precondition failure does not defime dperation failure is percetd by the
end user.
a. Generallythe end-user should see an appropriate error message when an operation fails.
b. The details of such error messages are typically abstracted out of the formal specification.

XIV. Input value checking.

A. Inputvalue constraints for a user record are described in the requirements scenarios as follows:
1. theld of a user record is a unique system id of eight characters or less;
2. theemail address is a free-form string;
3. thephone area code is three digits, the numbeviengigits.

B. Theseconstraints are defined formally as follows, with accompanying commentary:

operati on AddUser
i nputs: udb: UserDB, ur:UserRecord;
out puts: udb’: UserDB;

precondi tion:
(*
* There is no user record in the input UserDB with the sanme id as the

* record to be added.
*)

(not (exists (ur’ in udb) ur’.id =ur.id))

and
(*
* The id of the given user record is not enpty and 8 characters or

* | ess.
*)

(ur.id !'=nil) and (#(ur.id) <= 8)
and

*
* The emmil address is not enpty.
*)
(ur.email I=nil)
and
(*
* |f the phone area code and nunber are present, they nust be 3 digits
* and 7 digits respectively.
*)
(if (ur.phone.area != nil) then (#(ur.phone.area) = 3)) and
(if (ur.phone.num!= nil) then (#(ur.phone.num = 7));

postcondition: (* Same as above *);

end AddUser;

C. Obserations
1. Thestandard way to strengthen a precondition &rtd on additional clauses.
a. Herethe previous "no duplicates"” clause remains.
b. The nev requirements are added apding them on.

CSC308-F07-L7-8 &ye 20

2. Theprocess of formally specifying these requirements led to thewéiscof one unnoticed requirements
detail, which will be updated in the scenario naveati

3. Specificallyin considering the formal specification for the constraint on email address, we were alerted to
the question of whether it should be required.
a. Inconsultation with the customehe answer turns out to be "yesVee though we had not originally
considered the issue explicitly in the scenarios.
b. Hence, there is the precondition clause

(ur.email I=nil)

c. Thissays that while the email address can be a free-form stringy ¢éragith, it cannot be nil, i.e., the
user cannot leee it empty in the dialog.
d. Suchare just the kind of details we hope to catch while formalizing.

XV. Ordering of multi-record output lists.

A. The version of Fi ndUser with the Nane input produces a list ofiser Recor ds, sinceNane is not
required to be a unique-valued component of a record.

B. Asnoted abwe, the initial requirements scenarigeplooked what order the outputs should be in if there are
two or nore.

C. Themost reasonable choice is to sort the output list by Id field.
1. Thescenario narrate will be updated to reflect this decision.

2. Aswith other such requirements, we should not trust that a programmer will do the right thing in the
absence of a formal statement.

3. Inthis case, the programmer may neerethink there is problem if an output list is displayed in some
internal ordersuch as the orddgser Recor ds ae stored in a hash table.

4. Suchan order is as good as random to most human users, and as such not satisfactory.
D. To gpecifyUser Recor d list ordering, we must strengthen thiendUser postcondition. Heré is:

operation Fi ndUser
i nputs: udb: User DB, n: Nane;
out puts: url: User Record*;

precondition: (* None yet. *);

post condi ti on:
(*
* The output list consists of all records of the given nane in the
* input db.

*

(forall (ur: UserRecord) (ur inwurl) iff (ur in udb) and (ur.nane = n))

and

*

* The output list is sorted al phabetically by id.
(forall (i:integer | (i >= 1) and (i < #url))
url[i].id < url[i+1].id);

description: (*
Find a user or users by real-world name. |f nore than one is found,
the output list is sorted by id.

*\ -

end FindUser;

E. AnEnglish translation of the sorting logic is the following:

CSC308-F07-L7-8 &ye 21

"For each position i in the output list, such that i is between the first and the second to the last positions in the
list, the ith element of the list is less than the i+1st element of the list."

F. You should study this logic to be satisfied that it specifies sorting satisfactorily.

XVI. Unboundedquantification.

A.

B.

What would happen to the meaning of the sorting predicate if the restrictions on the range of i were not
present?

l.e.,if the sorting logic in the postcondition were changed to the following:

forall (i: integer)
url[i].id < url[i+1].id);

Themeaning here is amnbounded quantification
1. Thatis, the quantifier operatesa the infinite range of all integers.
2. Inprinciple, there is nothing wrong with unbounded quantification.

3. For example, the original anti-spurious requirementAttdUser are expressed using unbounded quan-
tification.

4. Onemight argue for range restrictions on the groundsfafieficy, but as noted earligefficiengy of this
nature is not of concern in an abstract specification.

The potential problem with unbounded quantification is that the body of thersal quantifier may not
have te correct alue in an unbounded range, and hence the value of the entire quantifier expression may be
false when we expect it to be true.

1. Thisis in fact the case in the unbounded quantification used in the sorting predicdte nfdr
User (User DB, Nane) .
2. Hereis specifically what goes wrong in the unbounded quantifier version of the sorting logic:
a. When is outside of the range ffL. . #ur |], then the value of the expressionl [i] isnil .
b. This is the case by the language rules of FMSL, that definethe of an inde expression to bai |
if the value of the indeis outside of the bounds of the inas# list.
c. Whenthe value olur I [i] isnil,thevalueolurl[i].idgoestmil.
d. Thisagin is by the rules of FMSL, that define the value of a seleckpression (containing '.") to
beni | if the value of the object being selected fromiig .
e. Thisin turn leads to the following expression as the body of the forall:
nil <wurl[i+1].id
the value of which is false.
This result is due to the FMSL rule that defines the value of '<’ to be false if either or both of its oper
ands isi | .
g. Finally any value of false in the body of the forall @$ the \alue of the entire forall to false, by the
normal rules of forall.
h. Thismeans that the postconditionaisvays falseeven if the output is properly sorted.

—

To ;ome extent, this exact outcome of the unbounded quantification is due to the particular semantic rules of
FMSL.

1. Ingeneral, howeer, unbounded quantification is potentially problematic undgrlagical semantics.

2. Thepoint is that one needs to be careful when using unbounded quantification to ensure that the body of
the quantifier has a well understood valuer the entire unbounded range of quantification.

3. Thisis particularly the case when quantifyingenthe elements of a list.

XVII. Using auxiliary functions.

CSC308-F07-L7-8 &ye 22

A. Thepostcondition in the most recent definitionFefndUser is a little lengtly.

1. In practice, predicates significantly longer than this can appear in the specification of axcupephe
tion.

2. Whenpre- or postconditions become unduly long, it is useful toausdiary functionsto omganize the
logic.

3. An auxiliary function is much the same as a function definition in a programming language, with the
restrictions of functional semantics wevhdeen observing.

4. Thepurpose of an auxiliary function is modularize a piece of logie fjia nnemonic name, and alio
that logic to be imoked in one or more places.

B. Asan example, here is the last definitiofFohdUser using two auxiliary functions.

operation Fi ndUser
i nputs: udb: User DB, n: Nane;
out puts: url: UserRecord*;

post condi ti on:
Recor dsFound(udb, n, url)
and
SortedByld(url);

end Fi ndUser;

function RecordsFound(udb: User DB, n: Name, url:UserRecord*) =
(*
* The output list consists of all records of the given name in the input
* db.
*)

(forall (ur’ inwurl) (ur’ in udb) and (ur’.name = n));

function SortedByld(url:UserRecord*) =
(*
* The output list is sorted al phabetically by id.
*)
(forall (i:integer | (i >= 1) and (i < #url))
url[i].id < url[i+1].id);

1. Semanticallythere is no difference between an auxiliary function and an operation.
2. They both define objects of a function type.

3. Infact, the leyword "operation” can be used in place of tlegvikord “function"”.
a. Theseparate éywords are provided to suggest different usages within a specification.
b. By convention the lkeyword "operation” should be used to define an operation that is directly visible to
the end usei.e., an operation that can be traced directly to some user interface element.
c. Incontrast, the éyword "function" should be used for functions that are not normally visible to the
user but which are used solely to clarify the logic of a formal specification.

XVIII. Mo ving on to the specs for the GroupDB.

A. Figure2 on mge 5 shows the Ul for the other uselated database in the Calendar Tool -- the database of
user groups.

B. Thespecs for the GroupDB are quite similar to UserDB.
1. Bothdatabases are clear examples of collection objects with typical collection operations.

2. Thespecs for GroupDB are slightly simplgiven that there is only one searchable component, the group
name, which must be unique among all groups in the database.

C. A significant specification issue does arise in the area of interaction between user database operations with
the group database.

CSC308-F07-L7-8 &ye 23

1. Specificallywhat happens to groups thatvhas a member a user who is deleted from the user database?
2. Possiblavays to deal with this problem include the following:
a. Adeleted user is automatically rewed from all groups of which she is a member.
b. If a deleted user is in one or more groups,aning message is output indicating what groups the user
was in, kut the users must be manually deleted from the groups; in the meantynuekaovn users
are simply ignored in the group member lists.
c. Thesystem preents deletion of a user until she has first been deleted from all groups; to assist the
deletion, the system outputs a message indicating the affected groups.

D. Thisis yet anotherxample of where formalizing the specs has led to the wsgof an important require-
ments issue.

1. Inthis case, user consultation results in the automaticvasmution.

2. Thisin turn leads to another issue, which is what should be done with groups véhmoHaadey due to
the automatic deletion of a member or was the only leader of a group.

3. Thisissue is resolved by allowing leaderless groups, htihgdahe system output a warning when the sit-
uation arises.

E. All of the issues having been resolved, the resulting complete spec for the user and group databases is as fol-

lows:

(****
*

*

*

*)

Modul e Admi n defines the objects and operations related to naintaining the
* user,

group, location, and global options databases of the Cal endar Tool.

nodul e Admi n;

export UserDB, G oupDB, LocationDB, Userld,;

obj ect User DB
conponents: User Recor d*;
description: (*

*

UserDB is the repository of registered user information. It is a
col l ection of UserRecords.

end User DB;

obj ect UserRecord
conponents: nane: Name and id: Userld and enmil: Enai | Address and

phone: PhoneNunber ;

description: (*

¥

A UserRecord is the information stored about a registered user of the

Cal endar Tool. The Name conponent is the user’s real-world nane. The
Userld is the unique identifier by which the user is known to the
Cal endar Tool. The Emmil Address is the electronic mail address used by

the Cal endar Tool to contact the user when necessary. The PhoneNunber
is for informati on purposes; it is not used by the Cal endar Tool for
contacting the user.

end User Record;

obj ect
obj ect
obj ect
obj ect
obj ect
obj ect

Name = string;

Userld = string;

Emai | Address = string;

PhoneNunber = area: Area and nunber: Nunber;
Area = integer;

Nunmber = integer;

operati on AddUser
i nputs: udb: UserDB, ur:UserRecord;

CSC308-F07-L7-8 &ye 24

out puts: udb’: UserDB;

description: (*
Add the given UserRecord to the given UserDB. The Userld of the given
user record nust not be the sane as a user record already in the
UserDB. The Userld conponent is required and nust be eight characters
or less. The enmnil address is required. The phone nunber is optional;
if given, the area code and nunber nmust be 3 and 7 digits respectively.

¥

precondi tion:
(*
* There is no user record in the input UserDB with the same id as the
* record to be added.
*)

(not (exists (ur’ in udb) ur’.id =ur.id))

and
(*
* The id of the given user record is not enpty and 8 characters or
* | ess.
*)

(ur.id !'=nil) and (#(ur.id) <= 8)
and

*
* The enmmil address is not enpty.
*)
(ur.email I=nil)
and
(*
* |f the phone area code and nunber are present, they nust be 3 digits
* and 7 digits respectively.
*)
(if (ur.phone.area != nil) then (#(ur.phone.area) = 3)) and
(if (ur.phone.nunber !'= nil) then (#(ur.phone.nunber) = 7));

post condi ti on:
(*
* A user record is in the output db if and only if it is the new
* record to be added or it is in the input db.
*
forall (ur’:UserRecord)
(ur’ inudb’) iff ((ur’ = ur) or (ur’ in udb));

end AddUser;

operation Fi ndUser
inputs: udb: UserDB, id:Userld;
out puts: ur’:UserRecord;
description: (*
Find a user by unique id.

*);
precondi ti on:

post condi ti on:
(*
* |f there is arecord with the given id in the input db, then the
* output record is equal to that record, otherw se the output record
* is enpty.
*)

(exists (ur in udb) (ur.id =id) and (ur’ = ur))

CSC308-F07-L7-8 &ye 25

or
(not (exists (ur in udb) (ur.id =1id)) and (ur’ =nil));

end Fi ndUser;

operation Fi ndUser
i nputs: udb: User DB, n: Nane;
out puts: url: UserRecord*;
description: (*
Find a user or users by real-world name. |f nore than one is found,
the output list is sorted by id.

*);
precondi ti on:

post condi ti on:

(*

* The output list consists of all records of the given nane in the
* input db.

*)

(forall (ur’ inwurl) (ur’ in udb) and (ur’.name = n))
and

(*

* The output list is sorted al phabetically by id.

*

(forall (i:integer | (i >= 1) and (i < #url))
url[i].id < url[i+1].id);

end Fi ndUser;

operation Fi ndUser
inputs: udb:UserDB, id:Userld, n:Namg;
out puts: ur’:UserRecord;
description: (*
Find a user by both name and id. This overload of FindUser is
presumably used infrequently. Its utility is to confirmthat a
particular user nane and id are paired as assuned.

*);
precondi tion:

post condi ti on:
*
* |f there is a record with the given nane and id in the input db,
* then the output record is equal to that record, otherw se the output
* record is enpty.

*)
(exists (ur in udb) (ur.name = n) and (ur.id =id) and (ur’ = ur))
or
(not (exists (ur in udb) (ur.name = n) and (ur.id =id)) and
(ur’ =nil));
end Fi ndUser;

operati on ChangeUser

inputs: udb: UserDB, gdb: G oupDB, ol d_ur:UserRecord, new_ur: UserRecord;

outputs: udb’:UserDB, gdb’:G oupDB;

description: (*
Change the given old UserRecord to the given new record. The old and
new records nust not be the sane. The old record nust already be in
the input db. The new record nust neet the sane conditions as for the
input to the AddUser operation. Typically the user runs the FindUser
operation prior to Change to locate an existing record to be changed.

<p>

CSC308-F07-L7-8 &ye 26

If the user record id is changed, then change all occurrences of the
old id in the group db to the newid

¥

precondi tion
*

* The old and new user records are not the sane.

*)
(ol d_ur !'= new_ur)
and
(*
* The old record is in the given db
*)

(ol d_ur in udb)

and

(*
* There is no user record in the input UserDB with the same id as the

* new record to be added
*)

(not (exists (new_ur’ in udb) new ur’'.id = new_ur.id))

and
(*
* The id of the newrecord is not enpty and 8 characters or |ess
*
(némLur.id !'=nil) and (#(new_ur.id) <= 8)
and
(*
* The enmil address is not enpty.
*
(némLur.enaiI = nil)
and

*

* |f the phone area code and nunber are present, they nust be 3 digits
* and 7 digits respectively.

*)
(if (new_ur.phone.area != nil) then (#(new_ur.phone.area) = 3)) and
(i f (new_ur.phone.nunber != nil) then (#(new_ur.phone. nunber) = 7))

post condi tion
(*
* A user record is in the output db if and only if it is the new
* record to be added or it is in the input db, and it is not the old
* record
*
forall (ur’:UserRecord)
(ur’ inudb) iff (((ur’ = new.ur) or (ur’ in udb)) and
(ur’ = old_ur))

and
(*

* |f newidis different than old id, then all occurrences of old id
* in the GoupDB are replaced by new id
*)

if (old_ur.id !'= new_ur.id)

t hen

CSC308-F07-L7-8 &ye 27

(* Logic left as exercise for the reader. *)
end ChangeUser;

operation Del et eUser

i nputs: udb: UserDB, gdb: G oupDB, ur:UserRecord;

out puts: udb’: UserDB, gdb’: G oupDB, |gw Leaderl essG oupsWar ni ng;

description: (*
Del ete the given user record fromthe given UserDB. The given record
must already be in the input db. Typically the user runs the FindUser
operation prior to Delete to |l ocate an existing record to delete.

<p>

In addition, delete the user fromall groups of which the user is a
menber. If the deleted user is the only | eader of a one nore groups,
output a warning indicating that those groups have becone | eaderl ess.

¥

precondi ti on:
(*
* The given UserRecord is in the given UserDB.
*)

ur in udb;

post condi ti on:
(*
* A user record is in the output db if and only if it is not the
* existing record to be deleted and it is in the input db.
*)
(forall (ur’:UserRecord)
(ur” inudb) iff ((ur’ !'=wur) and (ur’ in udb)))

and

(

*
* The id of the deleted user is not in the | eader or nmenber |ists of
* any group in the output GroupDB. (NOTE: This clause is not as
* strong as a conplete "no junk, no confusion" spec. Wy not? Should
* it be?)

*
(forall (gr in gdb)
(not (ur.id in gr.leaders)) and (not (ur.id in gr.nenbers)))

and

*

* The Leader| essG oupsWarning |ist contains the ids of all groups
* whose only | eader was the user who has just been del eted.
*
(forall (gr in gdb)
forall (id:Userld)
(idinlgw iff ((#(gr.leaders) = 1) and
(gr.leaders[1] = wur.id)));

end Del et eUser;

obj ect Leader| essG oupsWar ni ng

conponents: Nane*;

description: (*
Leader| essG oupsWarning is an secondary out put of the Change and
Del et eUser operations, indicating the nanes of zero or nore groups that
have becone | eaderless as the result of a user having been del eted.

*

)

end Leader| essG oupsWar ni ng;

obj ect G oupDB
conponents: G oupRecord*;

CSC308-F07-L7-8 &ye 28

description: (*
UserDB is the repository of user group information.
*

end G oupDB;

obj ect G oupRecord

conponents: nane: Name and | eaders: Leaders and nenbers: Menbers;

description: (*
A GoupRecord is the infornmation stored about a user group. The Nane
conponent is a unique group nanme of any length. Leaders is a list of
zero or nore users designated as group | eader. Menbers is the list of
group menbers, including the leaders. Both lists consist of user id's.
Normal |y a group is required to have at | east one |eader. The only
case that a group becones |l eaderless is when its leader is deleted as a
regi stered user.

*

)

end G oupRecord;

obj ect Leaders
obj ect Menbers

= User| d*;
= User| d*;
operati on AddG oup
i nputs: gdb: GroupDB, udb: UserDB, gr: G oupRecord;
out puts: gdb’: G oupDB;
description: (*
Add the given G oupRecord to the given G oupDB. The nane of the given
group nmust not be the same as a group already in the GoupbDB. All
group menbers nust be registered users. The |eader(s) of the group
nmust be menbers of it.

*);
precondi tion:
(*

* All group nenbers are registered users.

*

(forall (id in gr.nmenbers) exists (ur in udb) ur.id =id)
and

(*

* All group | eaders are menbers of the group.
*

(forall (idin gr.leaders) id in gr.nmenbers);

post condi ti on:
(*
* A group record is in the output db if and only if it is the new
* record to be added or it is in the input db.
*)
forall (gr’:GoupRecord)
(gr’ ingdb') iff ((gr’ = gr) or (gr’ in gdb));

end AddG oup;

operation Fi ndG oup
inputs: gdb: GroupDB, n: Nane;
outputs: gr’: G oupRecord;
description: (*
Find a group by uni que nane.

*);
precondi tion:
post condi ti on:

(*

* |f there is a record with the given nane in the input db, then the

CSC308-F07-L7-8 &ye 29

* output record is equal to that record, otherw se the output record
* is enpty.
*
(exists (gr in gdb) (gr.name = n) and (gr’ = gr))
or
(not (exists (gr in gdb) (gr.nane = n)) and (gr’ =nil));

end Fi ndG oup;

operati on ChangeG oup

i nputs: gdb: G oupDB, udb:UserDB, ol d_gr: GroupRecord, new gr: G oupRecord;

out puts: gdb’: G oupDB;

description: (*
Change the given old G oupRecord to the given new record. The old and
new records nust not be the sane. The old record nust already be in
the input db. The new record nust neet the sane conditions as for the
input to the AddG oup operation. Typically the user runs the Fi ndG oup
operation prior to Change to locate an existing record to be changed.

*);

precondi tion:
(*
* The old and new group records are not the sane.
*)

(old_gr !'= new_gr)

and

(*

* All group nenbers are registered users.

*

(forall (id in new_gr.nmenbers) exists (ur in udb) ur.id =id)
and

*

* All group | eaders are menbers of the group.
*
(forall (id in new.gr.leaders) id in new gr.nenbers);

post condi ti on:
(*
* A group record is in the output db if and only if it is the new
* record to be added or it is in the input db, and it is not the old
* record.
*)
forall (gr’':G oupRecord)
(gr’ ingdb’) iff (((gr’ = new.gr) or (gr’ in gdb)) and
(gr’ !'=old_gr));

end ChangeG oup;

operation Del eteG oup
inputs: gdb: G oupDB, gr: G oupRecord;
out puts: gdb’: G oupDB;
description: (*
Del ete the given group record fromthe given G oupDB. The given record
must already be in the input db. Typically the user runs the Fi ndG oup
operation prior to Delete to |l ocate an existing record to delete.

¥

precondi ti on:
*

* The given G oupRecord is in the given G oupDB.
*)
gr in gdb;

CSC308-F07-L7-8 &ye 30

post condi ti on:
(*
* A group record is in the output db if and only if it is not the

* existing record to be deleted and it is in the input db.
*)

(forall (gr’:G oupRecord)
(gr’ in gdb’) iff ((gr’ !'=gr) and (gr’ in gdb)));

end Del et eG oup;

obj ect Locati onDB
conponents: Locati onRecord*;
description: (*
*

end Locati onDB;

obj ect Locati onRecord
conponent s:
description: (*
*)

end Locati onRecord;

(*
* d obal options TBD.
*)

end Admin;

