
Page 1

Design and Implementation Conventions
in the C+- Subset of C++

6th DRAFT
28 January 2011

1. Thefollowing C features are not to be used, except as necessary to interface with existing libraries or
other open-source code:

a. multipleinheritance

b. private inheritance

c. private or protected derivation

d. friend,except in testing classes

e. staticallocation of non-atomic data (more below)

f. lexically nested classes

g. virtualbase classes

h. purevirtual functions

i. conversion by constructor

j. ´&’ as an expression operator (OK for call-by-ref parameter), except in lowest-level memory-man-
agement classes

k. anonymous union or enum

l. top-level variable decls (i.e., var decls outside of a class)

m. struct

n. register

o. goto

p. auto

q. volatile

r. extern, except in ‘‘extern "C"’’

s. malloc

t. bit fields

2. Defineeach class in one .h/.C file pair. The only exception to this rule is for homogeneous collection
or container classes.For such classes, a single .h/.C pair may (but is not required to) contain the defi-
nitions for both the container class as well as the elements that it contains.For example, a database
class and the type of its elements may be defined in a single .h/.C pair. If the element type of the con-
tainer has data members that are defined as other classes, all of those other class must be defined in
separate .h/.C file pairs.

3. Format and document .h filesexactly as follows, with strict adherence to the format of the comments,
including the number and placement of *’s and the amount of indentation.

////
//
// The comment at the top of a .h file is a high-level description of the class
// defined in the file. Start the description with the words "Class XXX" and
// then describe the purpose of the class and the major functions it provides.



Page 2

// The function descriptions in this header comment are generally brief, e.g.,
// "Class XXX provides functions to add, delete, change, and find its
// elements." Do not list all of the function details in the header comment,
// since full comments for each function appear below in the body of the class,
// at the cite of each function declaration. The header comment can describe
// the data representation used in the class in high-level terms if it’s
// germane to explaining what the class is for. The header comment does not
// describe low-level details of the data representation or any details of
// member function implementation.
//
//
// Author: Full name and current email address of file’s author; name is at
// least first and last, with middle name or initial if necessary or
// commonly used by author; email address appears in parentheses
// following full name; email address may be abbreviated to a local
// address if the full address can be expected to be known to. E.g.,
// Gene Fisher (gfisher@calpoly.edu); John H. Smith (john_smith@...).
//
// Create Date: Date file was originally created (NOT last modified), in the
// format ddmmmyy, where dd is a one or two-digit month date, mmm
// is the three-character all lowercase abbreviation for the
// month, consisting of the first three characters of the month
// name, yy is a two-digit year. E.g., 31jan98.
//
////

#ifndef xxxIncluded
#define xxxIncluded

#include ...

class X : public Y {

public:

T1 FuncName(T2 t2, ..., Tn tn);
//
// Prose description of the function, describing what the function does,
// not how it is implemented. Describe the use of each parameter by name,
// refer to the instance object as "this", and use the word "return" to
// describe the return value if there is one. Also describe each data
// member used as an input and each data member modified as an output.
// Modification to a parameter or data member include indirect modification
// to the value of reference or pointer-valued parameter or data member.
// Stylistically, use complete sentences, avoid passive voice.
//
// pre: formal precondition
//
// post: formal postcondition
//
// catch: list of exception objects caught
//



Page 3

// throw: list of objects thrown
//

... other public functions ...

Note no public data members

protected:

Protected functions in same format as public functions.

T1 varname; // Comment describing data member
... other protected data members ...

};

4. Format and document .C files as follows.

////
//
// Implementation of XXX.
//
////

T1 XXX::FuncName(2 t2, ..., Tn tn) {

Note that function signature is identical to that declared in .h file,
including spellings of parameter names

//
// Include comments for each local variable and comments above each line or
// group of lines that describe how the function works. All but the
// "totally obvious" lines of code should be commented. Comments for
// variables should be descriptive noun phrases. Comments for code lines
// should be in complete sentences.
//
// All code comments should be formatted exactly as as this one is: (1)
// start with "//" on a separate line, indented to the current level of
// code indentation; (2) start each comment line with "//", indented to
// current indentation + 1; (3) end with "//" on a separate line, indented
// to current indentation + 1.
//

}

See below under "indentation and spacing conventions" for further discussion of the format of code
within a function definition.

5. Onstatic allocation

a. Thedata declaration of any user-defined class type should always be a pointer to that type.

b. Rationale: we are using a SmallTalk-like or Java-like approach to object allocation.

6. Types aliased withtypedef



Page 4

a. Thetypedef keyword should be used to provide mnemonic names for atomic types. E.g.,

typedef int Coordinate

b. Whentypedef is used to provide a mnemonic name for a non-atomic type, a pointer should not
appear within thetypedef. E.g.,

typedef String Name

is conventionally correct

typedef String* Name

is not correct.

c. Theprecedingtypedef rule, together with the earlier rule for pointer-only allocation of class
types, ensure referential transparency for type atomnicity. I.e., whether a type is atomic or non-
atomic can always be determined at the cite of type reference, since:
i. Non-atomictypes are always referenced as pointers, with ’*’
ii. Atomic types are are always referenced without ’*’

7. Encapsulatingnon-conventional external libraries

a. Resourcesprovided by any external C++ library that violates any of the preceding conventions
must be encapsulated inexactly one class.

b. That is, a "wrapper" must be placed around all non-conventional library services.

8. Indentationand spacing conventions

a. Exceptfor the specific indentation shown within a class definition above, indentation should be
ev ery 4 spaces.

b. If tabs are used, assume tab width = 8 characters, so that spacing is physically 4-spaces-then-tab, ...
.

c. Donot set tabwidth to any value other than 8 characters in any editor.

d. Thefollowing is a template for indentation and spacing of C++ functions; blank lines are signifi-
cant.

T1* FuncName(T2* t2, ..., Tn* tn) {
Tv1* tv1; // Comment ...
...
Tvm* tvm; // Comment ...

//
/ Comment ... .
//
for (...) {

//
// Comment ... .
//
if (...) {

...
}
//
// Comment, if necessary.
//



Page 5

else if {
...

}
...
//
// Comment, if necessary.
//
else {

...
}

}

//
// Comment ... .
//
while (...) {

...
}

//
// Comment ... .
//
for (start-expression; while-expression; end-expression) {

...
}

//
// Comment ... .
//
for (long-start-expression ... ;

long-while-expression ... ;
long-end-expression) {

...
}

//
// Comment ... .
//
switch (...) {

//
// Comment, if necessary.
//
case c1:

...
break;

...
//
// Comment, if necessary.
//
case ck:

...
break;



Page 6

}

9. Classand function naming conventions

a. Thenames of MVP model types (class and typedef names) should be identical to the names of cor-
responding UML objects.If the UML object name does not obey the capitalization conventions
for type names given below, then the UML name should be changed accordingly.

b. The names of model functions should be identical to the names of corresponding UML operations.
If the UML operation name does not obey the capitalization rules for function names given below,
then the UML name should be changed accordingly.

c. Thenames of view types (class and typedef names) should be the same as corresponding model
names, with the suffix "UI" added. If a single design defines two or more alternative views, the
view class names should be disambiguated with the type of UI for each. E.g., for model class Per-
sonDatabase, view classes PersonDatabaseButtonUI and PersonDatabaseMenuUI are button-style
and menu-style UI’s, respectively.

d. Thenames of view functions should be full-word mnemonic, including multi-word where appro-
priate, with the same capitalization conventions as for model type and function names.See "capi-
talization conventions" below for further details.

e. Thenames of process types and functions should be full-word mnemonic, including multi-word
where appropriate, with the same capitalization conventions as for model type and function names.
See "capitalization conventions" below for further details.

f. Thenames of constants should be mnemonic, typically one word or two words, all uppercase, with
multiple words separated by underscores. E.g., LENGTH, MAX_SIZE.

g. Thenames of data member access functions should start with "Get".

h. Thenames of data member setting functions should start with "Set".

i. Thenames of boolean-valued query functions should start with "Is".

j. Thenames of searching functions should start with "Find".

10. Capitalizationconventions

a. Type names (i.e., class and typedef names) should begin with a capital letter, and each distinct
word in the name should be capitalized, e.g.,PersonRecord. If an abbreviation is used in the
name, all letters in the abbreviation should be capital, e.g.PersonDB.

b. Function names should follow the same conventions as type names.

c. Filenamesfor .h/.C pairs should be all lowercase, and the same as the class name, with words sepa-
rated by dashes.Where file names would exceed 20 characters (or some other platform-specific
filename limitation), they may be abbreviated, but should be an understandable mnemonic abbre-
viation. For example, for a class nameGeneralArtifactRepository, gen-art-
repository.h is a reasonable abbreviation,gar.h is not. In all cases, the root name of .h and
.C files should be identical.

11. Variable naming conventions (including function parameters and class data members).

a. For variable names of user-defined types:
i. Variable names (including parameter and data member names) should be all lower case and a

"proper" abbreviation of the type name, e.g., PersonRecord* person_rec, PersonDB* per-
son_db.

ii. When a variable name abbreviates two or more words, the words should be separated by



Page 7

underscore characters
iii. A "proper" abbreviation is an abbreviation the characters of which are a proper subset of the

characters in the words of the variable’s type. E.g.,PersonDB* person_database is not a
proper abbreviation.

iv. In all cases, variable names should be as short as possible while still being mnemonically sig-
nificant.

v. This rule is one of the few places in these standards open to subjective interpretation. E.g.,in a
context where few other variables start with the letter "p", the name "p_rec" could be suffi-
ciently mnemonically significant to be used instead of the longer "person_rec".

vi. In all cases, variable naming should be consistent throughout a project. E.g., PersonRecord
*p_rec, PersonDB* person_db is not consistent naming.

vii. In the case where two or more variables of the same type are declared in a given scope, the
names should be suffixed with unique integers starting with 1, e.g.,PersonRecord* per-
son_rec_1, *person_rec_2 or suffixed with short mnemonic identifiers, e.g.,
StringEditor* str_ed_name, *str_ed_id, *str_ed_addr.

viii. For variables with two or more words, numeric suffixes should be separated with an under-
score character, e.g., PersonDB* person_db_1, *person_db_2.For variable names of one
word, numeric suffixes should be appended directly with no underscore, e.g., Name* name1,
*name2;

b. For variable names of atomic types or external library types that follow some other type naming
conventions:
i. Variable names (including parameter and data member names) should be all lower case, short,

and mnemonic, e.g.,

bool status
int counter

ii. Wherevery short names are sufficiently mnemonic, such as with loop counter variables, single-
character variables names are allowed, e.g., int i; for (i=1, ... ) ... ;

iii. The same numeric suffix and disambiguation rules above should be used.

12. Sizelimits

a. Nofunction may be longer than 25 lines, excluding comments and blank lines.This rule may not
be achieved by condensing lines in such a way as to violate any of the preceding formatting con-
ventions. E.g.,the following is legal

for (i=1; i<=n; i++) {
if (i % 2) {

Foo1(i);
Foo2(i);

}
}

the following is NOT leg al

for (i=1; i<=n; i++) { if (i % 2) { Foo1(i); Foo2(i); } }

nor is even the following

for (i=1; i<=n; i++) {
if (i % 2) {

Foo1(i);
Foo2(i);}

}



Page 8

b. No class may have more than 25 public functions plus 25 protected functions, i.e., no more than 50
functions total. If a class has fewer that 25 public functions, it may have up to 50 functions total,
however it may never hav emore than 25 public functions.Typically, classes should have far fewer
than 50 functions total.

c. Noclass may have more than 25 protected data members.

d. Notethat combining the 25-line rule with the 50-function rule means that no .C file can be longer
the 1250 lines of code.Typically, .C files should have far fewer than 1250 lines.


