Page 1

Design and | mplementation Conventions
in the C+- Subset of C++
6th DRAFT
28 January 2011

1. Thefollowing C features are not to be usexapt as necessary to interface with existing libraries or
other open-source code:

a. multipleinheritance

b. private inheritance

C. private or protected destion

d. friend,except in testing classes

e. staticallocation of non-atomic data (more below)
f. lexically nested classes

g. virtualbase classes

h. purevirtual functions

. corversion by constructor

. “&' as an expression operator (OK for call-by-ref parameter), except/@stidevel memory-man-
agement classes

k. anorymous union or enum

I. top-level variable decls (i.e., var decls outside of a class)
m. struct
n. register
0. goto

p. auto
q
r.
S
t.

— —

. wlatile
extern, except in “extern "C"”
. malloc
bit fields

2. Defineeach class in one .h/.C file paifhe only exception to this rule is for homogeneous collection
or container classeg-or such classes, a single .h/.C pair mayt(is not required to) contain the defi-
nitions for both the container class as well as the elements that it corftainsxample, a database
class and the type of its elements may be defined in a single .h/.Qf pa& element type of the con-
tainer has data members that are defined as other classes, all of those other class must be defined in
separate .h/.C file pairs.

3. Format and document .h filegactly as follovs, with strict adherence to the format of the comments,
including the number and placement of &hd the amount of indentation.
111
/1
/1 The comrent at the top of a .h file is a high-level description of the class
/1 defined in the file. Start the description with the words "C ass XXX' and
/1 then describe the purpose of the class and the major functions it provides.

Page 2

/1 The function descriptions in this header corment are generally brief, e.g.,
/1 "Cdass XXX provides functions to add, delete, change, and find its

/1 elements.” Do not list all of the function details in the header comment,
/1 since full comrents for each function appear below in the body of the class,
[/l at the cite of each function declaration. The header comment can describe
/1 the data representation used in the class in high-level ternms if it’s

/1 germane to explaining what the class is for. The header coment does not

/1 describe |lowlevel details of the data representation or any details of

/1 menmber function inplenentation.

/1

/1

/1 Author: Full name and current email address of file' s author; nanme is at
/1 | east first and last, with mddle nane or initial if necessary or
/1 commonl y used by author; emmil address appears in parentheses

/1 followi ng full name; email address may be abbreviated to a | oca
/1 address if the full address can be expected to be known to. E.g.
/1 Gene Fisher (gfisher@al poly.edu); John H Snmith (john_smth@..).
/1

/]l Create Date: Date file was originally created (NOT |last nmodified), in the
/1 format ddmmyy, where dd is a one or two-digit nonth date, mm
11 is the three-character all |owercase abbreviation for the

/1 nmont h, consisting of the first three characters of the nonth
/1 nane, yy is a two-digit year. E g., 31jan98.

/1

I

#i f ndef xxxl| ncl uded
#defi ne xxxl ncl uded

#i ncl ude ...

class X : public Y {
public:

T1 FuncNane(T2 t2, ..., Tn tn);

/1

/1 Prose description of the function, describing what the function does,

/1 not howit is inplemented. Describe the use of each paraneter by nane,
/1 refer to the instance object as "this", and use the word "return" to

/] describe the return value if there is one. Al so describe each data

/1 menber used as an input and each data menmber nodified as an output.

/1l Modification to a parameter or data menber include indirect nodification
/1 to the value of reference or pointer-valued parameter or data nenber.

/1 Stylistically, use conplete sentences, avoid passive voice.

/1

/1 pre: formal precondition

/1

/] post: formal postcondition

/1

/1 catch: list of exception objects caught

11

Page 3
/1 throw 1list of objects thrown
11
other public functions ...

Note no public data members

pr ot ect ed:

Protected functions in same format as public functions.

T1 var narne; /1 Coment describing data nenber
other protected data nmenbers ...
}
4. Format and document .C files as follows.
1111
/1
/1 1 nplenmentation of XXX
/1
1111
Tl XXX::FuncNane(2 t2, ..., Tn tn) {

Note that function signature is identical to that declared in .h file,
i ncludi ng spellings of paraneter nanes

/1
/1 1Include coments for each | ocal variable and comments above each |ine or
/1 group of lines that describe how the function works. Al but the

/1 "totally obvious" |ines of code should be comented. Comments for

/1 variabl es shoul d be descriptive noun phrases. Conmments for code |ines
/1 should be in conplete sentences.

/1

/1 Al code comrents should be formatted exactly as as this one is: (1)

/[l start with "//" on a separate line, indented to the current |evel of

/1 code indentation; (2) start each comment line with "//", indented to

/1 current indentation + 1; (3) end with "//" on a separate |line, indented
/1 to current indentation + 1.

/1

}
See belw under "indentation and spacing eentions" for further discussion of the format of code
within a function definition.

5. Onstatic allocation
a. Thedata declaration of gruser-defined class type shoulevays be a pointer to that type.
b. Rationale: we are using a SmallTalkdikr Ava-like goproach to object allocation.

6. Types aliased withypedef

Page 4

a. Thet ypedef keyword should be used to provide mnemonic names for atomic types. E.g.,
typedef int Coordinate
b. Whent ypedef is used to provide a mnemonic nhame for a hon-atomic type, a pointer should not
appear within théypedef. E.g.,
typedef String Nane
is corventionally correct
typedef String* Name
iS not correct.

c. Theprecedingt ypedef rule, together with the earlier rule for pointer-only allocation of class
types, ensure referential transpagefar type atomnicity |.e., whether a type is atomic or non-
atomic can aliays be determined at the cite of type reference, since:

i. Non-atomictypes are avays referenced as pointers, with’
ii. Atomic types are are ahys referenced without’

7. Encapsulatingon-cowentional external libraries

a. Resourceprovided by ag external C++ library that violates wrof the preceding camntions
must be encapsulatedaractly one class.

b. Thatis, a "wrapper" must be placed around all nor@tional library services.

8. Indentatiorand spacing camntions

a. Exceptfor the specific indentation shown within a class definitiorvabimdentation should be
evay 4 spaces.

b. If tabs are used, assume tab width = 8 characters, so that spacing is physically 4-spaces-then-tab, ...

c. Donot set tabwidth to gnvalue other than 8 characters iry aditor.
d. Thefollowing is a template for indentation and spacing of C++ functions; blank lines are signifi-

cant.

T1* FuncNanme(T2* t2, ..., Tn* tn) {
Tvl* tvi; /1 Comment
Tvnt tvm /1 Comment
/1
/ Commrent

Il
for (...) {

/1
/1 Comment
/1
if (...) {
}
/1

/1l Comment, if necessary.
11

Page 5

else if {
}
11
/1l Coment, if necessary.
11
el se {
}
}
11
/' Conment
11
while (...) {
}
11
/' Conment
11
for (start-expression; while-expression; end-expression) {
}
11
/' Conment
11

for (long-start-expression ..
| ong- whi | e-expression ..
| ong- end- expression) {

}
11
/1 Coment
11
switch (...) {
11
/1l Comment, if necessary.
11
case cl:
br eak;
11
/1l Comment, if necessary.
11
case ck:

br eak;

Page 6

9. Classand function naming ceentions

a. Thenames of MVP model types (class and typedef names) should be identical to the names of cor
responding UML objectslf the UML object name does not gbthe capitalization corentions
for type names gén below, then the UML name should be changed accordingly.

b. The names of model functions should be identical to the names of corresponding UML operations.
If the UML operation name does not gltee capitalization rules for function namesegi below,
then the UML name should be changed accordingly.

c. Thenames of vier types (class and typedef names) should be the same as corresponding model
names, with the suffix "UI" added. If a single design definesdwmore alternatie views, the
view class names should be disambiguated with the type of Ul for each. E.g., for model class Per
sonDatabase, weclasses PersonDatabaseButtonUl and PersonDatabaseMenuUttarestyle
and menu-style Ul's, respeatly.

d. Thenames of vier functions should be full-word mnemonic, including multi-word where appro-

priate, with the same capitalization gentions as for model type and function namg&ge "capi-
talization conentions"” belav for further details.

e. Thenames of process types and functions should be fuithwnnemonic, including multi-ard
where appropriate, with the same capitalizatiorveotions as for model type and function names.
See "capitalization caentions" belov for further details.

f. Thenames of constants should be mnemonic, typically one wordoowdnds, all uppercase, with
multiple words separated by underscores. E.g., LENGTH, MAX_SIZE.

g. Thenames of data member access functions should start with "Get".

h. Thenames of data member setting functions should start with "Set".

i. Thenames of boolean-valued query functions should start with "Is".

j. Thenames of searching functions should start with "Find".

10. Capitalizatiortorventions

a. Type names (i.e., class and typedef names) shougjith bdth a capital letterand each distinct
word in the name should be capitalized, eRgr, sonRecor d. If an abreviation is used in the
name, all letters in the abbreviation should be capitalPeigsonDB.

b. Function names should follothe same carentions as type names.

c. Filenamedgor .h/.C pairs should be allheercase, and the same as the class name, with words sepa-
rated by dashesWhere file hames would exceed 20 characters (or some other platform-specific
filename limitation), thg may be abbreviated, but should be an understandable mnemonic abbre-
viation. For example, for a class nam@eneral Artifact Repository, gen-art-
reposi tory. his a reasonable ablviation,gar . h is not. In all cases, the root name of .h and
.C files should be identical.

11. \ariable naming corentions (including function parameters and class data members).

a. For variable names of user-defined types:

i. Variable names (including parameter and data member names) should beratdee and a
"proper" abbreiation of the type name, e.g., PersonRecord* person_rec, PersonDB* per
son_db.

ii. When a variable nhame abbreviates dvor more words, the words should be separated by

Page 7

underscore characters

iii. A "proper" abbreviation is an abbiation the characters of which are a proper subset of the
characters in the evds of the griables type. E.g.,PersonDB* person_database is not a
proper abbreviation.

iv. In dl cases, variable names should be as short as possible while still being mnemonically sig-
nificant.

v. This rule is one of the ¥eplaces in these standards open to subjeatiterpretation. E.gin a
contet where fev other variables start with the letter "p", the name "p_rec" could e suf
ciently mnemonically significant to be used instead of the longer "person_rec".

vi. In all cases, &riable naming should be consistent throughout a project. E.g., PersonRecord
p_rec, PersonDB person_db is not consistent naming.

vii. In the case where twor more variables of the same type are declared iven gcope, the
names should be gixfed with unique intgers starting with 1, e.gPer sonRecor d* per -
son_rec_1, *person_rec_2 or sufixed with short mnemonic identifiers, e.g.,
StringEditor* str_ed_name, *str_ed_id, *str_ed_addr.

viii. For variables with tw or more words, numeric sfites should be separated with an under
score charactereg., PersonDB* person_db_1, *person_db Fr variable names of one
word, numeric suixes should be appended directly with no underscore, e.g., Name* namel,
*namez2;

b. For variable names of atomic types or external library types thatvfabone other type naming
corventions:

i. Variable names (including parameter and data member names) should be all lower case, short,
and mnemonic, e.g.,
bool status
i nt counter

ii. Wherevery short names are sufficiently mnemonic, such as with loop colariables, single-
character variables names are allowed, e.qg., inti; for (i=1, ...) ... ;

iii. The same numeric suffix and disambiguation rulesvalshould be used.

12. Sizdimits
a. Nofunction may be longer than 25 lines, excluding comments and blank Tinésrule may not
be achiged by condensing lines in such aaw as to violate gnof the preceding formatting con-

ventions. E.g.the following is lgd
for (i=1; i<=n; i++) {

if (i %2) {

Fool(i);

Foo2(i);

}
the following is NO legad
for (i=1; i<=n; i++) { if (i %2) { Fool(i); Foo2(i); } }
nor is &en the following
for (i=1; i<=n; i++) {
if (i %2) {
Fool(i);
Foo2(i);}

Page 8

b. No dass may hae nore than 25 public functions plus 25 protected functions, i.e., no more than 50
functions total. If a class haswer that 25 public functions, it may Y& to 50 functions total,
however it may never havemore than 25 public functionSypically, classes should ke far faver
than 50 functions total.

c. Noclass may ha nore than 25 protected data members.

d. Notethat combining the 25-line rule with the 50-function rule means that no .C file can be longer
the 1250 lines of codeTypically, .C files should hee far fewer than 1250 lines.

