Page 1

A Graphical Modeling Notation
with Similarities to UML

1. Introduction

The notation presented here is a general-purpose graphical format for modeliragesaftiiacts. The

notation is general purpose in that it can be used to model requirements, specification, design, and imple-
mentation artéicts. Br our purposes, we usedviormal textual languages for representing these arti-
facts. NamelyRSL is used to represent requirements and specifications; C++ is used to represent design
and implementationThe same general-purpose graphical notation maps to both of these languages.

The notation presented here uses concepts from the Unified Modeling Language (THdlLdesign of
UML is a collaboratre dfort of primarily commercial ganizations, led by the Rationale Corporation.
The goal for UML is to deslop a standard graphical modeling notatid#ML is consolidation of con-
cepts used in the earlier Object Modelireghiinique (OMT) and Booch Diagram§he complete descrip-
tion of UML is available atht t p: / / www. r at i onal . comium / ht m / not ati on

UML has a number of features that are not used in the notation describethretdition, UML is miss-

ing certain features, notably function and dataftbagrams. Whera feature is @ailable in UML, the
same feature is retained hen/here UML is missing what is considered to be an important notational
feature, a pndously eisting standard is used, in such ayas not to conflict with grexisting UML fea-
tures. Thais, if UML has it well use it; if UML does not hee it we’ll use a standard notation that does
not conflict with ag part of UML.

2. Block Diagrams

A block diagram represents communication betwsgnsystemsGenerally a subsystem is a modular
software component defined by more than a single clage definition of subsystem is sepaately
laundhable executable ppgram, where the notion of launching is from the end-uspgtspectre.

Elements of a block diagram are the foliog:
1. Shadwed rectangles, representing subsystems
2. Directedinterconnection lines, abstractly representing communication between subsystems
3. Graphabels in normal font, representing functional communication
4. Graphabels in italic font, representing data communication

That interconnection lineabstactly represent communication means that the implementation details of
the communication are abstracted olt.particular functional communication can be by normal proce-
dure call, remote procedure call, subprocesscation, thread actétion, or some other meang.his

level of detail isnot specified in the block diagranSimilarly, data communication can be by parameter
passing, shared data, infmocess data transfar other means.This level of detail is not specified in the
block diagram.

Figure 1 shws the general structure of a block diagrafie diagram depicts three subsystems in which
Subsystem 1 calls (or otherwisevdlkes) Function 1 in Subsystem Zubsystem 2 sends (or otherwise
transfers or shares) dddataD1to (with) Subsystem 1Subsystems 1 and 3 seDdtaD2to each other

Page 2

|]

FunctionA

Subsystem 1 Subsystem 2
DataD1

I DataD2

—

Subsystem 3

Figure 1: General Structure of a Block Diagram.

3. Dataflov Diagrams

A dataflav diagram represents the Wloof objects between operations in a specificatietiements of
dataflav diagrams are the folling:

1. Circledgraph nodes, representing operations.
2. Directedgraph edges, representing operation inputs and outputs.
3. Graphlevels, representing operation hieraych

Figure 2 shws the general structure.

4. DataDiagrams

A data diagram represents the composition and inheritance relationships between objects in a specifica-
tion or classes in a desighe notation described here isdaly a subset of UML, with a minoxin-
sion added.Elements of data diagrams are the foilg:

1. Three-parboxes, labeled at the top with a object/class name.

2. Objectcomponent/data member names, immediatelywb#ie class name in a box.
Declaredperations/function member names, faliog the data member names in a box.
One-parboxes, labeled inside with the object/class name.only
Connectingedges between class laax with three forms of augmentation:

a. ahollow triangle, designating an inheritance relation

b. ahollow diamond, designating a composition relation (same semantics as the second part of a
three-part box)

C. intgger or comma-separated igég pair annotation on hollodiamond, indicated multiplicity
of composition; the character '*' can be used in place of agent® represent multiplicity
of 0 or more

ok w

Page 3

Top-Level DFD:

In2 Out2

Outl

In3 Out3

Corresponding RSL:

object Inlis ...;

object In2is ...;

object In3is ...;

object Qutl is

object Qut2 is ...;

object Qut3 is ;

object Datal is ...;

object Data2 is ...;

operation Opl(Inl, In2, In3)->(CQutl, Qut2, Qut3);
operation Opla(lnl)->(Qutl, Qut3, Datal);
operation Oplb(In2, In3)->(Data2);
operation Oplc(Datal, Data2)->(CQut2);

Level 1 Expansion:

In1

Figure 2: General Structure of a Datafldiagram.

d. noaugmentation (i.e., a plain line), also designating a composition relation (this is not com-
patible with UML, lut a nice feature I think).

Figure 3 shars the general structur@he diagram on the top of the figure wisadata and function mem-
bership using the three-part box notatidrhe diagram on the bottom of the figure, labeled "Alteveati
Equwalent...", shavs the equialent membership relations using the helldiamond notation.Note that
function members, when slia outside of a three part class box, arevdras rounded rectangleghis is
consistent with their depiction in function diagrams, as discussed.belo

Orientation of components in a data diagramas significant That is, subclasses and members can be
showvn in ary geometric position relate o their parent classThe orientation of the holle triangle is
significant, with the pointed end orientemlvards the parent classAlso, the positioning of the hollo
diamond is significant, in that it is positionadmediately adjacernb the containing clasdn this way,
two-way containment can be depicted, aswahan Figure 4. Figure 4 also illustrates the use of

Page 4

Sample Class Diagram: Corresponding RSL:

object Cis
conponents: Cl, C2, C3;
operations: F1, F2, F3;
end C

object D1 inherits fromCis ...;
object D2 inherits fromCis ...;
obj ect D3 inherits fromCis

Corresponding Java Code:

class C1 {...}

Alternative Equivalent Sample Class Diagram: g: 222 g % %

D1 class C{
public void F1(...)
public void F2(...
public void F3(...
{] D2 protected Cl cl;
protected C2 c2;
<>— protected C3 c3;
s

class D1 extends C{...}
class D2 extends C {...}
class D2 extends C {...}

——
A
e

D3

Corresponding C++ Code:

c:ass % {...};
cl ass R
c2 cIassCS%...%;

class C {
public:
c3 void F1(...
void F2(...
void F3(...
| F1 prot ect ed:
Cl* c1;
C2* c2;
C3* ¢3;

~———

—(_F2 };
class D1 : public C{...};
class D2 : public C{...};
E— F3 class D2 : public C { };

Figure 3: General Structure of a Class Diagram.

multiplicity annotations.

Note that the three-part representation of membershigus the holle diamond representation aredw
equialent viens that hae exactly the same meaningdembership can be siva in either vay separately
or with the two forms combined into a single diagraM/hen the tw forms are used in single diagram,
there is redundant information stio -- i.e., a single diagram is shing the same membership relation-
ships in tw different ways. Thenotation does not prohibit such redundgnit is up to the diagram
designer to use the notation as she/he sees fit.

Page 5

5. Function Diagrams

Function diagrams skothe calling relationships between functions in a program designction dia-
grams are not applicable at the RSL specificatiod.l€Elementof a function diagram are the follng:

Roundedectangle nodes, representing functions
Edgedetween nodes, representing function calls
Annotatedarrons abwe function nodes, representing input to and output from functions

Annotateddown-pointing and up-pointing amg, representingxeeption handling catch and
throw, respectrely

Labeleddoubled lines, representingeat invocation
6. Labeleddashed-line boes around function nodes, representing class membership.

N

o

Figure 5 shas the general structure.

The calling relationship sk in a function diagram sk potential irvocationnot actual imocation.
Depending on the implemented logic within a calling function, none, some, or all of its potentially called
functions may actually be called during progratecetion.

Orientation of components in a function diagranisisignificant The root of a calling tree must be
shovn abwe a to the left of the subfunctions that it call&imilarly, an event invocation line must be
shovn abave a to the left of the functions that may bevakked when the eent is triggered.

Strictly speaking, the left-to-right (or top-to-bottom) order of called functions is not significantever,
by corvention the left-to-right order in a function diagram will typically be the same asxlvall@rder
of appearance of the functions in the C+- code.

6. Discussion

The shape of a diagram node is unique across all diagfamthermore, the node shape can be traced to
a Pecific semantic construct in RSL and/or CMz.,

Sample class diagram: Corresponding RSL: Corresponding Java:
* 2 object Cl is C2 and C2; class Cl {
object C2 is Cl*;
[a1 | ez |) ! & coa
C2 c2b;
H
class C2 {
ClLi st Ci1;

H

Figure 4: Two-Way Membership in a Class Diagram.

Page 6

Sample Function Diagram:

Excep
r main
EventEl
ABC
In1 In2,In3 In2,In2 out2, | DE
FuncB FuncC FuncD FunckE
Excep FuncA i ;
Corresponding Java Code:
cl ass Excep extends Exception {...}; public static void main() {
static ABC abc = new ABC,
class ABC { static DE de = new DE;
public Qut2 FuncA(lnl) { static Qutl outl;
static Qut2 out2a, out2b;
throw (new E); static Qut3 out3;
yoo
public Qut3 FuncB(In2, In3) {...} try {
public Qut2 FuncC(In2, In2, Qut3) {...} out 2a = abc. FuncA(inl);
; }
catch (Excep e) {
class DE { L
public void FuncD() {...} }
public void Funcig() {...}
}; out3 = abc. funcB(in2, in3);
out2b = abc. f uncC(in2, 1n2);
ABC: : FuncA(I n1* inl) { bi ndFunct i onToEvent (DE. FuncD, EventEl);
c. bi ndFuncti onToEvent (DE. FuncE, EVentEl);
throw (new E);
e }

Figure 5: General Structure of a Function Diagram.

« a hadaved box is a subsystem, consisting of multiple RSL objects and operations or multiple C++
classes
* abox is a datatype, which is either an RSL object or a C++ class

o the second and third parts of a three-part box represent the components and operatigas attrib
of an RSL object or the data and function members of a C++ class;

Page 7

o a hollow triangle connecting be@s abstractly represents inheritance in either RSL or C++;
o a hollow diamond connecting b@s represents component-of in RSL and membership in C++

e adrcle is an RSL (functional) operation
« arounded rectangle is a C++ (impevajifunction

The uniqueness of shapes altodiagram elements to be combined &y not fully supported in UML,
but which is conceptually compatible with UMLUnN particular the appearance of rounded rectangles in
data diagrams depicts function membership in a form not directly supported in UML.

The current grsion of UML supports neither dataflaor function diagrams in the forms defined abo
UML does support state-transition diagrams thaktamilar semantics to datafiodiagrams. Ina date-
transition, nodes are sho as rounded rectangled.his may cause some confusion with our use of
rounded rectangles for functionslowever, the edge shape in a UML state transition diagram fsrdift
than in a function diagram, so that thetierms of diagram can be immediately distinguished.

It should be noted that all of the aleootations &cept for function diagrams are orientation independent.
That is, diagrams can be dna vertically, horizontally, or any combination of orientationsThe restric-
tion for function diagrams is that a calling function must bevdrabwe a to the left of the functions
that it calls.

