
Page 1

A Graphical Modeling Notation
with Similarities to UML

1. Intr oduction

The notation presented here is a general-purpose graphical format for modeling software artifacts. The
notation is general purpose in that it can be used to model requirements, specification, design, and imple-
mentation artifacts. For our purposes, we use two formal textual languages for representing these arti-
facts. Namely, RSL is used to represent requirements and specifications; Java is used to represent design
and implementation.The same general-purpose graphical notation maps to both of these languages.

The notation presented here uses concepts from the Unified Modeling Language (UML).The design of
UML is a collaborative effort of primarily commercial organizations, led by the Rationale Corporation.
The goal for UML is to develop a standard graphical modeling notation.UML is a consolidation of con-
cepts used in the earlier Object Modeling Technique (OMT) and Booch Diagrams.

UML has a number of features that are not used in the notation described here.In addition, UML is miss-
ing certain features, notably function and dataflow diagrams. Wherea feature is available in UML, the
same feature is retained here.Where UML is missing what is considered to be an important notational
feature, a previously existing standard is used, in such a way as not to conflict with any existing UML fea-
tures. Thatis, if UML has it we’ll use it; if UML does not have it we’ll use a standard notation that does
not conflict with any part of UML.

A complete specification of UML is available at www.omg.org/technology/documents1. There are also a
number of UML books on the market, none of which is necessary for this class.

2. BlockDiagrams

A block diagram represents communication betweensubsystems. A subsystem is a modular software
component containing two or more classes.Examples of subsystems include library packages, separately
launchable executable programs, and other logically related collections of classes.

Elements of a block diagram are the following:

1. Folder-shaped rectangles, representing subsystems

2. Directedinterconnection lines, abstractly representing communication between subsystems

3. Graphlabels in normal font, representing functional communication

4. Graphlabels in italic font, representing data communication

That interconnection linesabstractly represent communication means that the implementation details of
the communication are abstracted out.In particular, functional communication can be by normal proce-
dure call, remote procedure call, subprocess invocation, thread activation, or some other means.This
level of detail isnot specified in the block diagram.Similarly, data communication can be by parameter
passing, shared data, inter-process data transfer, or other means.This level of detail is not specified in the

1 The OMG web page changes frequently. If the link given here is not found, go to the main site at
www.omg.org and search for "UML Spec" with their search engine.

Page 2

block diagram.

Figure 1 shows the general structure of a block diagram.The diagram depicts three subsystems in which
Subsystem 1 calls (or otherwise invokes) Function 1 in Subsystem 2.Subsystem 2 sends (or otherwise
transfers or shares) dataDataD1to (with) Subsystem 1.Subsystems 1 and 3 sendDataD2to each other.

In RSL and Java, subsystems are defined asmodulesandpackages respectively.

3. Dataflow Diagrams

A dataflow diagram represents the flow of objects between operations in a specification.Elements of
dataflow diagrams are the following:

1. Circularor elliptical graph nodes, representing operations.

2. Directedgraph edges, representing operation inputs and outputs.

3. Graphlevels, representing operation hierarchy.

Figure 2 shows the general structure.

4. DataDiagrams

A data diagram represents the composition and inheritance relationships between objects in a specifica-
tion or classes in a design.The notation described here is largely a subset of UML, with a minor exten-
sion added.Elements of data diagrams are the following:

1. Three-partboxes, labeled at the top with a object/class name.

2. Objectcomponent/data member names, immediately below the class name in a box.

3. Declaredoperations/function member names, following the data member names in a box.

4. One-partboxes, labeled inside with the object/class name only.

5. Connectingedges between class boxes, with three forms of augmentation:
a. ahollow triangle, designating an inheritance relation
b. ahollow diamond, designating a composition relation (same semantics as the second part of a

Subsystem 1

FunctionA

DataD2

Subsystem 2

Subsystem 3

 DataD1

Figure 1: General Structure of a Block Diagram.

Page 3

Op1

In1

In2

In3

Out1

Out2

Out3

Op1aIn1 Out1

Out3

Op1a Op1a Out2

In3

In2

Data1

Data2

Top-Level DFD:

Level 1 Expansion:

Corresponding RSL:

object In1 is ...;
object In2 is ...;
object In3 is ...;
object Out1 is ...;
object Out2 is ...;
object Out3 is ...;
object Data1 is ...;
object Data2 is ...;
operation Op1(In1, In2, In3)->(Out1, Out2, Out3);
operation Op1a(In1)->(Out1, Out3, Data1);
operation Op1b(In2, In3)->(Data2);
operation Op1c(Data1, Data2)->(Out2);

Figure 2: General Structure of a Dataflow Diagram.

three-part box)
c. integer or comma-separated integer pair annotation on hollow diamond, indicated multiplicity

of composition; the character ’*’ can be used in place of an integer to represent multiplicity
of 0 or more

Figure 3 shows the general structure.The diagram on the top of the figure shows data and function mem-
bership using the three-part box notation.The diagram on the bottom of the figure, labeled "Alternative
Equivalent...", shows the equivalent membership relations using the hollow diamond notation.Note that
function members, when shown outside of a three part class box, are drawn as rounded rectangles.This is
consistent with their depiction in function diagrams, as discussed below.

Orientation of components in a data diagram isnot significant. That is, subclasses and members can be
shown in any geometric position relative to their parent class.The orientation of the hollow triangle is
significant, with the pointed end orientedtowards the parent class.Also, the positioning of the hollow
diamond is significant, in that it is positionedimmediately adjacentto the containing class. Inthis way,

Page 4

Corresponding Java Code:

class C1 {...}
class C2 {...}
class C3 {...}

class C {
 public void F1(...) {...}
 public void F2(...) {...}
 public void F3(...) {...}
 protected C1 c1;
 protected C2 c2;
 protected C3 c3;
};

class D1 extends C {...}
class D2 extends C {...}
class D2 extends C {...}

C

C1
C2
C3

F1
F2
F3

Sample Class Diagram:

D1

D2

D3

C

D1

D2

D3

C1

C2

C3

Alternative Equivalent Sample Class Diagram:

F1

F2

F3

Corresponding RSL:

object C is
 components: C1, C2, C3;
 operations: F1, F2, F3;
end C;

object D1 inherits from C is ...;
object D2 inherits from C is ...;
object D3 inherits from C is ...;

Corresponding C++ Code:

class C1 {...};
class C2 {...};
class C3 {...};

class C {
 public:
 void F1(...);
 void F2(...);
 void F3(...);
 protected:
 C1* c1;
 C2* c2;
 C3* c3;
};

class D1 : public C {...};
class D2 : public C {...};
class D2 : public C {...};

Figure 3: General Structure of a Class Diagram.

two-way containment2 can be depicted, as shown in Figure 4.Figure 4 also illustrates the use of multi-
plicity annotations.

Note that the three-part representation of membership versus the hollow diamond representation are two
equivalent views that have exactly the same meaning.Membership can be shown in either way separately,
or with the two forms combined into a single diagram.When the two forms are used in single diagram,
there is redundant information shown -- i.e., a single diagram is showing the same membership

2 The depiction of two-way containment is prohibited in standard UML, but allowed here since it maps to well-
defined semantics in both RSL and Java. In RSL two-way containment maps to mutually-recursive objects, i.e., ob-
jects that have each other as components.In Java, two-way containment maps to classes that have references to each
other, i.e., classes that declare one another as data members.

Page 5

relationships in two different ways. Thenotation does not prohibit such redundancy; it is up to the dia-
gram designer to use the notation as she/he sees fit.

5. FunctionDiagrams

Function diagrams show the calling relationships between functions in a program design.Function dia-
grams are not applicable at the RSL specification level. Elementsof a function diagram are the following:

1. Roundedrectangle nodes, representing functions

2. Edgesbetween nodes, representing function calls

3. Annotatedarrows above function nodes, representing input to and output from functions

4. Annotateddown-pointing and up-pointing arrows, representing exception handling catch and
throw, respectively

5. Labeleddoubled lines, representing event invocation

6. Labeleddashed-line boxes around function nodes, representing class membership.

Figure 5 shows the general structure.

The calling relationship shown in a function diagram shows potential invocationnot actual invocation.
Depending on the implemented logic within a calling function, none, some, or all of its potentially called
functions may actually be called during program execution.

Orientation of components in a function diagram isis significant. The root of a calling tree must be
shown above or to the left of the subfunctions that it calls.Similarly, an event invocation line must be
shown above or to the left of the functions that may be invoked when the event is triggered.

Strictly speaking, the left-to-right (or top-to-bottom) order of called functions is not significant.However,
by convention the left-to-right order in a function diagram will typically be the same as the lexical order
of appearance of the functions in the Java code.

6. Discussion

The shape of a diagram node is unique across all diagrams.Furthermore, the node shape can be traced to
a specific semantic construct in RSL and/or Java. Viz.,

C1 C2

Sample class diagram:

class C1 {
 C2 c2a;
 C2 c2b;
};

class C2 {
 C1List C1;
};

Corresponding Java:

object C1 is C2 and C2;
object C2 is C1*;

Corresponding RSL:

2*

Figure 4: Tw o-Way Membership in a Class Diagram.

Page 6

main

FuncA FuncB FuncC

Sample Function Diagram:

class Excep extends Exception {...};

class ABC {
 public Out2 FuncA(In1) {
 ...
 throw (new Excep);
 ...
 }
 public Out3 FuncB(In2, In3) {...}
 public Out2 FuncC(In2, In2, Out3) {...}
};

class DE {
 public void FuncD() {...}
 public void FuncE() {...}
};

Corresponding Java Code:

In1 Out2 In2,In3 Out3 Out2,
Out3

In2,In2

FuncD FuncE
Excep

Excep

EventE1
ABC

DE

public static void main() {
 static ABC abc = new ABC;
 static DE de = new DE;
 static Out1 out1;
 static Out2 out2a, out2b;
 static Out3 out3;
 ...

 try {
 out2a = abc.FuncA(in1);
 }
 catch (Excep e) {
 ...
 }
 ...
 out3 = abc.funcB(in2, in3);
 ...
 out2b = abc.funcC(in2, In2);
 ...
 bindFunctionToEvent(DE.FuncD, EventE1);
 bindFunctionToEvent(DE.FuncE, EVentE1);
 ...
}

Figure 5: General Structure of a Function Diagram.

• a folder-shaped box is a subsystem, consisting of multiple RSL objects and operations or multiple
Java classes

• a box is a datatype, which is either an RSL object or a Java class
� the second and third parts of a three-part box represent the components and operations attributes

of an RSL object or the data and function members of a Java class;
� a hollow triangle connecting boxes abstractly represents inheritance in either RSL or Java;
� a hollow diamond connecting boxes represents component-of in RSL and membership in Java

• a circle (or ellipse) is an RSL (functional) operation

• a rounded rectangle is a Java (imperative) function (a.k.a., method)

Page 7

The uniqueness of shapes allows diagram elements to be combined in ways not fully supported in UML,
but which is conceptually compatible with UML.In particular, the appearance of rounded rectangles in
data diagrams depicts function membership in a form not directly supported in UML.

The current version of UML supports neither dataflow nor function diagrams in the forms defined above.
UML does support state-transition diagrams that have similar semantics to dataflow diagrams. Ina state-
transition, nodes are shown as rounded rectangles.This may cause some confusion with our use of
rounded rectangles for functions.However, the edge shape in a UML state transition diagram is different
than in a function diagram, so that the two forms of diagram can be immediately distinguished.

It should be noted that all of the above notations except for function diagrams are orientation independent.
That is, diagrams can be drawn vertically, horizontally, or any combination of orientations.The restric-
tion for function diagrams is that a calling function must be drawn above or to the left of the functions
that it calls.

