Page 1

A Graphical Modeling Notation
with Similaritiesto UML

1. Introduction

The notation presented here is a general-purpose graphical format for modeliragesaftiiacts. The
notation is general purpose in that it can be used to model both specification- and delsagtifbcts.
For our purposes, we use twformal textual languages for representing these aot. RSLis used to
represent requirements and specificationg #aused to represent design and implementatitime same
general-purpose graphical notation maps to both of these languages.

The notation presented here uses concepts from the Unified Modeling Language (THdldesign of
UML is a collaboratre dfort of primarily commercial ganizations, led by the Rationale Corporation.
The goal for UML is to deslop a standard graphical modeling notatidsiViL is a consolidation of con-
cepts used in the earlier Object Modelireghiinique (OMT) and Booch Diagrams.

UML has a number of features that are not used in the notation describethremtdition, UML is miss-

ing certain features, notably function and dataftbagrams. Whera feature is @ailable in UML, the
same feature is retained heM/here UML is missing what is considered to be an important notational
feature, a pndously eisting standard is used, in such ayas not to conflict with grexisting UML fea-
tures. Thats, if UML has it well use it; if UML does not hee it we’ll use a standard notation that does
not conflict with UML.

A complete specification of UML isvailable at wwwomg.og/technology/documents There are also a
number of UML books on the maek none of which is necessary for this class.

2. ClassDiagrams

A class diagram represents the composition and inheritance relationships between objects in a specifica-
tion or classes in a desigithe notation described here isgaly a subset of UML, with a minoxin-
sion added.Elements of class diagrams are the faitay:

1. Three-parboxes, labeled at the top with a object/class name.

2. Component/datmember names, immediately b<he class name in a box.

Declaredperations/function member names, falilog the data member names in a box.

One-parboxes, labeled inside with the object/class hame.only

Connectingdges between class lesx with three forms of augmentation:

a. ahollow triangle, designating an inheritance relation

b. ahollow diamond, designating a composition relation (same semantics as the second part of a
three-part box)

c. integer or comma-separated igeg pair annotation on hollodiamond, indicated multiplicity

of composition; the character ™' can be used in place of agént® represent multiplicity
of 0 or more

ok w

! The OMG web page changes frequently the link given here is not found, go to the main site at
www.omg.og and search for "UML Spec" with their search engine.

Page 2

Figure 1 shars the general structur@he diagram on the top of the figure wisadata and function mem-
bership using the three-part box notatidrhe diagram on the bottom of the figure, labeled "Alteveati
Equwalent...", shavs the equialent membership relations using the helldiamond notation.Note that
function members, when sl outside of a three part class box, arevdras rounded rectangleghis is
consistent with their depiction in function diagrams, as discussed.belo

Orientation of components in a class diagramassignificant That is, subclasses and members can be
showvn in ary geometric position relate o their parent classThe orientation of the hole triangle is
significant, with the pointed end orientemlvards the parent classAlso, the positioning of the hollo

Sample Class Diagram: Corresponding RSL:

object Cis
conponents: Cl, C2, C3;
operations: F1, F2, F3;
end C

c

C1l
Cc2
C3 object Dl inherits fromCis ...;
object D2 inherits fromCis ...;
object D3 inherits fromCis

F1
F2
F3

Corresponding Java Code;

class ClL {...}

Alternative Equivalent Sample Class Diagram: g: gg: g E:) :%

class C {
public void F1(...) {...
public void F2(...) {...}
public void F3(...) {
protected Cl cl;
protected C2 c2;

) protected C3 c3;

class Dl extends C {...}
class D2 extends C{...}
class D2 extends C {...}

Corresponding C++ Code:

class CL {...};
class C {...};
class C3 {...};

class C {
public:
void F1(...);
void F2(...);
void F3(...);
prot ect ed:
Cl* cl;
c2* c2;
C3* c3;

b

class D1 : public C{...}
class D2 : public C{...}
class D2 : public C }

Figure1l: General Structure of a Class Diagram.

Page 3

diamond is significant, in that it is positionadmediately adjacernb the contaiimg class. Inthis way,

two-way containmertcan be depicted, as sho in Figure 2. Figure 2 also illustrates the use of multi-
plicity annotations.

Note that the three-part representation of membershigus the holle diamond representation aredw
equivalent views that hae exactly the same meaningdembership can be siva in either vay separately
or with the tvwo forms combined into a single diagraM/hen the tw forms are used in single diagram,
there is redundant information stio -- i.e., a single diagram is shimg the same membership relation-
ships in tvwo different ways. Thenotation does not prohibit such redundgnit is up to the diagram
designer to use the notation as she/he sees fit.

3. Function Diagrams

Function diagrams skothe calling relationships between functions in a program designction dia-
grams are not applicable at the RSL specificatied.leElementsof a function diagram are the folling:

Roundedectangle nodes, representing functions
Edgedetween nodes, representing function calls
Annotatedarrons abwe function nodes, representing input to and output from functions

Annotateddown-pointing and up-pointing anes, representingxeeption handling catch and
throw, respectiely

Labeleddoubled lines, representingeat invocation
6. Labeleddashed-line baes around function nodes, representing class membership.

rwnPE

o

Figure 3 shws the general structure.

The calling relationship sk in a function diagram sk potential irvocationnot actual imocation.
Depending on the implemented logic within a calling function, none, some, or all of its potentially called
functions may actually be called during progratecetion.

Sample class diagram: Corresponding RSL: Corresponding Java:
* 2 object ClL is C2 and C2; class Cl {
) : .
(o o Sl] et @iaan &%k
C2 c2b;
H
class C {
ClLi st C1;

|

Figure2: Two-Way Membership in a Class Diagram.

2 The depiction of tw-way containment is prohibited in standard UMUt blloved here since it maps to well-
defined semantics in both RSL andalaln RSL two-way containment maps to mutually-recuesibjects, i.e., ob-
jects that hee each other as components Java, two-way containment maps to classes thaehaferences to each
other i.e., classes that declare one another as data members.

Page 4

Sample Function Diagram:

Excep

EventE1l

Corresponding Java Code:

cl ass Excep extends Exception {...}; public static void main() {
static ABC abc = new ABC,
class ABC { static DE de = new DE;
public Qut2 FuncA(lnl) { static Qutl outl;
static Qut2 out2a, out2b;
t hrow (new Excep); static Qut3 out3;
b
public Qut3 FuncB(In2, In3) {...} try {
public Qut2 FuncC(In2, In2, Qut3) {...} out 2a = abc. FuncA(inl);
}
catch (Excep e) {
class DE { L
public void FuncD() {...} }
public void Funcig() {...}
}; out3 = abc. funcB(in2, in3);

out2b = abc. f uncC(in2, 1n2);

bi ndFunct i onToEvent (DE. FuncD, EventEl);
bi ndFuncti onToEvent (DE. FuncEk, EVentEl);

}

Figure 3: General Structure of a Function Diagram.

Orientation of components in a function diagranisisignificant The root of a calling tree must be
shovn abwe a to the left of the subfunctions that it callSimilarly, an event invocation line must be
shovn abare a to the left of the functions that may bevaked when the eent is triggered.

Strictly speaking, the left-to-right (or top-to-bottom) order of called functions is not signifidantever,
by corvention the left-to-right order in a function diagram will typically be the same asxivall@rder
of appearance of the functions in thealeode.

4. Package Diagrams

A package diagram is used to shgrouping among related classeA.package is a modular sofane
component containing twor more classesExamples of packages include librasgparately launchable
executable programs, and other logically related collections of classes.

Page 5

Elements of a package diagram are the Wahqg:
1. Foldershaped rectangles, representing packages
2. Connectingedges with the same three forms of augmentation as in a class diagram, plus the fol-
lowing:
a. asgolid directed line, representing message passing; the line can be labeled with the name of
the operation/function that isvoked to receve the message
b. adashed directed line, representing structural depegiddapendencies represent imports in
both RSL and Jea

3. Package elements may be nested inside each other as an alternate meams@fhsitiov-dia-
mond-style containment

The message-passing linagstractly represent communication in that the implementation details of the
communication are abstracted oirn. particular communication can be by normal procedure call, remote
procedure call, subprocesyagation, thread aatation, or some other meanghis level of detail isnot
specified in the package diagram.

Figure 4 shars the general structure of a package diagrahe diagram depicts three packages in which
Subsystem 1 calls (or otherwiseokes) Function 1 in Subsystem Subsystem 2 importSataD1from
Subsystem 1Subsystem 1 imporBataD2from Subsystem 3.

In RSL and Jea, packages are defined m®dulesandpadages respectiely.

5. Discussion

The shape of a diagram node is unique across all diagfamthermore, the node shape can be traced to
a Pecific semantic construct in RSL and/ovalaViz.,

« a foldershaped box is a packaging unit, consisting of multiple RSL objects and operations or mul-
tiple Java dasses

]]

FunctionA
Subsystem 1 Subsystem 2
" DataD1 ~
A
| DataD2
Subsystem 3

Figure4: General Structure of aaPkage Diagram.

Page 6

* a box is a datatype, which is either an RSL object ova dass
o the second and third parts of a three-part box represent the components and operatigas attrib
of an RSL object or the data and function members ofadiss;
o a hollow triangle connecting be@s abstractly represents inheritance in either RSLvar Ja
o a hollow diamond connecting b@s represents component-of in RSL and membershiwan Ja

e adrcle (or ellipse) is an RSL (functional) operation
« arounded rectangle is awda(mperatve) function (a.k.a., method)

The uniqueness of shapes altodiagram elements to be combined &y not fully supported in UML,
but which is conceptually compatible with UMLUnN particular the appearance of rounded rectangles in
data diagrams depicts function membership in a form not directly supported in UML.

The current grsion of UML supports neither dataflaor function diagrams in the forms defined abo
UML does support state-transition diagrams thaktamilar semantics to datafiodiagrams. Ina date-
transition, nodes are sho as rounded rectangled.his may cause some confusion with our use of
rounded rectangles for functionslowever, the edge shape in a UML state transition diagram fsrdift
than in a function diagram, so that thetierms of diagram can be distinguished.

It should be noted that all of the aleootations &cept for function diagrams are orientation independent.
That is, diagrams can be dna vertically, horizontally, or any combination of orientationsThe restric-
tion for function diagrams is that a calling function must bevdrabwe a to the left of the functions
that it calls.

