INTRODUCTION TO
STRUCTURED PROGRAMMING

USING TURBO PASCAL®
VERSION 5.0 ON THE IBM PC

KENNETH J. MORGAN

DeVry Institute of Technology—Atlanta

Merrill Publishing Company
A Bell & Howell Information Company
Columbus Toronto London Melbourne

Cover: Computer-generated art, “Depth of Feel,” by Jim Dixon, Pacific Data Images,
1986.

Published by Merrill Publishing Company
A Bell & Howell Information Company
Columbus, Ohio 43216

This book was set in Melior.

Administrative Editor: Vern R. Anthony
Production Editor: Mary Harlan

Art Coordinator: Pete Robison

Cover Designer: Cathy Watterson

Text Designer: Cynthia Brunk

Turbo Pascal is a registered trademark of Borland International, Inc.

The quotation on pp. 4-5 is excerpted from “Sage of Software,” by Steve Olson.
Reprinted by permission from the Jan./Feb. issue of Science '84. Copyright © 1984 by
the American Association for the Advancement of Science.

Copyright © 1990 by Merrill Publishing Company. All rights reserved. No part of this
book may be reproduced in any form, electronic or mechanical, including photocopy,
recording, or any information storage and retrieval system, without permission in
writing from the publisher. “Merrill Publishing Company” and **Merrill”’ are
registered trademarks of Merrill Publishing Company.

Library of Congress Catalog Card Number: 89-61699
International Standard Book Number: 0-675-20770-3
Printed in the United States of America

1 2 3 4 5 6 7 8 9—94 93 92 91 90

1

Structured Programming

1.1 Structured Programming: History and Rationale

1.2 Definition of Structured Programming

1.3 Advantages of Structured Programming

1.4 Structured Programming and Programming Languages
1.5 Additional Topics Related to Structured Programming

How do you write a computer program? Part I answers this question, but it takes all
of Part [to answer it completely. Learning Pascal syntax, though important, is not the
primary goal of a first course in programming. A computer language can be easily
learned, and the statements and rules of Turbo Pascal are thoroughly explained in Part
II. What the beginning programming student must emphasize is quite simply the how
of programming: how to develop the solution to a given problem, how to organize a
program, and how to make effective use of the standard techniques that represent the
“tricks” of the trade.

This first chapter of Part I introduces you to the concept of structured program-
ming: its definition, history, and rationale. The author and this book are dedicated to
teaching this method of programming. Then, in chapter 2, the nature of the task of
programming a computer is discussed, together with a very important list of six steps
that guide you through that task. They are explicitly based on the philosophy of struc-
tured programming. Finally, chapters 3 through 12 explain in some detail how to per-
form these six steps. Many programming examples are given in these chapters, and
you are encouraged to read the sections in Part II that explain the rules of syntax for
the Pascal statements used in these examples. As emphasized in the Preface, Parts I
and II are designed to be studied simultaneously.

11

STRUCTURED PROGRAMMING: HISTORY AND
RATIONALE

A computer program is simply a set of instructions that directs the computer in its
calculations and movement of data. During the 1950s and 1960s, however, few people

3

PARTI Computer Programming

actually thought about the question of developing a general method for organizing a
program, Instead, programs were written much the way you might, off the top of your
head, give someone instructions on how to change a tire or, worse, build a house.
When a program did not work, it was simply “patched” (fixed), error by error, until
the programmer felt that he had found them all. Usually, however, errors continued to
appear even after the program was released for use.

Such an approach to programming was tolerable on first and second generation
computers (until about 1964). However, with the advent of the third generation during
the middle and late 1960s, hardware became more powerful than the software that ran
it. The **hit-and-miss’* approach to programming could not keep pace. To obtain the
full benefit of such third generation computers as the IBM System/360, an operating
system and, for some applications, even individual programs had to contain thousands
of instructions, often written by many different people. No systematic approach to
program organization had been developed to handle tasks of such magnitude. The
result was called a *‘software crisis”’ during a NATO conference convened to address
the problem.! Two “horror stories” illustrate this point.

One example is the operating system that IBM developed for the System/360.
Called 0S/360, it cost hundreds of millions of dollars to develop, was more than a year
late, and contained thousands of errors. After many releases, hundreds of errors prob-
ably still remained when the System/370 was introduced.

This was not an isolated case. Studies have shown that, in general, programmers
averaged only 5 to 10 completely debugged source statements (programming lines) per
day.? This would seem to be an incredibly low output, and indeed it was. To pick up
a pencil and write 10 instructions takes less than 10 minutes. Of course, the reason
for this low output was obvious to everyone: too much time was spent debugging
programs of the errors introduced at the time they were written. Program language
errors (“‘syntax errors’) detected by compilers are easily and quickly corrected. Most
of the debugging time was spent correcting what might be called planning errors and
logical errors in the overall design and organization of the program. Prior to the advent
of structured programming, this general state of affairs had been considered inevitable:
it was simply part and parcel of computer programming.

The second example shows that error-ridden programs can sometimes be a mat-
ter of life and death. Astronauts John Young and Robert Crippen were already in the
space shuttle Columbia when, twenty minutes before launch time, warning lights at
Mission Control began to flash. Something was wrong with the computer system on
board the shuttle. A check rather quickly showed that there was nothing wrong with
the hardware. The problem seemed to be in the programs. Once that was determined,
it was clear that the maiden flight of the space shuttle would have to be delayed. Why?
The software for those computers consisted of nearly 500,000 lines of elaborately in-
terwoven instructions. “Finding a programming error, a bug, in that webb,” writes
Steve Olson, “would be like trying to find a single misspelled word in an encyclope-
dia.”?

Olson goes on to relate what Edsger Dijkstra, the father of structured program-
ming, had to say about the above incident and the type of programming generally that
goes on at NASA:

“It was precisely the type of error that one would expect. . . . You see, most of NASA’s
software is full of bugs.”

His eyebrows arch with pleasure, a sure sign that a story follows. *I saw the first
moon shot in 1969, when Armstrong, Aldrin, and Collins went to the moon, and shortly
thereafter I met Joel Aron of IBM’s Federal Systems Division, who I knew had been re-

CHAPTER 1 Structured Programming 5

sponsible for a large part of the software. So when I saw Joel at the swimming pool of our
hotel in Rome, 1 said, ‘Joel, how did you do it?’ ‘Do what?' he said. I said, ‘Get that soft-
ware to work okay.’ ‘Okay?’ he said. ‘It was full of bugs. In one of the trajectory computa-
tions, we had the moon’s gravity repulsive rather than attractive, and this was discovered
by accident five days before count zero.' *’

Dijkstra draws back in his chair, the picture of astonished outrage. “When I had
regain:ad my composure, I said, ‘"Those three guys, they have been lucky.’ ‘Oh yes,” Joel
said.”

The history of structured programming began in 1964 at an international collo-
quium held in Israel. There Corrado Bohm and Guiseppe Jacopini presented a paper
(in Italian) that proved mathematically that only three “control structures’” were nec-
essary to write any program. This theorem, and control structures in general, is dis-
cussed at length in chapter 6. Suffice it to say here that the work of Bohm and Jacopini
made the GOTO statement unnecessary in computer programming. The GOTO state-
ment is discussed in chapter 4, but you should realize here that during the mid-1960s
virtually no programmer could even conceive of a program written without GOTO
statements. Therefore, it is no surprise that even after an English translation of their
paper in the trade journal Communications of the ACM in 1966, the theorem of Bohm
and Jacopini and its implications were almost entirely ignored in the United States.

The turning point, however, occurred in 1968 when Edsger Dijkstra of the Neth-
erlands published a letter to the editor in the Communications of the ACM. This letter
was given the appropriate title, “Go To Statement Considered Harmful.”” For over
twenty years now Dijkstra has been crusading for a better way of programming—a
systematic way to organize programs, called structured programming. It can be used
with profit for any program but pays enormous dividends on very large programs of
the type previously discussed.

Edward Yourdon is another important name in the history of structured pro-
gramming. By giving seminars on the subject in the mid-1970s, he was the individual
most responsible for popularizing the method in the United States. However, its wide-
spread acceptance would probably not have occurred were it not for the tremendous
success of the now famous New York Times project, which was completed in 1972,
This was the first major project using structured programming and its first great suc-
cess story.

This project, developed for the New York Times by a programming team at IBM
under the direction of Harlan Mills, was a system to automate the newpaper’s clipping
file. Using a list of index terms, users could browse through abstracts of all the paper’s
articles and then retrieve the full-length articles of their choice from microfiche for
display on a terminal screen.

The task took 22 months, included about 83 000 lines of code, and involved approxi-
mately 11 man-years of effort. The file processing system passed a week of acceptance
testing without error and ran for 20 months until the first error was detected. In the first
13 months, only one program error resulted in system failure. The system-control pro-
grammers achieved about 10 000 lines of source code and one error per man-year.

In the entire system, only 21 errors were found during five weeks of acceptance
testing, and only 25 additional errors were discovered during the first year of the sys-
tem’s operation. Moreover, it was delivered under budget and ahead of schedule.® Con-
trast these statistics with those mentioned previously for the development of IBM’s
08S/360 operating system and the overall average output per programmer per day. For
more details, consult the classic article on this project by F. T. Baker, listed in the
suggested reading at the end of this chapter.

PART 1 Computer Programming

These results shocked the programming community. Software developers began
to pay attention to what Dijkstra had been saying and writing. By the mid- to late-
1970s, structured programming was being used for everything from home computers
to multimillion-dollar defense projects. IBM certainly became a believer. Mills, IBM's
chief programmer on the New York Times project, says, “I was surprised myself at
how big an impact that project made. It was as if the world were waiting for something
like that to happen. We [now] use it [structured programming] at IBM across the whole
company. Hardly anyone can survive without it.”"?

Indeed, structured programming has been called a “revolution in programming"®
and “one of the most important advances in computer software of the past two dec-
ades.”” This is not to say, however, that old habits die easily. Many who learned to
program prior to Dijkstra’s work spurn the concept even today. Jim Horning, a com-
puter scientist at Xerox’s Palo Alto Research Center explains, “There are some people
in this laboratory who read everything he [Dijkstra] writes and are extremely grateful
for it, and there are others who would not be willing to have him come visit us. He
tends to polarize people.”*’

Nevertheless, both academia and industry are turning more and more to the phi-
losophy and techniques of structured programming. “Today it is safe to say that vir-
tually all practitioners [of the art of programming] at least acknowledge the merits of
the discipline [of structured programming], and most practice it exclusively.”*!

Students using this textbook would be well-advised to commit themselves to this
approach, learn it well, and apply it consistently in every program they write.

CHECK YOURSELF

1. What was the “software crisis” in the mid-1960s?

2. Who was the leading figure in developing and promoting the concepts of
structured programming?

3. What major programming project first employed the techniques of structured
programming and shocked the data processing community with its
astonishing success?

4. Who was instrumental in promoting the method of structured programming
in the United States through a series of seminars?

1.2

DEFINITION OF STRUCTURED
PROGRAMMING

Structured programming is often thought to be programming without the use of the
GOTO statement. Indeed, structured programming does discourage the frequent and
indiscriminate use of GOTO, but there is more to it than that. To fully appreciate the
definition, however, one must understand the full extent of the problem addressed by
structured programming.

In a word, this problem is complexity. Most programs that do anything signifi-
cant in the real world are rather long. Of course, such software as word processors,
compilers, or operating systems stagger the imagination. In fact, some computer sci-
entists claim that these very large software systems are the most logically complex
things humans have ever invented. However, even programs of only several hundred

CHAPTER 1 Structured Programming 7

lines can get unwieldy, and it is difficult to keep all the details of the program in mind
at one time. With really large sofiware systems, it is impossible. Yet for these programs
and systems to work, every minute detail must be perfectly correct and dovetail in
every respect with every other detail.

Complexity is precisely the problem that structured programming addresses. In-
deed, one author has defined structured programming as follows: “a method of design-
ing computer system components and their relationships to minimize complexity.”**

How does structured programming minimize complexity? It does so in three
ways, which will serve as the full, working definition of structured programming in
this book.

Structured programming a method of writing a computer program that uses
(1) top-down analysis for problem solving, (2) modularization for program
structure and organization, and (3) structured code for the individual modules.

The full explanation of these three ideas is presented in succeeding chapters.
However, it is possible here at least to briefly indicate how each of them reduces in its
own way the complexity of the programming task.

Top-down analysis.

A program is written to tell a computer what to do. But what do you want it to do?
What is the job you want it to perform for you? This *‘job” is more formally called the
problem. However, before you can tell the computer what to do, you have to *“solve”
the problem yourself. In other words, you have to state every step necessary in order
to accomplish the job. This activity on your part is called problem solving or problem
analysis. For big problems, developing a solution can be very complicated. Where do
you start? Top-down analysis is a method of problem solving. It tells you how to start
and guides you through the entire process. The essential idea is to subdivide a large
problem into several smaller tasks or parts. Top-down analysis, therefore, simplifies or
reduces the complexity of the process of problem solving. Top-down analysis is the
subject of chapter 3.

Modular programming.

Programs generally require many instructions for the computer. Modular programming
is a method of organizing these instructions. Large programs are broken down into
separate, smaller sections called modules, subroutines, or subprograms. Each module
has a specific job to do and is relatively easy to write. Thus, modular programming
simplifies the task of programming by making use of a highly structured organizational
plan. There is, of course, a direct correlation between the subdivisions of the problem
obtained through a top-down analysis and these modules: each subdivision will cor-
respond to a module in the program. Modular structure also simplifies programming
by greatly reducing the need for the GOTO statement, which, when used frequently,
tends to obscure program organization and introduce errors. Modular programming is
the subject of chapter 4.

Structured coding.

If programs are broken down into modules, into what are modules subdivided? Ob-
viously, each consists of a set of instructions to the computer. But are these instruc-
tions organized in any special way? That is, are they grouped and executed in any
clearly definable patterns? In structured programming they are. They are organized
within various control structures. A control structure represents a unique pattern of

PART 1 Computer Programming

execution for a specific set of instructions. It determines the precise order in which
that set of instructions is executed.

Each control structure represents a different pattern of execution, but each of
these patterns in turn represents one of three basic types of execution. The component
statements within a specific control structure are executed either (1) sequentially, (2)
conditionally, or (3) repetitively.

If, then, the order in which the instructions in a module are executed is deter-
mined exclusively by the use of control structures, the module is said to be “‘struc-
tured,” and the code is described as structured code. Structured code, therefore, can-
not include a GOTO statement. First, a GOTO statement affects the order in which
statements in a module are executed, but it does not contain other statements; there-
fore, it cannot “structure” anything. Second, a GOTO statement represents no defina-
ble pattern of execution; it simply jumps to some statement other than the next one in
line. Using completely structured code, therefore, reduces program complexity be-
cause the program instructions are organized into discernable patterns, and the GOTO
statement—which obscures organization—is eliminated entirely. Structured coding is
the subject of chapters 6 and 7.

Do not be dismayed if you did not understand every detail of the preceding
discussion. It was meant as a mere introduction, and each point is discussed again
and more fully in the chapters that follow. It was necessary at this point, however, to
have a working definition of structured programming. Remember this at least: struc-
tured programming contains three elements. They are (1) top-down analysis, (2) mod-
ular programming, and (3) structured coding by means of control structures, whatever
these terms might mean.

FOR EMPHASIS
Structured programming:

1. Top-down analysis for problem solving
2. Modularization for program structure
3. Structured code for each module

One more point should be made before passing to the next section. Not all books
and articles use the term ‘“‘structured programming” in the same way. Indeed, there is
some controversy among theoreticians as to how it should be defined. Some authors
use the term to mean modular programming (discussed in chapter 4). Others restrict it
simply to the use of structured code, sometimes even limiting the code to the exclusive
use of the three fundamental control structures (discussed in chapter 6). In this book
it will be used in the broader sense that encompasses all three of the above ideas.

CHECK YOURSELF

. What is the main problem of computer programming addressed by
structured programming?

. What are the three main aspects of structured programming?

. What is the fundamental idea in top-down analysis?

. What is the fundamental idea in the modular organization of programs?

. What is the fundamental characteristic of structured code?

-t

Gb W

CHAPTER 1 Structured Programming 9

1.3

ADVANTAGES OF STRUCTURED
PROGRAMMING

In general, structured programming addresses and to a great extent solves the problem
of complexity in computer programming. However, in view of the previous, rather
lengthy discussion of some of the specific problems that have occurred in the past, it
is profitable at this point to list a more detailed summary of the advantages gained by
structured programming techniques. They are all a direct result of the overall concept
of subdivision or modularity both in problem analysis and program structure.

1. Programs are more easily and more quickly written. Big programming tasks do not
remain big programming tasks. They are broken down far enough that each subtask
is easy to program as a separate unit.

2. Programs have greater reliability. Far fewer organizational and logical errors occur
in the initial stages of program development and writing.

3. Programs require less time to debug and test. This is true, first, because fewer errors
are made in writing programs. However, modularity also makes it much faster to
localize and correct those errors that do occur.

The difficulty of debugging a program increases much faster than its size. That is, if one
program is twice the size of another, then it will likely not take twice as long to debug,
but perhaps four times as long. Many very large programs (such as operating systems) are
put into use still containing bugs that the programmers have despaired of finding, be-
cause the difficulties seem insurmountable. Sometimes projects that have consumed years
of effort must be discarded because it is impossible to discover why they will not work.?

The principles of structured programming eliminate much of the difficulty in de-
bugging programs, thus avoiding such disasters.

4. Programs are easier to maintain. As programs and systems are used, the need often
arises to modify them, either by making changes or adding new features. Informal
surveys indicate that writing, debugging, and testing a program consume less than
half of the overall programming effort invested in the project. More than half of this
overall effort goes into program maintenance.'* With a structured program, this task
becomes much easier, especially for someone other than the original programmer.
There are several reasons for this: First, the program is more readable; that is, the
logic of a well-organized, modular program is much easier to follow. Therefore, one
can more quickly discover how and where to make the needed changes. Since mod-
ules are separate, independent units, an old module is simply replaced by a new
module. No longer does one change require a multitude of other changes through-
out the entire program. Second, adding new features or capabilities to a program
becomes as easy as adding new modules to a superstructure already available.

The cumulative result of all these advantages is greater overall programmer pro-
ductivity. In the early days of computer programming, it was necessary to use as many
clever tricks as possible to minimize memory usage and optimize CPU time. Such
coding is generally obscure and is now called clever code. However, program effi-
ciency is usually inversely proportional to program readability. To get a program that
used “clever code” to work right in the first place was quite difficult and time-consum-
ing; to read or modify someone else’s program was next to impossible. But in those
early days, a programmer’s time was cheaper than CPU time. However, with hardware
advances, memory space is no longer a problem, and programmer time has become
much more expensive than CPU time. The emphasis today, therefore, must be on max-

10

PART 1 Computer Programming

imizing programmer productivity and software system reliability rather than saving a
few nanoseconds of CPU time. This is the purpose of structured programming.

CHECK YOURSELF

1. List the four major advantages gained by structured programming.

2. (a) What is meant by program reliability? (b) What is meant by program
readability?

3. What does the term clever code mean?

4. Which is more costly today—CPU time or programmer time?

14

STRUCTURED PROGRAMMING AND
PROGRAMMING LANGUAGES

Three statements can be made about structured programming and computer languages:

1. A programmer can apply the methods of structured programming in any language.

2. Some languages have been designed in such a way that one virtually has to write a
modular program.

3. The ease with which one can write structured code depends to some extent on the
language used.

Consider the second statement. The languages ALGOL, PL/l, Ada, and Pascal
have been designed not only to facilitate but also to encourage the use of modulariza-
tion in program organization. Such languages are sometimes said to be block-struc-
tured. Chapter 4, which deals with modular structure, discusses this term in more
detail. FORTRAN, on the other hand, is unstructured. Dijkstra has made the statement
that the sooner we forget that FORTRAN ever existed the better.!* BASIC also falls into
this category, and it is probably still the most popular language today, at least on
microcomputers. However, even though FORTRAN and BASIC are not block-struc-
tured, it is still possible to write structured programs in these languages. Fortunately,
our task in this textbook is much simpler: Pascal was designed to teach structured
programming. But this brings us to the third statement.

Any program can be written by using only three fundamental control structures.
This is what Bohm and Jacopini proved. On the one hand, however, some languages
provide the convenience of several additional control structures. This is the case with
Pascal. Although only one conditional loop control structure is necessary, Pascal pro-
vides three different types of loop structures. This makes the task of avoiding GOTO
statements that much easier. On the other hand, other languages make it difficult to
write structured code. For example, Applesoft BASIC does not have the ELSE option
in its IF statement. Neither does it have a conditional loop structure. Therefore, the
use of the GOTO statement can be minimized but not eliminated. Pascal, by compari-
son with other languages, tends to be rich in control structures. Not only is it possible
to write code without a GOTO statement, it is actually easy to do so.

CHAPTER 1 Structured Programming 11

CHECK YOURSELF

1. True or false: The techniques of structured programming can be used in any
computer language.

2. What is a block-structured language?

3. (a) Is Pascal a block-structured language? (b) Name two languages that are
not block-structured. (c) Name two additional languages that are block-
structured.

4. True or false: The more control structures directly implemented in a
language, the easier it is to write structured code.

1.5

ADDITIONAL TOPICS RELATED TO
STRUCTURED PROGRAMMING

There are additional important aspects to the philosophy of structured programming.
They are not discussed in this book, however, because they are more closely related
to systems analysis than to writing individual programs. These topics include the con-
cept of the “chief programmer” team and structured walkthroughs. Additional infor-
mation on these topics can be found in Capron and Williams (see the following list of
suggested reading). Managing the Structured Techniques and Structured Walk-
throughs, both by Edward Yourdon, contain extensive treatments of these topics. The
first of these two books is written especially for data-processing managers.

NOTES

1. Steve Olson, “Sage of Software,” Science, January/February 1984, p. 79.
2. Don Cassell and Martin Jackson, Introduction to Computers and Information Pro-
cessing (Reston, Va.: Reston Publishing Co., 1980), p. 243.
3. Olson, “Sage of Software,” p. 75.
4. Olson, “Sage of Software,” pp. 75-76.
5. Donald D. Spencer, Introduction to Information Processing, 3d ed. (Columbus,
Ohio: Merrill Publishing Co., 1981), p. 362.
6. H. L. Capron and Brian K. Williams, Computers and Data Processing (Menlo Park,
Cal.: Benjamin/Cummings Publishing Co., 1982), p. 265.
7. Quoted by Olson, *‘Sage of Software,” p. 84.
8. Daniel D. McCracken, ‘‘Revolution in Programming,
1973, p. 50.
9. Olson, “Sage of Software,” p. 76.
10. Quoted by Olson, ““Sage of Software,” p. 76.
11. Robert T. Grauer, Structured COBOL Programming (Englewood Cliffs, N.J.: Pren-
tice-Hall, 1985), p. 151.
12. Capron and Williams, Computers and Data Processing, p. 266.
13. Robert L. Kruse, Data Structures and Program Design, 2d ed. (Englewood Cliffs,
N.J.: Prentice-Hall, 1987), p. 3.
14. Kruse, Data Structures and Program Design, p. 3.
15. Quoted by Olson, '‘Sage of Software,” p. 76.

Datamation, December

12

PART 1 Computer Programming

SUGGESTED READING

Baker, F. T. “Chief Programmer Team Management of Production Programming.” IBM
Systems Journal 11 (January 1972): 56-73.

Capron, H. L., and Williams, Brian K. Computers and Data Processing. Menlo Park,
Cal.: Benjamin/Cummings Publishing Co., 1982. Pp. 263-66.

Dijkstra, Edsger W. “The Humble Programmer.” Communications of the ACM 15 (Oc-
tober 1972): 859-66.

McCracken, Daniel D. “Revolution in Programming.” Datamation, December 1973,
pp. 50-52.

McGowan, Clement L., and Kelly, John R. Top-down Structured Programming Tech-
niques. New York: Mason/Charter Publishers, 1975. Pp. 1-4.

Olson, Steve. “Sage of Software.” Science, January/February 1984, pp. 75—84.

Spencer, Donald D. Introduction to Information Processing. 3d ed. Columbus, Ohio:
Merrill Publishing Co., 1981. Pp. 355-63.

Yourdon, Edward. Managing the Structured Techniques. 2d ed. New York: Yourdon
Press, 1979.

Yourdon, Edward. Structured Walkthroughs. 3d ed. Englewood Cliffs, N.J.: Prentice-
Hall, 1985.

98

PART 1 Computer Pragramming

ENTRY
POINT BEGIN

4

READ ;
ACTION 1 AB,C
ACTION 2 D<-A(B+C)
A 4
ACTION 3 PRINT D
A 4
EXIT
POINT
FIGURE 6.2 FIGURE 6.3
General SEQUENCE control structure. Flowchart of example SEQUENCE control

structure.

Three observations are in order. First, virtually all Pascal control sections consist
of a single SEQUENCE control structure, which must be implemented by the com-
pound statement. In this particularly simple case, there are no other control structures
within the compound statement. Normally, of course, the compound statement repre-
senting the control section of a Pascal program would consist of some combination of
control structures. Second, the compound statement in Pascal is enclosed or bracketed
by the reserved words BEGIN and END. These terms serve as markers and are called
delimiters. Third, compound statements can be used anywhere in a Pascal program
where the syntax requires a statement. In the following section an example is given of
a compound statement used within an IF statement.

The SELECTION Control Structure

The SELECTION control structure represents conditional execution and is imple-
mented in Pascal by means of the IF statement. The execution path described by this
control structure is a fork that divides into two branches. The general flowchart is
given in Figure 6.4.

CHAPTER 6 Contro! Structures 97

1. A control structure has only one entry point and only one exit point. Implicit in
this rule is the fact that a control structure and the coding that represents it must
be a block that can be inserted or removed while the rest of the module or program
remains intact. As you have learned in chapter 4, modules as a whole are also
blocks in a similar sense, and the same term is used in both cases to describe this
property: plug-in compatibility.

2. Control structures can be nested or imbedded within control structures. That is, the
component statements in a structured control statement can themselves be other
structured control statements as well as simple statements. Therefore, arbitrarily
complex modules can be created. The general topic of nesting is discussed in chap-
ter 7. Although, in the following examples, the “action” is usually a simple pro-
gramming statement or two, this should not obscure the programming power rep-
resented by Pascal’s six control structures.

CHECK YOURSELF

1. There are two ways the use of GOTO can destroy the “one entry point—-one
exit point” requirement for the proper use of the control structures. Explain
each.

2. What are the two parts of a program to which the term “plug-in
compatibility” can be applied?

3. What is meant by “nesting” control structures?

6.7

NONREPETITIVE CONTROL STRUCTURES

Each control structure available in Pascal is now described in detail. Flowcharts and
Pascal examples are included. However, because loops are somewhat complicated,
they are treated separately in the next section. Three items are included in the presen-
tation of each control structure: a general or generic flowchart, a flowchart for an actual
example, and the Pascal code for that example. Remember that this chapter is con-
cerned primarily with the general nature of control structures, not with Pascal syntax.
Read chapter 18 in Part II simultaneously with this chapter. It contains a full discus-
sion of the syntax of the structured control statements used to implement the control
structures in the Pascal code.

The SEQUENCE Control Structure

The SEQUENCE control structure is the easiest to understand. It represents sequential
execution and is implemented in Pascal by means of the compound statement. The
execution path described by this control structure is a straight line. The general flow-
chart is given in Figure 6.2. Figure 6.3 contains a specific example, which is coded in
Pascal as follows:

PROGRAM EXAMPLE_SEQUENCE CINPUT, DUTPUT);
VAR A,B,C,D: REAL;
BEGIN
READLN (A,B,C);
D= A+ (B + C);
WRITELN (D)
END.

PART I Computer Programming

the minimum number of control structures necessary for programming? The answer
was established in 1964: only three control structures are really needed. In other
words, any algorithm can be programmed by using only three control structures. How-
ever, they cannot be chosen at random from the preceding list. Not surprisingly, each
of the three basic types of execution must be represented: sequential, conditional, and
repetitive. Moreover, the control structure representing repetitive execution must be
“conditional” rather than “unconditional” (these terms are explained later in this
chapter).

In 1964 Corrado Bohm and Guiseppe Jacopini presented a paper at an interna-
tional colloquium held in Israel. In it they proved mathematically that any program
could be written using the following three control structures: SEQUENCE, SELEC-
TION, and DO-WHILE. The English translation of this paper was published in 19662
These three control structures, therefore, are often considered the fundamental control
structures. Some authors, in fact, define structured coding to mean coding that uses
only these three control structures. That, however, is not the definition of structured
coding given in this book; a broader definition is given in the next chapter.

There are two consequences of this proof. First, if a high-level language imple-
ments at least these three control structures, it is not necessary for it to include a
GOTO statement at all. Of course, other control structures can be implemented for
convenience. Why, then, are there still GOTO statements? Because old habits die hard
among old programmers. Languages include a GOTO statement in deference to pro-
grammers who still think in terms of GOTO. However, more and more companies,
programming departments, and schools are insisting that programmers and students of
programming avoid the use of the GOTO statement and write structured programs.

Second, structured programming and structured coding demand that program-
ming practice reflect what is theoretically possible. That is, if it is a proven fact that
any program can be written with no GOTO statements, then no GOTO statements
should be used in writing programs. The exclusive use of the control structures and
the complete elimination of the GOTO statement should and eventually will become
standard programming practice.

CHECK YOURSELF

1. How many control structures does Pascal implement?

2. What are the generic names used in this book for the control structures
available in Pascal?

3. What are the names of the Pascal statements that implement the control
structures available in Pascal?

4. Which Pascal statements implement control structures that represent (a)
sequential execution? (b) Conditional execution? (c) Repetitive execution?

5. (a) What are generally considered to be the fundamental control structures?
(b) Why are they considered fundamental?

6‘6

CHARACTERISTICS OF CONTROL
STRUCTURES

Before discussing each control structure in detail, two very important characteristics
of all control structures should be observed. Each of these properties plays an impor-
tant role in chapter 7.

CHAPTER 6 Control Structures 95

6.5

CONTROL STRUCTURE NAMES

The purpose of this section is to name the various control structures available in
Pascal and the structured control statements by which they are implemented. After
this section, the remainder of this chapter describes each of the control structures in
detail.

As you learned in the previous section, the control structures are language in-
dependent. Thus, each control structure has a generic name that, in general, is also
language independent. Therefore, if a certain control structure is implemented in a
given language, the statement name in that language may not be the same as the ge-
neric name. This is no real problem, though, since they are usually quite close, and
sometimes even the same. For example, the FOR-DO control structure is the DO state-
ment in FORTRAN and the FOR statement in BASIC and Pascal. Also, the DO-WHILE
control structure is implemented in Pascal by means of the WHILE statement.

Now, then, what are the various control structures? Generic names for control
structure have not been entirely standardized, but the six structures that have been
implemented in Pascal are usually named, as follows: (1) SEQUENCE, (2) SELECTION
(also called IF-THEN-ELSE; the IF-THEN structure is a special case of the SELECTION
control structure), (3) DO-WHILE, (4) DO-UNTIL (also called PERFORM-UNTIL or RE-
PEAT-UNTIL), (5) FOR-DO (also called ITERATIVE-DO), and (68) SELECT-CASE (also
called ON-A-PERFORM). Other structures exist, but they are not directly implemented
by any Pascal statement’.

If six control structures are implemented in Pascal, why does Pascal have seven
structured control statements? The answer is that the WITH statement is somewhat of
an anomaly. It is a structured control statement, but like the more straightforward
compound statement, it also represents the SEQUENCE control structure. The only
difference between the two statements is that the WITH statement allows its compo-
nent statements to drop the record variable name when accessing fields within that
record. It is effectively a specialized form of the compound statement and is discussed
further in chapter 25.

The Pascal statement names for the previous control structures are as follows:

Generic Name Pascal Statement
SEQUENCE Compound statement
SELECTION IF statement
FOR-DO FOR statement
DO-WHILE WHILE statement
DO-UNTIL REPEAT statement
SELECT-CASE CASE statement

According to the definition, each of these control structures represents one of the
three basic types of execution. Therefore, they can be grouped as follows:

Sequential Flow Conditional Flow Repetitive Flow

SEQUENCE SELECTION FOR-DO
SELECT-CASE DO-WHILE
DO-UNTIL

The more control structures available in a given programming language, the more
powerful that language is for writing programs. Pascal is one of the more powerful
languages in this regard. Howsver, there is an interesting theoretical question: What is

94

PART I Computer Programming

Control structure (a) a specific pattern for organizing program logic, that is, a

pattern for directing the flow of control in the execution of a program; (b) each

of the six patterns available in Pascal is characterized either by sequential flow,
conditional flow, or repetitive flow; {c) a control structure is implemented in a

high-level language by means of a structured control statement.

There are several points to observe in this definition of control structure:

1. A control structure is a distinguishable and clearly definable pattern for the flow of
control in a module.

2. There are many control structures or patterns for the flow of control to follow.

3. However, all flow patterns can be characterized as either sequential, conditional, or
repetitive. Each of the many different patterns is simply a variation on one of these
themes.

4. Control structures are language independent. They are implemented in a specific
high-level language by the structured control statements provided in that language.
Therefore, each of the structured control statements in a specific language repre-
sents a different control structure.

5. Structured control statements are language dependent. They are, of course, actual
statements in a specific high-level language. They are “structured"” in the sense that
they consist of other statements as building blocks, and they are “‘control” state-
ments in the sense that they direct the execution of their component statements:
the component statements are executed either sequentially, conditionally, or repet-
itively. Therefore, they represent the language-specific implementations of the lan-
guage-independent control structures.

6. Six control structures or patterns have been implemented in Pascal by seven struc-
tured control statements. Pascal has two structured control statements in which
their component statements are executed sequentially, two in which their compo-
nent statements are executed conditionally, and three in which their component
statements are executed repetitively. These are all named in the next section.

To summarize: To use control structures, as implemented by structured control
statements, in writing a module is to introduce organization into the module. These
statements organize the component statements placed in them and therefore the flow
of control in the module. One word of caution, however, is in order before concluding
this discussion: the organization represented by a structured control statement is de-
stroyed and it ceases to represent a control structure if a GOTO statement is included
as one of its component statements. This point is discussed in more detail in the next
chapter. There you will see that the concept of organization is quite important to an
understanding of the last aspect of structured programming—using structured code.

CHECK YOURSELF

. What constitutes a well-organized program?

. What constitutes a well-organized module?

. What are the three basic patterns of execution?

- In what two ways does a structured statement organize a module?

. Why is it impossible for a structured noncontrol statement to exist?

. What is a control structure?

. Explain the relationship between a control structure and a structured control
statement.

N OO W=

CHAPTER 6 Control Structures 93

First, what makes a program well-organized? A program is well-organized when
it is modularized, as chapter 4 pointed out. Modular structure for programs was the
second major aspect of structured programming.

Second, what in turn makes a module weil-organized? A module is well-orga-
nized when it consists exclusively of clearly distinguishable patterns for the flow of
control among the statements that form the module. This is the only reasonable way
to define organization among the statements in a module.

Third, how many distinguishable or definable patterns are there for the flow of
control in a module? There are many such patterns, six of which are available in
Pascal. However, each individual pattern represents one of only three characteristic
types of flow possible within a program: the flow can be (1) sequential, {2) condi-
tional, or (3) repetitive.

When the flow of control is sequential, a single series or sequence of statements
is executed once and in order. When the flow is conditional, some condition is tested
in order to determine which of two or more statements or series of statements is exe-
cuted. Finally, when the flow of control is repetitive, one or more stalements are exe-
cuted repeatedly; the decision whether to perform the loop again is made on the basis
of the truth-value of some condition. In Pascal, there is one example of sequential flow,
two variations of conditional flow, and three variations of repetitive flow, making a
total of six patterns. These patterns, called control structures, are defined below and
then described in detail later in this chapter.

The Nature of Structured Statements

According to the definition given earlier in this chapter, a structured statement is con-
structed by using other statements as building blocks. In addition, a structured state-
ment determines the manner in which the component statements are executed. A
structured statement, therefore, organizes two things. First, it organizes the statements
of which it is composed. This is obvious: since each structured statement consists of
other statements, it represents a particular way to put those statements together. Sec-
ond, since it determines the manner in which they are executed (sequentially, condi-
tionally, or repetitively), a structured statement also organizes the flow of control in
the program.
Two conclusions can now be drawn with regard to structured statements:

1. A structured statement must also be a control statement; there can be no such thing
as a structured non-control statement.

The reason is quite simple. Since a structured statement determines the manner in
which its component statements are executed, it necessarily affects the flow of control
through those statements and is therefore a control statement.

2. A structured statement is the way to implement a control structure in a high-level
language.

This follows from the fact that a structured statement organizes the flow of control into
a recognizable pattern.

Definition of a Control Structure

With this background on what constitutes a well-organized module and on the nature
of structured control statements, you are ready for the formal definition of a control
structure:

92

PART 1 Computer Programming

chart loops should be translated idiomatically rather than literally. In other words, do
not construct loops with IF statements and GOTO statements—use the statements that
have been designed for automatic loop control and with structured programming in
mind.

Now consider pseudocode. Translating pseudocode into Pascal presents no prob-
lem whatever. Pseudocode was designed with structured control statements in mind.
The previous program would be written in pseudocode as follows:

BEGIN main control section
SetK =1
DOWHILEK =5

Read A
Print (A * A)
SetK=K + 1
ENDDO
END main control section

Despite the problem of translating flowcharts into Pascal code, they do provide
a very graphic demonstration of the control structures studied in this chapter. There-
fore, in the explanation of control structures in general and Pascal’s structured control
statments in particular, flowcharts are routinely used.

CHECK YOURSELF

[

. What is a program loop?

. How is a loop flowcharted?

3. What are the three structured control statements available in Pascal for loop
control?

4. What do the terms “literal” and “idiomatic” mean in relation to the process
of translation?

5. What two high-level language instructions are necessary in order to give a
“literal” translation of a flowchart loop?

6. What feature of the WHILE loop (and other loop-control structures) makes it

possible to eliminate the GOTO statement?

N

6.4

DEFINITION OF A CONTROL STRUCTURE

We have seen that the building blocks of a module and, therefore, of a program are the
individual statements available in the high-level language being used. What are the
different ways these building blocks can be put together to form modules? There are
several aspects to this question, and it is best to treat them separately.

Well-organized Modules

Is it possible to distinguish a “well-organized” module from an ‘“‘unorganized” mod-
ule? The answer is yes. The subject of how modules are organized can be presented
by asking three questions.

CHAPTER 6 Control Structures 921

PROGRAM SQUARES (OUTPUT);
LABEL BEGINLOOP;

VAR
K: INTEGER;
A: REAL;
BEGIN
K := 13
BEGINLOQOP:
IF K <= 5 THEN
BEGIN
READLN CA);
WRITELN (A + A);
K := K + 13
GOTD BEGINLOOP
END
END.

The preceding Pascal translation does not make use of any of Pascal’s structured
control statements that were designed for looping. However, these statements were
made a part of Pascal to perform this very activity. Therefore, an idiomatic translation
would make use of one of them. For example:

PROGRAM SQUARES (OUTPUT);

VAR
K: INTEGER;
A: REAL;
BEGIN
K = 13
WHILE K <= S DO
BEGIN
READLN (A);
WRITELN (A = A);
K := K ¢+ 1
END
END.

The WHILE statement was chosen to perform this loop. Notice that there is no
explicit IF statement or GOTO statement in the program. Checking the condition “K
< 5" and branching back to the beginning of the loop are both performed automati-
cally. The WHILE loop translation is considered better and more “idiomatic™ because
the WHILE statement was designed to do the very thing represented by the flowchart.
The GOTO statement is not needed. Here is our first illustration of an extremely im-
portant point in this and the next chapter: an adequate supply of control structures
renders the GOTO statement unnecessary.

For another illustration, you should study again Example 5.1 in chapter 5. The
flowchart in Figure 5.2 also has two possible Pascal translations: a literal one using IF
and GOTO statements and an idiomatic translation using the REPEAT statement, an-
other of Pascal’s structured control statements designed for looping. Looking back
now, you will see that the flowchart was actually translated idiomatically.

To appreciate fully the contrast being drawn here, you must understand a bit of
history. In the early days of computer programming, there were no WHILE statements,
REPEAT statements, or even FOR statements. All program loops had to be constructed
by means of IF statements and GOTO statements. It was during that time that flow-
charts were developed. This explains why flowcharts are so convenient for displaying
“GOTO” logic and also why flowcharting (to date, at least) has no special symbol for
loops as such. Now, however, with the advent of these loop control statements, flow-

