APPENDIX H

QA CHECKLIST

Software Specification

Quality Assurance Criteria
1. First of all, the requirements in the specification must be validated.

They must be correct, complete, consistent, realistic, needed, unambiguous,

verifiable, and traceable. (Read Mynatt excerpt for explanation). See also

Pressman section 11.6

2. Secondly, the document must be technically correct.

3. Thirdly, the document must be well written. The writing must meet the

standards of the Cal Poly Writing Proficiency Exam level 4 or greater. Use

present tense, active voice with transitive verbs, and 3rd person writing in

this document. Keep all language in the problem domain. If you have

questions about writing style, refer to a standard style guide such as: MLA

Handbook for Writers of Research Papers. Passive voice writing is

unacceptable. Avoid vague terms such as those in Dan Stearns' bad words

list.

A. Overview (Executive Summary)

 1. [] An overview of the system for upper level managers who won't be

 reading the entire document. It should be a one page summary of your

 entire solution.

 2. [] Correct grammar and usage.

B. Functional requirements (User Manual)

 1. [] The functional requirements are written as an end-user reference

 manual. It should be organized for ease of reference by a

 knowledgeable user (not Tutorial style). When screen shots are

 appropriate, you may simply refer to the corresponding screen in the UI

 prototype.

 2. [] Every requirement is numbered.

 3. [] Describes only EXTERNAL behavior, as seen from the user's point of

 view. Describe WHAT not HOW. No design specs or implementation details.

 Data and processes must exist in the problem domain, not the solution

 domain.

 4. [] Every noun must be a term from the data dictionary, preferably

 emphasized in some way in the document (e.g., CAPS). Use the exact DD

 term.

C. Non-functional requirements

 1. [] List any attributes the customer requires of your system that don't

 provide a function or capability, but some other desired operational

 characteristic. For example, attributes such as performance, security,

 usability, compatibility. aren't a "feature" of the system, but are a

 required characteristic. You must decide the kind of requirements that

 apply to your project and include those that are appropriate.

 2. [] Each requirement is simply stated in english. Each requirement must

 be objective and quantifiable; there must be some measurable way to

 assess whether the requirement has been met.

 3. Here are some examples of non-functional requirements.

 o [] Performance requirements

 Resources required, response time, transaction rates, throughput,

 benchmark specifications or anything else having to do with

 performance.

 o [] Operating constraints

 List any run-time constraints. This could include system

 resources, people, needed run-time libraries, etc.

 o [] Platform constraints

 Describe the target platform requirements, i.e. operating system,

 hardware, etc. Be as specific or general as the customer requires.

 If the customer doesn't care, then you must decide. In the

 APPENDIX you must include an engineering analysis that shows how

 you arrived at your decision.

 o [] Accuracy

 The accuracy of the data. Accuracy includes both precision of data

 representation and validity of information. Beware of 100%

 requirements; they often cost too much.

 o [] Modifiability

 The effort required to make changes in the software. Often, the

 measurement is personnel effort (person- months).

 o [] Portability

 The effort required to move the software to a different target

 platform. The measurement is most commonly person-months or % of

 modules that need changing.

 o [] Reliability

 How often the software fails. The measurement is always expressed

 in MTBF (mean time between failures). The definition of a failure

 must be clear. Also, don't confuse reliability with availability

 which is quite a different kind of requirement.

 o [] Security

 Protection of your system and its data. The measurement can be

 expressed in a variety of ways (effort, skill level, time, ...) to

 break into the system. Do not discuss solutions (e.g. passwords)

 in a requirements document.

 o [] Usability

 How how easy it is for users to learn and operate.

 o [] Legal

 There may be legal issues involving privacy of information,

 intellectual property rights, export of restricted technologies,

 etc.

 o [] Others ... there are many others. Consult your resources.

 4. There are examples of good and bad quality attributes, written by the

 fall 98 CSC 205 classes for your viewing pleasure.

D. Context Diagram (if appropriate)

 1. [] Only one process.

 2. [] All input/outputs are labelled.

 3. [] All sources are included.

 4. [] No stores are shown.

E. Levelled Data Flow Diagram (if appropriate)

 1. [] Correct use of DFD notation.

 2. [] All data flows are labelled, and entered in Data Dictionary.

 3. [] Data flows are distinguished from control flows.

 4. [] Each process is assigned an ID.

 5. [] Data flow names are nouns.

 6. [] Process names are verb phrases (active voice verb with a direct

 object).

 7. [] Each process must have at least one data flow in and out.

 8. [] All data flows must begin and end somewhere.

 9. [] Data Stores must represent something in the problem domain, not

 solution domain. Thus it doesn't work to have only a single store named

 "database" that all data items flow into, even if you plan to implement

 it as a single file.

 10. [] Complete and consistent between levels.

 11. [] Levels organized reasonably.

 12. [] Levels refined appropriately (reflects an appropriate decomposition

 of the problem).

 13. [] Clear and clean graphics.

F. Data Dictionary

 1. [] All required data from problem statement are included (there is a

 data item for each noun in the problem statement).

 2. [] Describes only EXTERNAL data (i.e, data that is entered by or

 displayed to the user). No "internal" data, temporary variables should

 be described. "External" data is what goes in or out of system, not

 what is involved in intermediate calculations, or what stores data

 during processing.

 3. [] Proper choice of entries. (No processes).

 4. [] Distinguish composite from elemental entries.

 5. [] No redundant entries.

 6. [] Consistent with DFD and mini-specs.

 7. [] Clear, understandable format (e.g. as in Page-Jones).

 * [] Each entry has a description in english.

 * [] Composite data items show the "decomposition" into other

 data items.

 * [] Elemental data items show data type; Enumerable types

 should list all values, continuous and discrete types should

 list allowed range of values. (Examples: character A-Z,

 integer 1-99.)

G. Data Model

 1. [] Correct use of ERM notation (or other notation as appropriate).

 2. [] Appropriate selection of Entities, Attributes, and Relationships.

 3. [] Clear and clean graphics.

H. Platform Constraints - Engineering Analysis

 1. [] Considered all possible alternatives.

 2. [] Used objective and where possible, empirical, criteria.

 3. [] Documented all tradeoffs and made an unbiased decision.

Quality Assurance Criteria

User Interface Prototype
 1. Describes the manner in which the human user will interact with the

 software system.

 2. The style of the prototype (storyboard, Wizard of Oz, or others) is

 agreed upon with the instructor. Complete directions are included

 which explain where the prototype is located and how to run it.

 3. Every functional aspect of the software is depicted.

 4. The prototype contains a depiction of every window, menu, button, etc

 in the system.

 5. Follow the Interface Design Guidelines in Pressman and the UI Design

 Criteria.

 6. Importantly, the customer or sponsor must sign off on the prototype.

 The UI must meet the customer's needs, so the prototype isn't finished

 until the customer is happy with it.

User Interface Design Criteria

 (adapted from J. Nielson, Usability Engineering, 1993)

 1. Visibility of system status. Users should always know where they are

 and what's going on.

 2. Real world - system match. The system should mirror the real world of

 the user as much as possible. Use language, concepts, etc. that are

 familiar to the user. Order the processes/screens in a way that is

 meaningful and logical to the user.

 3. Control and freedom. Don't "trap" the user. Support clearly marked

 exit, undo, and redo functions. Don't force them into a long linear

 sequence of operations with no escape.

 4. Consistency and standards. Use objects and phrases consistently. Follow

 platform conventions. Here is a checklist of specific items to watch

 for.

 5. Recognition not recall. Provide visual objects, actions, and options

 (e.g. cue cards) to assist the user for navigation and input

 activities. Don't expect they will memorize commands.

 6. Flexibility and efficiency of use. Accelerators (unseen by novice

 users) can speed up interaction for expert users. Allow users to

 customize frequent actions whenever possible.

 7. Aesthetic and minimalist design. Visibility of rrarely needed

 information should be avoided. The more information that appears on the

 screen, the less visible each unit of information becomes.

 8. Online help and additional documentation. Though a well designed system

 can be used without documentation and help, supplemental information

 may still be necessary. Keep this information tied to user tasks,

 support easy to use search functions, and don't make this section too

 large.

 9. Effective error handling. Assist users to recognize, diagnose, and

 recover from errors. Don't just tell them there's an error, suggest

 corrective action whenever possible.

 10. Error prevention. A design that prevents errors from occurring is

 better than a good error message.

User Interface Consistency Checklist

 1. Interface. Is the "look and feel" of the interface consistent? Is every

 screen recognizable as your product? For example, is there a common

 background and/or color scheme for all screens? Common screen layouts?

 2. Function/Appearance. Do all object that appear the same, function the

 same? E.g., are Help, Exit, and Search objects in the same spot on all

 screens? Do they have the same design, color, etc.?

 3. Text characteristics. Are the text characteristics constant from screen

 to screen. E.g., is Ariel 14 point bold italics always used only for

 chapter titles? Does blue underlined text always represent a hyperlink?

 4. Semantic characteristics. ARe metaphors and icons used consistently

 throughout the interface? E.g., does a magnifying glass mean the same

 thing every place it is used? Does a green cat always mean Help?

 5. Navigation. Are navigation objects and steps consistent throughout the

 interface? Are screens linked consistently? E.g., Previous/Next

 buttons, etc.

 6. Interaction tools. Are interaction tools like mouse pointers, touch

 screens, joysticks, used consistently?

 7. Conventions. Are conventions familiar to the user employed

 consistently?

 8. Screen configuration(s). Are all related items on the screen grouped

 together visually in a format that makes sense?

 9. Labels. Are labels on buttons, menus, and titles used consistently?

DESIGN QUALITY ASSURANCE GUIDELINES

General

 [] Design document format guidelines are followed?

 [] All narrative text meets the class writing standards?

 --

 HIGH LEVEL DESIGN

DATA DESIGN

MAIN MODULE

*[] Does the main module contain a complete design overview as required in

the document format guidelines?

CLASS DIAGRAM

 1. [] The diagram conforms to standard class diagraming notation (e.g.

 UML)?

 2. [] Is the diagram neat and easy to read?

 3. [] The names and relationships match the ADT headers exactly?

 4. [] The objects and relations are consistent with the Data Dictionary

 and Data Model from the Specification?

 5. [] The diagram is complete - all the problem data has been modelled.

 6. [] Have all functional requirements from the system specification

 been included? Ideally, there is a way to trace the design back to the

 analysis model.

 7. [] Class and member names are terms from the problem domain (as

 appropriate)?

 8. [] Has the Data Dictionary been updated to show new items that were

 added during design? Has the data dictionary been verified against the

 chart?

ADT HEADERS

 1. [] Does each class in the class diagram have an associated ADT header

 that compiles?

 2. [] Does each header include the documentation required in the document

 format guidelines? Module name, ID, Parameters, Purpose, Pre- and Post-

 conditions, Cross-Reference, Author.

 3. [] Does the design make effective use of abstraction? E.g., Do the

 data abstractions mimic the behavior of the objects in the problem

 space? E.g., don't use an array when a queue is adequate.

 4. [] Does the description for each abstraction use terms from the

 problem domain?

 5. [] Does the design isolate the data from higher level functions? E.g.,

 no control processes that belong in the client should be included.

 6. [] UI classes are completely disjoint from other classes. Avoid

 embedding user interface features within the internal data

 representation.

 7. [] Are the modules decomposed to the level of 'atomic' components?

 That is, they should perform just a single task that can be coded in

 less than 30 lines (approximately).

 8. [] Do collection classes handle their own persistent data?

 9. [] Do the abstractions successfully separate specification from

 implementation? That is, no implementation details should be visible to

 client programs.

 10. [] Are the operations on the data "loosely coupled" from one another?

 The operations shouldn't have hidden interdependencies. Does each

 operation exhibit functional cohesion?

 11. [] Has an appropriate implementation been chosen? For example, don't

 use a record for a collection of homogenous data items, use an array.

 Use enumerated types to represent non-alphanumeric data. NEVER use

 INTEGERs to 'encode' non-integer data items.

 12. [] Has the range of data values been constrained so as to not allow

 values which would be erroneous in this problem? E.g., don't use

 integer for data which is never negative.

 13. [] Is each member name a verb phrase in active voice?

 14. [] Does each member have documented pre/post conditions that are

 clear, complete, and correct? (Exception: accessor methods normally

 don't required pre/post conditions).

 15. [] Are any class variables chosen with descretion and documented at

 great length?

 16. [] Dan Stearns miscellaneous design guidelines:

 o Every attribute of a class has get and set members.

 o There is a robust set of constructors.

 o The identification key for every class is explicitly noted.

 o There are no typedefs.

 o All member variables are private or protected.

INTERACTION DIAGRAMS

 1. [] The diagrams conform to standard diagraming notation (e.g. UML)?

 2. [] The diagrams are complete - there is a diagram for each use-case or

 functional requirement.

 3. [] The diagram is consistent with the other design documents.

Functional Design (if applicable)

STRUCTURE CHART

 1. [] Is the system design represented as a Structure chart (also called

 Hierarchy Chart, Decomposition diagram, Module Call Diagram)?

 2. [] Is the diagram neat and easy to read?

 3. [] Is each module name a verb phrase in active voice?

 4. [] Is there a way to trace the design back to the analysis model? Have

 all functional requirements from the system specification been

 included?

 5. [] Does the diagram show a hierarchical decomposition of the system.

 (NOT a flowchart - it should not indicate order or logic flow).

 6. [] Are the modules decomposed to the level of 'atomic' components?

 That is, they should perform just a single task that can be coded in

 less than 30 lines (approximately).

 7. [] Does the design follow the guidelines in Table 7.1 in Page-Jones

 (and the heuristics in Pressman section 13.6)?

 8. [] Does the chart show parameters (and mode) to each module? Is each

 parameter an entry in the Data Dictionary?

 9. [] Has the Data Dictionary been updated to show new items for control

 data (avoid if possible) and new data stores? Has the data dictionary

 been verified against the structure chart?

MODULE HEADERS

 1. [] Does each block in the structure chart have an associated module

 header?

 2. [] Does the main module contain a complete design overview as required

 in the document format guidelines?

 3. [] Is each module header coded as a subprogram definition (including

 parameter name, type, and mode)?

 4. [] Does each module header include the documentation required in the

 document format guidelines? Module name, ID, Parameters, Purpose, Pre-

 and Post- conditions, Cross-Reference, Author.

 [] DO NOT USE GLOBAL VARIABLES. Each procedure and function may only

 use local variables or passed parameters. There are no global variables

 or externs.

Appendix

 1. [] The FTR Review Summary report is signed by your reviewing group

 2. [] Source listings are included of the compilation script and

 compilation of all modules and ADTs. Source listings use a

 non-proportional font. There are no compile errors.

 3. [] This checklist has been used to validate the document.

 --

 DETAILED DESIGN

 1. [] Does the low level design describe the logic (flow of control) of

 the algorithms which solve the problem?

 2. [] Is there an algorithm corresponding to each module in the structure

 chart (or operation in an ADT)?

 3. [] Is the algorithm coded as comments in the module header?

 4. [] Has a version history field been added to the original design

 module header?

 5. [] Is the algorithm described WITHOUT any syntax details? Could it be

 implemented in ANY programming language. Does it use a language

 independent notation such as Pseudocode, Nassi-Shneiderman Charts, PDL

 (program description language). Example: There should be no exclamation

 points in your Pseudocode.

 6. [] Does the low level design describe enough detail that it can be

 translated directly into code? (The coder should not have to create any

 algorithms).

 7. [] Does the algorithm follow principles of structured programming? One

 entry - one exit control structures. Enter at the top, exit at the

 bottom. Do not use EXIT or GOTO. Avoid loops which exit (or "break")

 from the middle. Don't have empty (or "null") else clauses. Avoid

 multiple return statements from a function.

 8. [] Are boolean functions invoked properly? (JD's pet peeve: Don't use

 WHILE Is_More_Data() = TRUE, just WHILE Is_More_Data()).

 9. [] Does the algorithm avoid redundant or duplicate code? Code that is

 similar to code in another placemust be combined so the code is written

 only once, in a procedure or function. Use parameters to accomodate

 differences in similar code segments.

 10. [] Are the algorithms correct? Does the internal logic achieve the

 desired result?

 11. [] Is the representation for each ADT included? For example, if you

 have a EmployeeList ADT, the detailed design should show your choice of

 representation: array or list or ...?

 12. [] (Optional). Has the algorithm been desk checked for correctness by

 a pencil and paper execution trace?

 13. [] (Optional). Has each functional requirement in the specification

 undergone a design walkthrough?

 14. [] (Negotiate with Boss) Are program stubs coded which actually call

 all subordinate modules? In other words, have you produced a compilable

 program skeleton? Is a printout of the successful compilation included?

