A COMPARISON BETWEEN

OBJECT-ORIENTED DATABASE SYSTEMSAND INFORMATION
SYSTEM SHELLS

ABSTRACT

The work makes an overview of the main charaderistics of objed-oriented database systems (OODBS)
and information system (1S) shells. It shows the dea distinctions between the two types of systems and the
pradicd application of ead of them. As well the paper examines ten commercial objed-oriented database
management systems (OODBMS) and one IS shell, which has both wunique dharaderistics, related to its
limited application and charaderistics common with OODBMS.

Keywords
Objed-oriented databases, information systems, CASE tools

1. INTRODUCTION

The main purpaose of database systems (DBS) is to handle the informational side of an application and not
to ded with its functional side. On the other side OODBS ded with both sides of an applicaion and have
emerged as a universal tod for the aedion of application requiring database (DB) suppart. Contrasting
OODBS, IS shells are spedalized todls with limited applicaion only to a spedfic dass of pradicd
applications. They compensate their limited appliceation with their user-friendly interface ad their unique
cgpabiliti esto ded with the spedfic aeaof tasks for witch they are designed. For example the system Visual
Objed-Oriented Shell for Information Systems (VOOSIS) [8], witch will be used as an representative of 1S
shells trough out this paper, has the foll owing charaderistics not common for OODBS:

1. It hasvisual view for browsing the objed and classhierarchy.

2. Suppats quantitative objeds, i.e. objedsthat have quantitative property.

3. Allows the merging of two quantitative objeds into one and the split of one quantitative objed into

two oljeds.

4. Suppats an extension of SQL in order to med the unique requirements of the dassof IS that can be
creaed with the system. In particular there ae primitives for finding the objeds that belong in a
spedfied oljed or are part of a spedfied class Sincethe only relationship between objeds that the
system suppats is “physicd containment”, constructions for spedfying complex relationships
between objeds like “joins’ are asent from the extended SQL supparted by the system.

5. Handles strict authority of the users of the system. More predsely, the system requires the users of
the system to be part of one or more groups. VOOSIS alows for every class of objed and group the
explicit definition of the rights of the users belonging to that group. In particular they may have
rights to crede, move, delete, examine or placeobjedsin an objed from the spedfied type.

6. Suppats event handling. The events in the system can be system, class or objed. An example of a
system even is the login of a new user in the system. An example of a dassevent is the change of
the global charaderistics of an objed. An example of an objed event isthe aedion of a new objed.

The goal of this work isto doa quick overview of the main charaderistics of objed-oriented databases
(OODB), objed oriented database management systems (OODBMS), information systems (1S) and VOOS S,
as its representative, and outline the points in witch they differ and agree The overview of contemporary
OODBS and IS will be done in part 2. In part 3 a short examination of VOOS S will be made and then its
charaderistics will be compared with those of OODBS. Part 4 of the paper summarized the readed in the
work results.

OBJECT-ORIENTED DATABASE MANAGEMENT SYSTEMS AND

INFORMATION SYSTEMS

The objed-oriented databases are an extension of the traditional relational databases. Although the aeaed
so far standards for OODB continue to evolve, some basic dements have emerged. Those spedfic
charaderisticsacordingto [6] are:

1. Eadobjed hasauniqueidentifier.
2. The objeds have dtributes and methods, which operate on the values of the dtributes.

3. The attributes have adomain: simple type, composite type or an object.

4. The vaues of the attributes of an object are either directly accessible in the system or an indirect
access to them is supported by the methods of the objects.

5. The objects that have common methods and attributes could be grouped into classes.

6. Each object can belong to at most one class

7. Itispossiblefor the classitself to be looked at as an object of a generalized class or meta-class.

8. The classes are connected in a hierarchy in which the relation is inheritance. The classes

participating in a given relation are called respectively super-class and sub-class.
9. Theclasshierarchy isalettuce; i.e. it is possible for a class to inherit more than one classes.

To the basic model of an OODB the following supplementary characteristics can be added [6]:

1. Containing objects.
2. Versification of objects.

The so stated conception of an OODB accents on the characteristics that make it different from a
relational DB. On the other hand the function that an OODBMS system has to support are extension of the
functions of a relational DBMS. According to [4] the basic characteristics of database (DB) regardless of
whether it isrelational or object-oriented are:

Support of multiple user access to the system.

Restricted access to the system by the different type of users.

A possibility for partitioning the database in several parts.

A possibility of entering, querying and showing data from the DB.
A possibility for indexing the datain the DB.

Support of transactions.

Concurrency control.

Crash recovery.

NG A~AWDNE

OODBMS use the knowledge acquired regarding relational DBM S to implement the upper characteristics
and if needed expand and change the methodology used in designing relational DBMS.

After we have outlined some of the elements of OODB and OODBMS, we will examine closer the theory
behind OODB and OODBMS. In this part of the paper we will also take aquick glance at IS.

1.1. Objectsin Object-Oriented Databases

The objects are the building element in an OODB and are capable to the tuples in the relationa DB
model. The main differences between the two are that the objects have a more complex structure and that
each object has a unique for the whole database identifier.

The structure of an object is made of attributes and methods. The attributes could be simple, reference,
composite or derived. The simple attributes are of standard type such as: integer, real, data, time, Boolean,
currency, etc. The reference attributes have a domain of an object and are used to represent relationships
between objects. The composite attributes have a domain of an array, list or a set of values. The derived
attributes are attributes, which value is a function of other attributes. Most commonly those are read-only
attributes. When areading operation is performed on them the associated with them function is executed and
the calculated value is returned.

After this quick review of the structure of objects in OODB we will focus on the type of relationships
between objects and the way those rel ationships can be represented in an OODB.

1.2. Relationships between Objectsin an Object-Oriented Database

In [2] two types of binary relationships between objects, in a general object oriented model, are stated:
association and aggregation. The relationship association corresponds to the interrelation between two
object (in particular the two objects could symmetrically exchange messages or one could be the client and
the other the server). The aggregation relationship represents a connection between two objects where oneis
an attribute of the other. Since the first type of relationship has to do with the functionality of the object-
oriented model and the second with its information structure we will examine closely only the second type of
relationship and its application to OODB.

Since the entity-relationship (ER) model is a mnceptual model, there should be away to map an ER
diagram into OODB. An entity in the ER model correspondsto atype of objed (clasg. A oneto one, aone
to many and many to many relationships between entities could be mapped in an OODB using aggregate
attributes. To represent a “one to one” relationship between two entities, each objed of ead entity should
contain a reference dtribute corresponding to the objed with which it is conneded. A “one to many”
relationship between two entities could be represented by adding compaosite reverence dtributes to al objeds
on the “one” side, and reference dtributes to the objeds on the “many” side. Correspondingly a “many to
many” relationship is represented by adding composite reference dtributes to the objeds on both sides of the
relationship. Some OODBMS systems introduce the concept of inverse dtributes when deding with
relationships between objeds. For given objed and a binary relationship between this objed and a second
objed the inverse atribute for the first objed is the reference dtribute of the second oljed, which defines
this relationship for the second oljed. After we have examined how a relationship between objeds can be
expressed in an OODB we will | ook for some charaderistics of those relationships.

From the fad that the dtributes of a given objed could be derived, it follows that the relationships
between objeds could be derived as well, i.e. there auld be functions which could dynamicdly cdculate
what relationships between objeds hold at the present moment.

It is also worth noticing that some OODBMS look at the relationship of containment between two objeds
as a speda kind o the relationship aggregation. According to [3] the reasons for designating this
relationship are (1) the system could adequately respond on adions with such objeds; (2) alows for the
eff ective storage of the objeds on the physicd carier.

Now that we have finished our overview of objeds in OODB we will extend the éstradion used in
OODB by going one step further and introducing the concept of a dass.

1.3. Classes in Object-Oriented Database Systems

The classes in the objed-oriented terminology are defined as a set of objeds with common structure and
behavior. In OODB a dassis defined as the objed’s type. The dasses in an OODB are similar with the
relations in the relational database model with the following differences: (1) clases can have their own
unique charaderigtics like dass methods and functions, relations can not; (2) classes can contain methods,
relations can not. Now, that we have defined what a dassin the OODB terminology is let us look at the
different classificaion of classesin ageneral objed-oriented database model.

One division of classs is into base and group classes. While the base classes are the templates for
creding objeds, group classes are used to group classes with similar charaderistics. This division is not
strict because it is possgble for one dass to be both base and group. Another more rigid dvision of classesis
into physicd and virtual. Physical classes are those from which objeds can be aeaed and virtua classes are
those that can be used only for grouping classes, but not for objed credion.

After we have dted two classifications of classes let us examine the types of relationships between them.
According to [2] these relationships are aociation, inheritance aggregation, use, parameterization and
inheritance. The most important of those relationships for OODB are aygregation and inheritance Since
aggregation was described in the previous sub-pint we will look at inheritance here.

The inheritance between classes in an OODB alows for a dassto inherit the atributes and methods of
its super-class. Some OODBMS allow for spedficaion of which charaderistics of the super-classto be
inherited, and which not to be. Based on the relationship inheritance agraph between the dasses could be
formed. Thisgraph could be atree alettuce, a set of trees or a set of lettuces depending on whether multiple
inheritance and multiple roots of the hierarchy are suppated. The definition of a dass contains three
sedions: the public, private and protected. The property, that not all methods and attributes of a dassare
diredly accesshbleis cdled encapsulation. While the private part of the dedaration is accesible only by the
methods of the dass the protected part is also accessble by the methods of the dasses that inherit the given
class There ae no restrictions on the accesof the public elements in the definition. A deviation from the
objed-oriented theory is needed when applying the encgpsulation principles to OODB becaise queries in
them must have dired accessof al attributes of a given objed including its private and proteded attributes.
While some OODBMS allow for the encapsulation to be broken when using queries, other ded with the
problem by allowing for indired accessto the atributes of an OODB in a query, by using derived attributes
or by alowing the dired cal of methods.

Except private, public and proteded, the dtributes in a dass can be cdegorized as locd and global.
While the local attributes have aseparate value for ead objed of a given class, the global attributes are
unique for the dass(all objeds of the dass share the same value of the global attributes). The same division
applies for the methods of the dasses, which are divided into global and locd as well.

This ends the discusson of the charaderistics of OODB. In the next sub-points ssme of the
charaderistics of OODBM S will be examined.

2.4 Queries and Programming Languages in Object-Oriented Database M anagement
Systems

Just asin relational DBMS, in OODBMS there ae avariety of data query languages and programming
tods. An attempt for clasdfication will be madein this sub-point.

Most generally there ae two approaches in designing a programming tool for a DBMS. The first
approach relies on the aedion of a limited database manipulation language, which is to be part of a high-
level language. When uwsing the seaond approach a full-functional language to work with OODB is creded,
which should suppart data manipulation tods, purely programming constructions and also primitives that
alow access to the operating system.

Ancther classificaion of OODBMS is based on the result that the queries in them return. Unlike
relational DBM S queries, in which the result of a query isarelation, a query in an OODBMS can return as a
result: arelation, a set of objeds or something of user-defined type. More detail ed explanation of the type of
OODBMS, regarding the type of data returned by the queries in them, can be found in [3]. Other
clasdficaions of OODBMS can be based on the type of the query language of the system (procedural or
functional) or on whether query optimization is made ([5]).

In the next sub-point a study of the transadions and messages in an OODBM S will be maid.

2.5 Transactions and M essagesin Object-Oriented Database M anagement Systems

Most OODBMS extend the existing theory about transadions from relational DBMS, by adding new
theory, such as objed versioning and containing transadions. These new elements alow for long
transadions, which could last for more than one day, to be exeauted. In long transactions concurrency
control is generally handled by sing objed versioning. Object versioning means that an objed can have
more than one version, and the different transadions work with their own versions of the objeds. In this way
there is no competition for resources and the transadions are not interrupted till their end. The compatibility
between the transadions is handled by unifying the versions of the objeds, which is done dter the
transadions have ended. Another method used for handling long transactions proposes the wntainment of
one transadion into another. A composite transaction is a transadion that contains sub-transactions in it.
The alvantage of using a mmposite transadion is that when a resource @nflict occurs, the exeaution of the
transadion can continue, and only the data canged in the sub-transadion could be marked as
“contaminated”.

After we have looked at the main charaderistics of OODB and OODBMS we will make a @mparison
between ten OODBM S based on some of the charaderistics we have discussd.

2.6 Comparison between some Popular Object-Oriented Database Management
Systems

The systems that will be mmpared are: ORION, O,, ONTOS, ObjedStore, GemStone, ITASCA,
Objedive/DB, VERSANT, POET and the described in the next point system VOOSIS. The cmparison
between the systemsis based on the answers of the foll owing questions:

Does the system suppart an integrated programming environment?

What high-level languageis close to the language used in the system?

Is the system multi ple-user?

If yes, how isthe accasto the system designed (i.e. client/server, terminal emulation)
Does the system suppart data encgpsulation?

Is this encapsulation broken when queries are used?

Is classinheritance supparted?

Isaunique objed identifier, accesgble to the users of the system, supparted?

. Arereference dtributes supparted?

10. Arederived attributes suppaorted?

11. Are composed attributes supparted?

12. What popular data query language is similar to the query language used in the system?

©WOoNoOA~WNE

13. Of what type isthe query result in the system?

14. Arethe objectsin the system indexed?

15. Doesthe system support long transactions?

16. What concurrency control mechanisms are used in the system?

17. Doesthe system support composite transactions?

18. Isevent handling implemented in the system?

19. Isobject versioning supported?

20. Doesthe system support composite objects?

21. Doesthe system limit the access of the different usersto its OODB?
22. Doesthe system present visua interface?

23. Doesthe system alow for the dynamic change of the class structure?
24. Doesthe system support query?

The table comparing the OODBMS is shown below. The information for filling the table is mainly from
[6], [3] and [1]. The purpose of the comparison is not to emphasize the advantages of one OODBMS over
another, but rather give a general idea, of the features supported by contemporary OODBMS. The author of
this publication carries no responsibility for the correctness of the table.

QUESTION/

OODBMS 1 2 3 4 5| 6| 71 8 9| 10] 11 12 13[14] 15 16[17| 18] 19| 20[21| 22| 23| 24

ONTOS no |C++ ves |clientéerver |ves|ves |ves|ves|ves|no |ves|[SQL table no |no [object locking [no [no |ves|no [ves [no [no |ves
C++ and SQL by object

02 ves |Lisp ves |client/éerver |ves|ves |ves|ves |ves|ves |ves|algebra |user defined |ves |ves |versioning ves |ves [ves|ves |ves |ves [ves |ves

ORION ves |Lisp ves |clientéerver [no |ves |ves |ves |ves|ves |ves|[SQL obiject arrav_|ves [ves |object locking |no |ves [ves|ves |ves [no |ves |ves

y object

ObijectStore [no |C++ ves |clientServer [ves|no |ves|ves|ves|no |ves|C++ object array_|ves |no |versioning no |ves|ves|no [no [no [no [no
Pascal ,C,C+ optimistical and
+ and own pessimistical

GemStone no _|SmallTalk ves [client/éerver |ves|no [ves|ves |ves|no |ves|language [objectarray [ves [no |methods no [ves |no [no |ves |ves |ves |no
C++,G,
CLOS,Lisp own two phase

ITASCA no land Ada ves |clientServer [ves|ves [ves|ves|ves|no |ves|language |table ves |no |protocol no [no |ves|ves |ves |no |ves|no

C++ and

Obijective/DB |ves |C++ ves |clientServer |ves|no |ves|no |ves|no |ves|SQIL. table ves [no |object locking |no [no [no [ves [ves |ves |no [ves
C++ and two phase

VERSANT _ |ves |Samlitalk ves |clientServer |ves|ves |ves|ves|ves|no |ves|SQL table no [no |protocl no |no [no [no [ves |ves [ves |[ves

own
POET ves |C++ ves |clientServer [ves|no |ves|ves |ves|no |ves|language |object arrav [no [no [object locking [ves [ves [no |no |no [no [no |no
IRIS ves [Cand Lisp |ves [clientéerver |no |N/A [no |ves |ves|no |ves|SQL table no [no |HP-SQL no |no [ves|no [no [no [ves |ves
termianal
VOOSIS no |user-defined |ves [emmulation [no |N/A [ves |ves [no |ves [no |SQL table no [no |[N/A no Jves [no |ves [ves [ves [ves [ves

The reason the system VOOSIS is added to this comparison is to show its similarities with OODBMS. In
the next sub-point we will do aquick review of IS.

2.7. Basic Characteristics of Information Systems

A computer IS according to [7] is made of hardware, software, DB, telecommunications, people and
procedures. A IS shell isatool for building the software and DB part of an IS. One classification of ISis
into: transaction management systems, management information systems, decision support systems and
systems based on artificia intelligence ([7]).

The difference between an IS shell and an OODBMS is that while the shell is a tool for creation of a
particular type of 1S, OODBMS are universal tool for satisfying information needs. The IS created from the
described in the next point system VOOSIS can be classified as management information systems. If the
created by VOOSIS IS contains methods for decision support, the system can be classified as decision
support system.

In this point we have examined some characteristics of OODB, OODBMS and IS. In the next we will
take aclose look at the system VOQOSIS and compare it with the type of systems examined so far.

2. COMPARISON BETWEEN VISUAL OBJECT-ORIENTED SHELL OF AN
INFORMATION SYSTEM (VOOSIS) AND OODBS

The system VOOSIS is atool for creation and use of 1S. Although the system has some characteristics in
common with OODBMS it remains an IS shell, because of its limited application. The system compensates
this limited application with the unique functionality. For example it supports visual view of the objects and

classes of an IS, possbility for merging of two oljeds into one and the split of one objet into two, numericd
measurement of the objeds, etc. Those ae dl feaures not charaderistic for OODBMS. It is aso true that
the system does not suppart important for OODBMSS feaures such as reference and compasite dtributes. In
this point we will look at the main charaderistics of VOOSIS and will compare them with those of
OODBMS where gpropriate.

2.1. Typesof Usersin VOOSIS

The system supparts four types of user administrators, designers, operators and analyzers. The
administrators of the system have resporsihiliti es $milar of those of DB administrator. They administer the
user of the system and distribute them among the different groups in the system. The designers of the system
build the skeleton of the system (i.e. the dass hierarchy and the static objeds in the objed hierarchy and the
functions associated with them). The operators of the system are the people who map the dhanges the
monitored red-world processto the system and the analyzers are those, who monitor the state of the system
and huil d appropriate reports when needed. After we have looked at the users of VOSISin the next sub-point
the spedfic charaderistics of the design of the system will be examined.

2.2. Structure of the Objectsin VOOSIS

The objeds in the system model red-world oljeds. The designers and operators of the system creae the
objeds. Eacd objed has a type — the dass from which it is creaed. The objeds are mnneded in an objed
hierarchy, corresponding to the physicd containment of the modeled red-world ojeds. Except information
about the objed hierarchy the system can contain information abou the relative position of eat objed to the
objed that contains it. This gives the system charaderistics close to that of a Geographicd Information
System.

The dharaderistics of an objed are the dassto which it belongs, the wordinates of the objed relative to
the objed that contains it and the values of the objed’s class locd attributes. 1f a given locd attribute value
is not entered during an objed’s definition the default value for that attribute entered during the dasss
definition is used.

Similar to most OODBS the objeds in VOOSIS do not have aname, but a unique for the IS identifier.
The reason for this dedsion is that the objeds themselves do not have their own identity, except for the dass
to which they belong and their placein the objed hierarchy. If for some reeason the different objeds from a
class should have names, this could be acomplished by adding a textual attribute “name” to that class
VOOSIS alows for the definition of key attributes but does not index on them becaise the system does not
suppart the need complex storage mecdhanismsto doso.

The users of VOOSIS, and more particularly the operators of an 1S supparted by VOOSIS could be part
of the objed hierarchy of that 1S. This makes snse because the operators in most cases are part of the
modeled space ad like the rest of the objed in it, exeaute adions and adions are executed on them. The
system lives the dedsion on whether the users of the system are displayed as objeds in the objed hierarchy
of a particular 1S to the designers of that IS. On the other hand in OODBS the users are usually not part of
the DB of the system.

2.3. Class Structurein VOOSIS

The dasss in the system are the templates from which objeds are aeded. Two oljeds, from the same
class share the same atributes and methods. Following the objed-oriented principles the system suppats
class inheritance, but does not suppat multiple inheritance for reasons of simplicity. The following tree
shows a dasdfication of the dasses supparted by VOOSIS.

Classes
| \
Physicd Group
| \
Moveale Static
| \
Quantitative Non-quantitative

The physical classes are the leaves of the dass hierarchy tree ad from them objeds can be aeaed. The
group classes are used to combine dasses with similar structure and behavior; as well objeds can not be
creaged dredly from them. The group classes have methods and event handlers, but does not have any
attributes.

The physicd classes in VOOSIS are divided into moveable and static. The moveable classes are those
from which objeds that can be moved are aedaed and the static classes are those from which objeds that
cannot be moved are aeded.

The moveale dases in the system can be quantitative and not quantitative. The static dasses in the
system are no quantitative. The quantitative classes are those, whose objeds have a system attribute
quantity, and non-quantitative classes are those, whose objeds do not. Several objeds from a quantitative
classcan merge into one objed that will have value for quantity the sum of the quantities of those objeds.
As well an objed belonging to a quantitative dass can split into several objeds from the same classand the
original’s objed quantity will be distributed among the aeaed oljeds. The system supparts the existence of
objeds with value for the system attribute quantity equal to zero, but does not permit such objeds to be
divided. All those types and charaderistics of classes are unusual for OODBS.

So far in this point we have looked at the users, objeds and classes of an IS creaed with VOOSIS. The
use of methodsin IS creaed with VOOSIS will be discussed in the next sub-paint.

2.4. Methodsin VOOSIS

The methods in the system can be classfied as global, classand oljed methods. The global methods are
those, that are not conneded with a particular class; the class methods are those conneded with a particular
class without using any of its locd attributes; the object methods are those that can be exeauted on a
particular objed and could use the locd attributes of that objed. Similar classtyping exists in some OODBS
as well. The dhoice on whether the methods should be written in the host environment of the system or be
written in a an arbitrary language and imported into the system (via dynamic link libraries for examples) is
independent of the type of the system. VOOS S adopts the second approach.

2.5. Actions, Eventsand Messagesin VOOSIS

Each change in the state of the objed hierarchy is the result of the exeaution of an adion. Example of
adions are: the aedion of a new objed and its placement in the objed hierarchy, the deletion of an existing
objed, the movement of an objed, the split of an objed in several parts or the merge of several objeds into
one, etc. Actionsin the system are ather triggered by user interadion with the system, or are triggered by
methods in the system.

Eventsin IS creaed with VOOSIS, that can be handles by caling methods are of threetypes: locd, class
and global. The local events are triggered when something in a particular objed is changed, the class events
-when somethingin a particular classin changed and the global events - when something in a particular ISin
VOOSISischanged. Asaresult of the change of the locd attributes of a given objed - locd events occur; as
aresult of the change of the global attributes of a given class - classevents occur. The aedion, deletion,
merging and split of objeds are locd events for the objeds on which the adion is performed. The global
events in VOOSIS can be dasdfied as time and system. Time events could be the cmming of a spedfied
moment or the dapse of spedfied time. Global events could be the beginning of user sesson or the end of
such session with aparticular 1ISin VOOSIS. Events could be handled by methodsif such are spedfied. The
locd events are handled by objed methods, the dassevents - by class methods and the global events - by
global methods.

For amethodto be cdled in VOOSIS a message to the dassto which the methodis conneded is nd. If
the method happens to be global, the message is ®nd to the system classcdled SYSTEM which isthe roct of
the dass hierarchy in the IS supparted by VOOSIS. If the message send to a given class in not supparted by
the dass, it is ®nt to its super class. If non of the super-classes suppart the method the message eventually
reades the dass SYSTEM and the default handler for a non existing method in that class is cdled. For
message handling purposes the operators of an IS are dso considered to be objeds, i.e. they can send
messages to oljeds and objeds can send messages to them.

In most OODBMS adions that are performed are written in a log file, but are not handled separately.
Events are handled usually, because event handling is part of the general objed-oriented model. They are
handled usually using messaging passing between objeds. This method has the alvantage that it deds not
only with event handling, but with polymorphism as well .

In this sub-point we examined the events, adions and messages in VOOSIS. It remains to look at the
most important element of VOOSIS — its data query language.

2.6. Data Query Languagein VOOSIS

The queries of an ISin VOOSIS are written in the extended custom SQL of the system cdled VOOSIS
SQL. The system supparts two types of queries: on the current state of an IS and on its past states. This
corresponds to the databases supparted by VOOSIS, which are made of four parts for every IS. These parts
are: (1) a sedion that contains the present view of the dass and oljed hierarchy; (2) a sedion that contains
the log of al events that have been caried on an IS from its creaion to present; (3) sedion that contains
snap-shots done & different times in the past of sedion 1; (4) sedion containing information about the
administration of the particular IS (i.e. information about the users, groups and methods of the 1S). At
intervals gedfied by the designers of the IS its database is initialized (it makes sense this period to be one
businessday or some whole fradion of it). When an initialization occurs the information in the first part and
fourth part of the DB of the IS remain unchanged, the information in the second part is erased, and a snapshot
of the first part of the DB is added to the third part of the DB.

When doing queries on the present state of an IS the extended SQL suppated by the system cdled
VOOSIS SQL is used. Since VOOSIS suppats only the relationship “physicd containment” between
objeds, the SQL of the system is designed to handle only this relationship. The ways VOOS S SQL works, is
that it introduces its own functions that return tables. The SQL of the systemis maid of ANSI SQL enriched
with some functions. An exad description of the SQL of the system can be found in [8]. In the conclusion of
the paper we will analyzethe readied in the work goals and the passhilities for future work on the touched in
the paper topics.

3. CONCLUSION

In this paper we have described some of the charaderistics of OODB and OODBMS and have compared
the theory on which they are based with that used in designing IS and VOOSISin particular. The mnclusions
that can be made aethat OODBMS are more functional than IS shell s because they are designed to ded with
greder array of problems. On the other hand IS shells are more suited for deding with spedfic dass of
problems and al their functions are focused on deding with them. The system VOOSS, as an example of IS
shell, isinteresting in that, that it has taken some feaures of OODBMS applicéble to the dassof IS that can
be aeaed from it, but aso introduces new concepts where needed.

REFERENCES

[1] Bancilhon, Francois, Claude Delobel and Paris Kanellakis (editors), Building an Objed-Oriented
Database System. The Story of O,, Mortgan Kaufmann Publishers, ISBN 1-55860169-4 (1992).

[2] Booch,Grady, Objed-Oriented Analysis and Design with Applicaions, The Benjamin/Cummings
Publishing Company, Inc., ISBN 0-80535340-2 (1994).

[3] Cattell, R.G.G., Objea Data Management, Revised Edition. Objed-Oriented and Extended Relational
Database Systems, Addisorn-Wesley Publishing Company, ISNB 0-201-547481 (1994).

[4] Elmasri Ramez and Shamkant B. Navathe, Fundamental s of Database Systems, The Benjamin/Cummings
Publi shing Company, ISBN 0-8053175538 (1994).

[5] Freytag, Johann C, David Maier and Gottfried Vossen (editors), Query processng for advanced database
systems, Morgan Kaufmann Publishers, ISBN 1-55860271-2 (1994).

[6] Kim, Won, Introduction to Objea Oriented Databases, The MIT Press ISBN 0-262-11124-1 (1990).

[7] Stair, Ralph M., Principles of Informational Systems. A Managerial Approach, Boyd & Fraser publishing
company, ISBN 0-87835789-0 (1992).

[8] Stanchev, Lubomir. Visual Intenerated System For Objed-Oriented Development And Exploitation Of A
Spedal Class Informational Systems. The spring conference of the Union of the Mathematicians in Bulgaria
(1999)

