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Abstract—As the world explores opportunities to develop
offshore renewable energy capacity, there will be a growing need
for pre-construction biological surveys and post-construction
monitoring in the challenging marine environment. Underwater
video is a powerful tool to facilitate such surveys, but the inter-
pretation of the imagery is costly and time-consuming. Emerging
technologies have improved automated analysis of underwater
video, but these technologies are not yet accurate or accessible
enough for widespread adoption in the scientific community or
industries that might benefit from these tools. To address these
challenges, we developed a website that allows us to: (1) Quickly
play and annotate underwater videos, (2) Create a short tracking
video for each annotation that shows how an annotated concept
moves in time, (3) Verify the accuracy of existing annotations
and tracking videos, (4) Create a neural network model from
existing annotations, and (5) Automatically annotate unwatched
videos using a model that was previously created. The website
was seeded with 50 hours of high-resolution underwater videos
that were generously provided by the Monterey Bay Aquarium
Research Institute (MBARI). The biology students that were part
of the project created more than 30,000 annotations that range
over more than 20 concepts. About 3,000 of these annotations
were then verified for accuracy by our marine biology experts.
Using both validated and unvalidated annotations and automat-
ically generated annotations from trackings, our software was
able to count the number of Rathbunaster californicus (starfish)
and Strongylocentrotus fragilis (sea urchin) with count accuracy
of 97% and 99%, respectively, and F1 score accuracy of 0.90
and 0.81, respectively.

I. INTRODUCTION

MBARI and other deep-sea exploration organizations collect
thousands of deep-sea underwater videos every day. Usually,
this data is collected by Unmanned Underwater Vehicles
(UUVs) that cross the ocean floors daily. Unfortunately,
annotating these videos by a human is a very costly and
lengthy process. For example, it took us about 600 hours
of student annotations to annotate just 30 hours of videos.
Therefore, the problem we are trying to solve is how to
automate the annotation task. This includes creating tools for
fast video annotations by humans and tools for automatic
video annotations once a model has been trained. We also
included tools to track the accuracy of human annotations and
computer-generated annotations (via validation sets).

The huge backlog of underwater videos that are not an-
notated requires a new approach. One that allows marine
biologists to annotate videos from anywhere using a web

browser through a user-friendly interface. Once enough videos
have been annotated, our approach also allows for automatic
video annotation. This can be beneficial not only for deep-sea
pre-construction and post-construction surveys, but also for
a range of applications, such as analyzing drone videos for
marine life or using stationary videos to analyze the effect of
human-made artifacts, such as a desalination plants, on marine
life [1].

Organizations that explore underwater marine life are strug-
gling to annotate all their videos. The reason is that cur-
rent tools (e.g., [2]) are slow, not versatile, and not much
automation is possible. What makes the problem even more
challenging is that a single frame may not be sufficient to
identify a concept. For example, the angle of the camera
or the distance to the object may make recognition hard
or impossible. Moreover, additional information, such as the
depth of the video or the pattern of movement may be required
in order to make a correct identification. This is why our
tool allows annotators to see a short video (six seconds or
shorter) around the annotation point, called a tracking video,
which includes a bounding box around the objects of interest.
Moreover, our machine learning tool examines these tracking
videos when identifying a concept in order to increase the
accuracy of the algorithm. Another problem that we faced is
that it is difficult to develop a web application that correctly
identifies the frame in the video where an annotation is made.
We believe that this may be related to the way the video is
compressed and displayed by JavaScript. In order to fix this
problem, we had to match the currently displayed frame in the
web browser to the frames in the video around the annotation
time in order to identify the correct frame.

There are many reasons why a comprehensive web-based
deep-sea annotation tool with good automatic annotation ca-
pabilities has not been previously developed. First, this a niche
area with limited funding. Second, the hardware (e.g., graphic
processing units (s)) and good object detection algorithms,
such as R-CNN [3], fast R-CNN [4], faster R-CNN [5], Yolo
[6], and RetinaNet [7], have only recently been developed.
We were lucky enough to receive a $200,000 grand from the
California Energy Commission [8] and $50,000 in Amazon
Web Services (AWS) credit. We used this money to develop
a comprehensive website with good automatic annotation



capabilities. Fourteen students and two faculties at California
Polytechnic State University (Cal Poly) have worked on the
project for about 18 months to develop the software tool. We
utilized the AWS credits to deploy powerful instances with 4
GPUs and 64 virtual CPUs and state-of-the-art convolutional
neural network models, such as RetinaNet.

When using our website, the user first selects the concepts
of interest. They chose from a hierarchy of more than 2,000
underwater species. Next, they can select the video they
want to annotate, watch it, stop it at any point and create
bounding boxes around objects of interest and tag them with
the appropriate concept name. Our software supports four lists
of videos: “My In Progress Videos”, which keeps track of the
videos that are currently annotated by the user, “Unwatched
videos”, which contain no annotations, “Annotated Videos”,
which have been fully annotated, and “In progress videos”,
which are currently being annotated by someone. We use the
Kernelized Correlation Filter algorithm [9] to create additional
annotations from tracking the object that is being annotated.
Our verification tab allows the user to verify the validity of
both user-created and tracking annotations in a collection of
annotations. Our reporting tab can show annotations sorted
by video, concept, or user, where there are additional options
to show only verified annotations or annotations that are
marked as unsure. Tracking annotations are not displayed in
the reporting tool. Finally, the models tab allows the user to
create and train a model and use a model on an unwatched
video to automatically annotate it. We use the RetinaNet [7]
convolutional neural network as our annotation algorithm,
where the initial weights are based on the COCO dataset [10].

In what follows, in Section II we go over related research.
The main contributions of the paper are in the next three
sections. In Section III, we describe the functionality of our
website and the workflow of how to use it. In Section IV, we
examine the technical details of how we built the website. This
includes a novel algorithm for correctly assigning the category
of a concept based on multiple frames of tracking the concept
with a bounding box. Our experimental results are presented
in Section V, while the summary and areas for future research
are shown in Section VI.

II. RELATED RESEARCH

As [11] described, there is a trade-off between the accuracy
and the speed of an object detection algorithm. One of the
first highly successful algorithm to use convolutional neural
networks was regional convolutional neural networks (R-
CNN). It is a two-pass algorithm, where the first pass identifies
about 2,000 regions of interest in the image using selective
search [12] and the second pass transforms each region into
a rectangle and then classifies it using a convolutional neural
network (CNN). However, training and inference was slow.
Two improvements: Fast R-CNN [4] and Faster R-CNN [5]
were introduced later. Fast R-CNN speeds up the process
by first using a CNN to generate a feature map. Then, the
selective search algorithm works with the feature map instead
of pixels from the image, which speeds up the process. Faster

R-CNN eliminates the need for the selective search algorithm
all together by using a convolutional neural network to select
the objects of interest. An extension of Faster R-CNN is Mask
R-CNN [13], which is able to segment the objects in the image.
This means that instead of bounding boxes, the algorithm
detects the precise curved boundary of each object inside the
image.

An alternative approach to object detection is using a feed-
forward network in a single pass. Such algorithms include
You Only Look Once (YOLO) [6] and Single Shot Detection
(SSD) [14]. The algorithms split the input image into grids and
explores different bounding boxes in each grid cell. Although
these approaches are very fast, the accuracy is not at good as
the two-stage methods, such as Faster R-CNN.

Recently, the RetinaNet algorithm [7] was published. Al-
though it is a one-stage convolutional neural network algo-
rithm, it is able to achieve accuracy that is comparable with
two-stage algorithms, such as Faster R-CNN. The algorithm
addresses class imbalance during training by using a new focal
loss function.

For our website, we experimented with Faster R-CNN,
YOLO, and RetinaNet. As expected, using RetinaNet we got
reasonable training times (e.g., about four hours to train the
network on a single concept) and good accuracy. Faster R-
CNN and YOLO were slower and the accuracy numbers were
not as good.

There is great utility for our approach in the marine sci-
ences because many marine research projects utilizes video
or imagery. Some projects that use still images have begun to
employ machine learning to automate the task of identification
of plankton [15], megafauna, such as sharks and whales [16],
[17], birds [18], and even corals [19], but few projects have
been successful in applying these approaches to video. There
is a wide range of marine research and monitoring projects
that use videos, including measuring the size structure of
fishes [20], evaluating the impacts of fishery closures on target
populations [21], monitoring and evaluating human impacts
in deep-sea ecosystems [22], [23], [24], surveying pelagic
ecosystems [25], and tracking biodiversity [26], among many
others. The videos that are generated require a great deal of
time to process, which adds cost, slows data analysis, and
limits the data that researchers can extract and analyze, all
of which reduces the potential impact the data can have on
our understanding and managing of ecosystems. While we are
developing this tool for a single, specific project, the potential
applications of this tool across marine science and any other
discipline that collects video data are wide and varied.

III. OUR WEBSITE

We built our website on AWS using nodeJS and React.
We used PostgreSQL as our database back-end. The location
of our website is www.deepseaannotations.com.
The website is password protected because the videos
are property of MBARI and cannot be shown without
their permission. The software is developed under
Apache license and it can be downloaded from:



github.com/video-annotation-project. The
website has six tabs: Concepts, Collections, Annotate, Report,
Model, and Account, which we cover next.

A. Concepts Tab

The concepts tab allows us to select the concepts of interest.
The concepts are displayed in a tree hierarchy, where there is
an image associated with each concept. These hierarchy cor-
responds to the taxonomic hierarchy of marine-life organisms.
The concept tree is initially populated from a JSON file. The
user can navigate the tree or directly type the name of the
concept. There is no limitation to the number of concepts that
can be selected. All selected concepts are put in the user’s
concept bag.

B. Collections Tab

The Collections tab has three sub-tabs: Annotations, Con-
cepts, and Videos. The Annotation Collection sub-tab allows
the user to create a collection of annotations or add annotations
to an existing collection. First, users, videos, and concepts
are selected. Next, all annotations from these selections are
displayed. As expected, there is an option to choose all users,
all videos, or all concepts. For videos and concepts, there is
also the option to select from an existing video collection or
concept collection, respectively. Once the user has described
the annotation collection based to the annotators, videos, and
concepts, they have the option to select whether to include
annotations from tracking to the collection. On average, we
store about 55 tracking annotations (about three seconds of
tracking video) for each user annotation. Annotation collec-
tions are used when working with models. For example, we
can use an annotation collection to train a model. Similarly,
when the software makes predictions on a video, the result is
stored in an annotation collection.

The Concept Collection sub-tab allows the user to create
custom collections of concepts. The user can only select
concepts from their concept bag that is created through the
Concept tab. If the user wants to add a concept that is not part
of their concept bag to a collection, then the concept needs
to be first added to the concept bag. Concept collections are
useful when creating annotation collections.

Lastly, the Video Collection sub-tab allows the user to create
collections of videos. When the user is adding a video to a
collection, they are allowed to play the video and see video
information. Video information includes the start/end time
of the video, the start and end depth in meters, the video
description, summary of the concepts that were annotated in
the video, and the density of the concepts in the video (e.g.,
how many sea stars can be seen in the video per kilometer).
We found this sub-tab useful because we had different sets of
videos: for example, videos that are high quality, videos that
contain the species that we are interested in, and so on.

C. Annotate Tab

The Annotate tab has two sub-tabs: Videos and Verify. The
Videos sub-tab is used to annotated videos. It has the capability

of playing a video at different speeds, stopping a video, and
annotating objects in the video using rectangular bounding
boxes. The software allows to only annotate species that are
in the concept basket, but it also allows the user to quickly
add new concepts to the concept basket. When an annotation
is performed, the user has the option to add a comment to
the annotation or mark it as uncertain so that it can be later
reviewed by a different annotator. The tool keeps track of
which videos are currently being annotated and which videos
have already been annotated. This allows annotators to choose
to work on new videos that have not been previously annotated
and the website gives a warning when multiple annotators try
to annotate the same video.

The Verify sub-tab is used to verify an existing collection of
annotations. The user can select whether to include annotations
from tracking and whether to verify tracking videos. The
annotations from the collection are shown to the user one
by one. The user has the option to move the bounding box,
change the label of the annotated concept, or even create a
new annotation. For each frame, all available annotations are
displayed. This includes annotations outside the annotation
collection. The reason is that we want to make sure that all
frames that are used as input to a model contain all relevant
annotations. Four colors are used to display the different
bounding boxes – see Figure 1. Red is used to display the
annotation that we are hovering over with the mouse. This
includes the option to delete the annotation. Green is used
for annotations that are already verified and are part of the
collection. Blue is used for annotations that are outside the
set of concepts for the annotation collection. Finally, orange
is used for the current bounding box. The tool also contains the
option to jump between an annotation and the corresponding
tracking video. It is recommended that an annotation collection
is verified by a human for accuracy before it is used to train
a neural network model.

D. Report Tab

The report tab shows all annotations, verified only annota-
tions, or unsure annotations sorted by video, concept, and/or
annotator. The result is shown in a tree that can be expended
or collapsed. Once an annotation is displayed, the user has the
option to modify it, delete it, or watch the tracking video that is
associated with the annotation. This tab can be used to examine
the work that is done by the different annotators because it
shows counts relative to the chosen sorting order. Alternatively,
if the result is sorted by concept, then we can see the total
number of annotations for each concept (see Figure 2). This
tab is also useful as a learning tool because it can display all
the annotations with trackings for each concept. The similarity
between this tab and the verify tab are obvious: both tabs can
be used to view and change annotations. However, the verify
tab shows the annotations one at a time and its main purpose is
to double-check our work. Conversely, the report tab is useful
not only to examine individual annotations, but also see a
summary of the annotation count by concept, annotator, or
video (similar to the cube operator in relational databases).



Fig. 1. The Verify sub-tab.

E. The Model Tab

The model tab shows all available models. There is a “+”
in the top right of the tab that can be used to create a new
model. If pressed, a new popup window opens where the user
types the model name, the concepts that are part of the model
(directly specified, or specified using a concept collection)
and the verification videos. The verification videos must be
videos that are fully annotated and that contains some of the
model’s concepts. The verification videos must be different
from the videos that were used to train the model. The videos
can be chosen from a list or an existing video collection can be
selected. After a model is trained, the verification videos are
used to verify the accuracy. For example, for each concept of
the model, the following values are calculated: the number
of true positives, the number of false negatives, precision,
recall, F1 score, the number of predicted concepts, the ground
truth number of concepts as annotated by users, and the count
accuracy. These numbers are used to access the quality of the
model and guide the user if additional training data is needed.

For each model, there is a “train” button that creates a
new version of the model. The initial weights are based on
the COCO dataset [10]. Once the button is pressed, a new
popup window appears that asks for the name of the annotation
collection, the number of epochs to train, and the number
of images to use. Note that the annotations that are used
for training cannot be from the verification videos. Next, the
button is changed to “training”. If the “training” button is
pressed, information about the training (e.g., current epoch
for the training stage or video being annotated and percent

progress for the verification stage). Once the training has
finished, a new version appears under the model. The web
page displays tree of versions for each model. For example,
Version 2.3 is the third version that is created from the second
version of the model.

Each model version has a “predict” button that allows us to
use the trained model version to annotate a new video. The
result of running “predict” is generating automatic annotations
on the new unwatched video and a new computer-annotated
video that shows the annotated concepts with bounding boxes
throughout the video. There is also a “video” button for each
model version that shows the videos that are generated for
the specific model version. Annotated videos are generated
for each of the verification videos. The annotated video shows
the annotated concepts with bounding boxes from the moment
they appear in the video to the moment they disappear from
the video with the label of the concept and confidence that the
prediction is correct. Note that for each concept appearance,
only a single annotation is generated and the rest of the anno-
tations in the annotated video are generated using the tracking
algorithm [9]. More details on how the annotation videos and
the automatic annotations are generated are presented in the
next section.

An information button is also associated with each model
version. When pressed, we can see the precision, accuracy, F1

score, and count accuracy of each concept on the verification
videos. If these numbers are good, then we can assume that our
model is good. If they are not, then we have two options. First,
we can verify the output annotations of the model using the



Fig. 2. The Report tab shows the top concepts relative to number of
annotations.

verify sub-tab. Then, we can retrain the model with the verified
annotations. In the spirit of reinforcement learning (e.g., [27],
[28]), corrected annotations are given a greater weight when
creating the new model version. The second option would be
to create a new model version by training the existing weights
using an additional annotation collection.

F. Account Tab

Lastly, the account tab has three sub-tabs: Profile, Create
Users, and Users. The Profile tab allows the user to change
the current password. The Create User tab allows us to create a
new user, which can be an annotator or an admin. Only admin
users have access to some of the functionality, such as training
models. Lastly, the Users tab can be used to monitor the work
of the annotators. Specifically, it can show the number of
annotations for each user, concept, and time period.

G. Workflow

A rough overview of the website workflow is shown in
Figure 3. We have used a double rectangle to denote the
terminal state of the workflow. First, the annotators will select
the concepts that they care about in their concept basket.
Next, they will annotate multiple videos with the selected
concepts. One or more senior annotators can then validate
the annotations for accuracy and make sure that there are no
mistakes or omissions in the annotated frames. The next step is
to create a model with the important concepts and train it using
part of the created annotations. Note that one or more videos

annotate videos

verify annotations create new model

to annotate new videos

 use the model version verify computer

   annotations

accuracy is good

select concepts

create new model 

         version

no

possibly add new annotations

yes

Fig. 3. Website workflow.

must be designated as verification videos and annotations
from these videos should not be used for training the model.
Once the first model version is produced, the user will check
the accuracy against the verification videos. This accuracy
can me measured as the F1 score or the count accuracy for
the different concepts. If this accuracy is satisfactory, then
we have built a good model version and we can use it to
automatically annotate new videos. If it is not satisfactory, then
we can manually verify the computer-generated annotations
and possibly add new annotations to the model. We have also
found that watching the computer-generated annotated video
is an efficient way to “debug” the model version and determine
witch concepts have been incorrectly labeled. Providing more
annotations for these concepts usually leads to improvement
in accuracy.

IV. WEBSITE INTERNALS

The heart of our website is the algorithm that creates
the computer annotations. It is shown in Algorithm 1. The
input to the algorithm is a trained model (i.e., a CNN with
trained weights) and an unwatched video. The model is trained
on a concept collection using an annotation collection. The
algorithm produces a set of annotations. An annotation is
characterized by the frame ID, bounding box (x, y pixel
coordinates of the top left and bottom right corner), object
ID, concept ID, and confidence. The concept ID identifies the
concept in the video, while a new object ID is created for each
occurrence of a concept in the video. For example, if a starfish
appears in the video and then it disappears after few frames,
than this is one occurrence of the concept and it is assigned
a unique object ID. Our algorithm also maintains an array
of current trackings. For each tracking, we store the concept
name of the object that is being tracked, a unique object ID, the
the bounding box for each fame, and the computer generated
annotation for each 10th frame (this was chosen to make the
algorithm faster). The goal of the tracking array is ensure that
all annotations from the same tracking are tagged with the



same concept ID.

Algorithm 1: create_computer_annotations
Data: video, model
Result: annotations

1 annotations ← []
2 trackings ← []
3 for frame ∈ video.getFrames() do
4 for tracking ∈ trackings do
5 if the object in tracking is present in

frame then
6 tracking.addFrame(frame)
7 end
8 else
9 remove tracking from trackings

10 end
11 end
12 if frame.getNumber() % 10 = 0 then
13 mAnn ←

model.getAnnotations(frame)
14 update(mAnn,trackings,frame)
15 annotations ← annotations ∪ mAnn
16 end
17 end
18 return calibrate(annotations)

Algorithm 1 starts by initializing the array of annotations
and trackings as empty arrays (Lines 1-2). Next, our algorithm
performs a one-pass scan of all the frames in the videos
(Line 3). This implies that the algorithm is linear and relatively
fast. In practice, it takes about 30 minutes to automatically
annotate a 15-minute video. Next, we iterate through all our
current trackings (Line 4) and check if tracking extends to the
current frame (Line 5). If this is the case, then we add the
current frame to the tracking (Line 6). Otherwise, the tracking
has ended and accordingly we remove it from the list of current
trackings (Line 9). In order to make the algorithm fast, we
only annotate every 10th frame (Line 12). The mAnn variable
stores all the annotation for the current frame (Line 13).
Line 14 updates the tracking data using these annotations,
while Line 15 adds the computer generated annotations to the
set of annotations. Lastly, Line 18 calibrates the annotations by
picking the concept with the highest average confidence among
each tracking and then tagging all the annotations along the
tracking with this concept.

The create_computer_annotations method calls
two auxiliary methods. The first one is the update method,
which updates the tracking data. The method is called with the
frame number and all the computer annotations and tracking
data for the frame. We first iterate over all the annotations
(Line 1) and check if there is an overlap between the bounding
box of an existing tracking and a computer annotation. We
consider two bounding boxes overlapping if the overlap area
is more than 20%. Line 4 updates the annotation with the
ID of the object that is being tracked, while Line 5 add the

Algorithm 2: update
Data: annotations,trackings,frame
Result: Updates trackings

1 for annotation ∈ annotations do
2 if annotation.getBoundingBox() overlaps

with tracking.getBoundingBox(frame)
for some tracking in trackings then

3 objectID ← tracking.getObjectID()
4 annotation.objectID ← objectID
5 tracking.addAnnotation(annotation)
6 end
7 else
8 tracking ← new tracking starting at

frame and bounding from annotation
9 tracking.addAnnotation(annotation)

10 annotation.objectID ←
tracking.objectID

11 trackings ← trackings ∪ tracking
12 end
13 end
14 for tracking ∈ trackings do
15 if tracking.getBoundingBox(frame) does

not overlaps with some annotation in
annotations and there has not been a match
for the last 30 frames then

16 remove tracking from trackings
17 end
18 end

annotation to the tracking. Line 7 covers the case when there
is an an object that is recognized by the prediction algorithm
in the current frame, but there is no tracking for it. In this
case, Line 8 creates a new tracking for this object. Note that
this automatically generates a new object ID. Line 9 adds the
annotation to the tracking. Lines 10 sets the object ID for the
annotation to the ID of the object that is being tracked. Line 11
adds the tracking to the set of current trackings. Lines 14-
18 cover the case when we keep tracking an object for 30
frames without the object being recognized by the prediction
software. In this case, we are assuming that the object that is
being tracked is no longer recognized and therefore we stop
tracking it.

Lastly, the calibrate method reassigns the concept
labels of the computer-generated annotations. In particular, the
method first finds all annotations that trace an object (Lines 1-
2). We then find the average confidence for each concept in
the tracking, pick the concept that has the highest confidence
(Line 4), and use this concept to relabel the annotations
along the tracking (Line 5). For example, if along a tracking
the machine-learning algorithm recognizes a concept A with
confidence 0.2, a concept B with confidence 0.3 and then
a concept A with confidence 0.5, then we will relabel all
concepts as A because the average confidence for A is 0.35,
while the average confidence for B is 0.3. Note that in our



Algorithm 3: calibrate
Data: annotations
Result: calibrated annotations

1 for objectID ∈
annotations.getObjectIDs() do

2 nAnnotations ← all annotations with
objectID

3 find average confidence for each concept in
nAnnotations

4 conceptID ← concept with highest average
confidence

5 change the conceptID of all annotations in
nAnnotations to conceptID

6 end
7 return annotations

database we store only the annotation in the middle for each
tracking, while the the other annotations are derived using the
Kernelized Correlation Filter tracking algorithm.

V. EXPERIMENTAL EVALUATION

A. Training Process

Our training script runs on a AWS EC2. Specifically, we
used a g3.16xlarge, which has 4 NVIDIA Tesla M60 GPUs
(32 Gbs GPU memory). The model trains on information a
user selects: epochs, annotation collection, and number of
training images. We use a custom image generator, which
feeds our model. Our generator downloads multiple images at
a time. The generator checks if the image exists in our training
server, and when the image is not found, it downloads it from
our S3 bucket. Once there are enough images for a batch,
our model starts training. While training on the first batch,
the generator continues to prepare images for the next batch.
Parallelizing image retrieval, checking existing images, and
training immediately made the process run fast.

B. Validation

We compute a model’s accuracy on a set of verification
videos. Those are videos that are not used to train the model.
After each training job, all verification videos are run against
the model, and compared with user annotations. If a bounding
box in the model overlaps with a user’s box by 20% or more,
then this a true positive (TP), otherwise it is a false positive
(FP). If our model does not place a box that overlaps with a
user’s box, then this is a false negative (FN). We use these
numbers to calculate precision (P), recall (R), and F1 score.

P =
TP

TP + FP
R =

TP

TP + FN
F1 =

2 · P ·R
P +R

Finally, we take the number of human annotations (user-
Count) and compare it with the number of objects our model
(modelCount) detected for each species.

count accuracy = 1− |modelCount− userCount|
max(userCount,modelCount)

This gives us an idea of how well our model is doing,
without the need to watch the video ourselves. For further
investigation, we also generate the verification video with both
human and model annotations.

C. Experiments

Our team was interested in comparing two settings for
training a model:

1) User annotations only and
2) User annotations and tracking annotations.

We used 5,000 random annotations of each concept from the
collection, 1280x720 images, a batch size of eight, and three
epochs for each training session. A session took on average
two hours to train the model. Each model was trained twice.

The current standard is to train on only human annotations.
This setting requires a lot of work from biologists, but the
annotations are more consistent and accurate than tracking an-
notations. The second setting adds tracking annotations to the
set. For each user annotation, the tracking algorithm generates,
on average, 55 additional annotations. So, on average, we have
access to 55 times more annotations than the first setting.

D. Experimental Results

Tables I and II show the results from the two settings on
a verification video. The first setting, trained on only user
annotations, does very well on identifying starfish, but not on
the sea urchin. After inspecting our user’s annotations, the
starfish frames were annotated very well. They are big, easy
to capture, and do not appear in clusters. The sea urchin is the
opposite. A single biologist is easily overwhelmed, and can
miss them. Our tracking algorithm generates annotations on
every frame, so the biologist does not need to do so. With the
addition of these annotations in our collection, we were able
to reach very high count accuracy on both (over 95%).

VI. CONCLUSION AND FUTURE RESEARCH

In this paper, we outlined our work on the Deep-Sea
Annotations project. We created a website that can be used to
perform human annotations, human verification of annotations,
and computer annotations of deep-sea videos. We showed
the usability of the website by using it to create more than
30,000 annotations and then verify about 3,000 of them. The
experimental results show that our approach is promising
because our algorithm was able to determine the density of
both sea urchins and starfish with very small count error.

One area of future research is to allow our algorithm to
classify objects in a hierarchical way. For example, if our
algorithm is not sure about the type of sea pan that is displayed
in a bounding box (e.g., funiculina vs funiculina-Halipteris
complex), then it can just use the funiculinidae label, which is
the name of the super concept, to classify an object.

ACKNOWLEDGMENT

This work has been sponsored by the California Energy
Commission, Program: EPIC, Agreement Number: EPC-17-
029. We would also like to acknowledge the general support



TABLE I
ACCURACY RESULTS ON VIDEO 86: TRAINED ON 5,000 USER ANNOTATIONS ONLY

Species Name TP FP FN P R F1 model count user count count
accuracy

Rathbunaster californicus 134 11 9 0.924 0.937 0.931 145 145 100%
Strongylocentrotus cf. fragilis 77 12 35 0.865 0.688 0.766 89 140 63.6%

TABLE II
ACCURACY RESULTS ON VIDEO 86: 5,000 USER & TRACKING ANNOTATIONS

Species Name TP FP FN P R F1 model count user count count
accuracy

Rathbunaster californicus 126 14 13 0.900 0.906 0.903 140 145 96.6%
Strongylocentrotus cf. fragilis 109 30 21 0.784 0.838 0.810 139 140 99.3%

of Amazon Web Services (AWS), which provided $50,000 in
AWS credits. This work would also not be possible without
the help of the Monterey Bay Aquarium Research Institute
(MBARI), which provided 50 hours of high-definition breath-
taking underwater videos. Finally, we would like to thank the
following Cal Poly San Luis Obispo students: Ishaan Jain,
Samantha Gunzl, Jacob Territo, Kyle Maxwell, Kyaw Soe,
Trace Rainbolt, Kevin Label, and Justin Cho, who wrote the
website software.

REFERENCES

[1] I. S. Al-Mutaz, “Environmental impact of seawater desalination plants,”
Environmental Monitoring and Assessment, 1991.

[2] MBARI, “Video Annotation and Reference System (VARS),”
https://www.mbari.org/products/research-software/video-annotation-
and-reference-system-vars/, 2019.

[3] R. Girshick, J. Donahue, T. Darrell, and J. Malik, “Rich Feature
Hierarchies for Accurate Object Detection and Semantic Segmentation,”
https://arxiv.org/abs/1311.2524v5, 2013.

[4] R. Girshick, “Fast R-CNN,” https://arxiv.org/abs/1504.08083, 2015.
[5] S. Ren, K. He, R. Girshick, and J. Sun, “Faster R-CNN: To-

wards Real-Time Object Detection with Region Proposal Networks,”
https://arxiv.org/abs/1506.01497, 2016.

[6] J. Redmon and A. Farhadi, “YOLOv3: An Incremental Improvement,”
https://arxiv.org/abs/1804.02767, 2018.

[7] T.-Y. Lin, P. Goyal, R. Girshick, K. He, and P. Dollár, “Focal Loss for
Dense Object Detection,” https://arxiv.org/abs/1708.02002, 2017.

[8] P. Lubomir Stanchev and C.-P. Benjamin BenjaRuttenberg, “Lowering
costs of underwater biological surveys to inform offshore renewable
energy,” California Energy Commission EPIC Grant EPC-17-029, 2018.

[9] J. F. Henriques, R. Caseiro, P. Martins, and J. Batista, “High-Speed
Tracking with Kernelized Correlation Filters,” IEEE Transactions on
Pattern Analysis and Machine Intelligence, vol. 37, no. 3, pp. 583–596,
2015.

[10] T.-Y. Lin, M. Maire, S. Belongie, L. Bourdev, R. Girshick, J. Hays,
P. Perona, D. Ramanan, C. L. Zitnick, and P. Dollar, “Microsoft COCO:
Common Objects in Context,” https://arxiv.org/abs/1405.0312, 2014.

[11] J. Huang, V. Rathod, C. Sun, M. Zhu, A. Korattikara, A. Fathi,
I. Fischer, Z. Wojna, Y. Song, S. Guadarrama, and K. Murphy,
“Speed/Accuracy Trade-offs for Modern Convolutional Object Detec-
tors,” https://arxiv.org/abs/1611.10012, 2017.

[12] J. Uijlings, K. van de Sande, T. Gevers, and A. Smeulders, “Selective
Search for Object Recognition,” International Journal of Computer
Vision, vol. 104, no. 2, pp. 154–171, 2013.

[13] K. He, G. Gkioxari, P. Dollar, and R. Girshick, “Mask R-CNN,”
https://arxiv.org/abs/1703.06870, 2017.

[14] W. LiuEmail, D. Anguelov, D. Erhan, C. Szegedy, S. Reed, C.-Y. Fu,
and A. C. Berg, “SSD: Single Shot MultiBox Detector,” European
Conference on Computer Vision, pp. 21–37, 2016.

[15] J. Y. Luo, J. Irisson, B. Graham, C. Guigand, A. Sarafraz, C. Mader, and
R. K. Cowen, “Automated Plankton Image Analysis using Convolutional
Neural Networks,” Limnology AND Oceanography Methods, vol. 16,
no. 12, pp. 814–827, 2018.

[16] A. P. Colefaxa, P. A. Butchera, D. E. Pagendam, and B. P. Kelaher,
“Reliability of Marine Faunal Detections in Drone-based Monitoring,”
Ocean and Coastal Management, vol. 174, pp. 108–115, 2019.

[17] D. Risch, T. Norris, M. Curnock, and A. Friedlaender, “Common and
Antarctic Minke Whales: Conservation Status and Future Research
Directions,” Frontiers in Marine Science, vol. 6, 2019.

[18] R. A. Orben, A. B. Fleishman, A. L. Borker, W. Bridgeland, A. J.
Gladics, J. Porquez, P. Sanzenbacher, S. W. Stephensen, R. Swift, M. W.
McKown, and R. M. Suryan, “Comparing Imaging, Acoustics, and Radar
to Monitor Leach’s Storm-petrel Colonies,” PeerJ, vol. 7, 2019.

[19] I. D. Williams, C. S. Couch, O. Beijbom, T. A. Oliver, B. Vargas-Angel,
B. D. Schumacher, and R. E. Brainard, “Leveraging Automated Image
Analysis Tools to Transform Our Capacity to Assess Status and Trends
of Coral Reefs,” Frontiers in Marine Science, vol. 6, 2019.

[20] T. B. Letessier, J.-B. Juhel, L. Vigliola, and J. J. Meeuwig, “Low-
cost Small Action Cameras in Stereo Generates Accurate Underwater
Measurements of Fish,” Journal of Experimental Marine Biology and
Ecology, no. 466, pp. 120–126, 2015.

[21] J. S. Goetze, S.D.Jupiter, T. J. Langlois, S.K.Wilson, E.S.Harvey,
T.Bond, and W. Naisilisili, “Diver Operated Video Most Accurately
Detects the Impacts of Fishing within Periodically Harvested Closures,”
Journal of Experimental Marine Biology and Ecology, vol. 462, pp.
74–82, 2015.

[22] F. Althaus, A. Williams, T. A. Schlacher, R. J. Kloser, M. A. Green,
B. A. Barker, N. J. Bax, P. Brodie, and M. A. Schlacher-Hoenlinger,
“Impacts of Bottom Trawling on Deep-coral Ecosystems of Seamounts
are Long-lasting,” Marine Ecology Progress Series, vol. 397, pp. 279–
294, 2009.

[23] A. Cánovas-Molina, M. Montefalcone, G. Bavestrello, A. Cau, C. N.
Bianchi, C. Morri, S. Canese, and M. Bo, “A New Ecological Index
for the Status of Mesophotic Megabenthic Assemblages in the Mediter-
ranean based on ROV Photography and Video Footage,” Continental
Shelf Research, vol. 121, pp. 13–20, 2016.

[24] V. A. I. Huvenne, B. J. Bett, D. G. Masson, T. P. L. Bas, and
A. J. Wheeler, “Effectiveness of a Deep-sea Cold-water Coral Marine
Protected Area, Following Eight Years of Fisheries Closure,” Biological
Conservation, vol. 200, pp. 60,69, 2016.

[25] P. J. Bouchet and J. J. Meeuwig, “Drifting Baited Stereo-videography: A
Novel Sampling Tool for Surveying Pelagic Wildlife in Offshore Marine
Reserves,” ECOSPHERE, vol. 6, no. 8, 2015.

[26] A. W. J. Bicknell, B. J. Godley, E. V. Sheehan, S. C. Votier, and M. J.
Witt, “Camera technology for monitoring marine biodiversity and human
impact,” Frontiers in Ecology and the Environment, vol. 14, no. 8, pp.
424–432, 2016.

[27] V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou, D. Wier-
stra, and M. Riedmiller, “Playing Atari with Deep Reinforcement
Learning,” https://arxiv.org/abs/1312.5602, 2013.

[28] R. S. Sutton and A. G. Barto, Reinforcement Learning: An Introduction.
MIT Press, Cambridge, 2018.


