
Creating a Probabilistic Graph for WordNet using Markov
Logic Network

Lubomir Stanchev
Computer Science Department

California Polytechnic State University
San Luis Obispo, California, USA

stanchev@gmail.com

ABSTRACT
The paper shows how to create a probabilistic graph for
WordNet. A node is created for every word and phrase
in WordNet. An edge between two nodes is labeled with
the probability that a user that is interested in the source
concept will also be interested in the destination concept.
For example, an edge with weight 0.3 between “canine” and
“dog” indicates that there is a 30% probability that a user
who searches for “canine” will be interested in results that
contain the word “dog”. We refer to the graph as probabilis-
tic because we enforce the constraint that the sum of the
weights of all the edges that go out of a node add up to one.
Structural (e.g., the word “canine” is a hypernym (i.e., kind
of) of the word “dog”) and textual (e.g., the word “canine”
appears in the textual definition of the word “dog”) data
from WordNet is used to create a Markov logic network,
that is, a set of first order formulas with probabilities. The
Markov logic network is then used to compute the weights
of the edges in the probabilistic graph. We experimentally
validate the quality of the data in the probabilistic graph
on two independent benchmarks: Miller and Charles and
WordSimilarity-353.

CCS Concepts
•Computing methodologies → Probabilistic reason-
ing; Semantic networks;

Keywords
WordNet; Markov Logic Network; Probabilistic Graph; Se-
mantic Search

1. INTRODUCTION
WordNet contains very high quality information [21]. Many

scientists have spent decades to develop this lexical corpus
that contains about 150,000 word forms from the English
language. A word form is a word or a phrase (e.g., “sports
utility vehicle”). WordNet also contains information about

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

WIMS ’16 June 13–15, 2016, Nimes, France
c© 2016 ACM. ISBN 978-1-4503-4056-4. . . $15.00

DOI: 10.1145/1235

the relationship between word forms (e.g., “vitamin C” has
the same meaning as “ascorbic acid”, a “dog” is “canine”, or
a “house” has “windows”). Lastly, WordNet contains tex-
tual descriptions, such as the definition of a sense of a word
form or an example use of a word form in a sentence. All this
information can be very useful to a human who wants to un-
derstand the meaning of different word forms and how they
are related. However, it is difficult for a computer program
to process this information because computers are not as
adept as humans in processing natural language. We address
this challenge by creating a probabilistic model for WordNet
that stores conditional probabilities of pairs of word forms.
We refer to this model as a probabilistic graph. For exam-
ple, an edge between “cat” and “pet” with weight 0.2 in the
graph means that there is a 20% change that a user who
searches for cats will find documents that contain the word
“pet” relevant.

A probabilistic graph has many applications. For exam-
ple, in this paper and in [34] we show that it can be used
to compute the degree of semantic similarity between a pair
of word forms. In [36] we show how a probabilistic graph
can be used to perform semantic search. This means that
given a textual query, we can return documents that con-
tain related words. For example, if we know that there is a
20% change that a user who searches for cats will find doc-
uments that contain the word “pet” relevant, then we can
return such documents as part of the query result. The doc-
uments that are returned are order based on the probability
of being relevant to the input query, where the probabilistic
graph can help us compute these probabilities. Lastly, [37]
shows how a probabilistic graph can be used to perform se-
mantic document clustering. For example, an online store
can use a probabilistic graph to cluster the products that are
offered in different categories. Two products should appear
in the same category if they have textual descriptions that
contain words that are similar based on the semantic sim-
ilarity metric that can be extracted from the probabilistic
graph.

Converting WordNet in a computer-friendly format is a
daunting task because it contains heterogeneous data. While
there are plethora of algorithms that process structured in-
formation [14, 29] and textual information [2, 15], exper-
imental results have shown that processing both types of
information yields the best results [35]. The fact that pro-
cessing natural language is intrinsically hard for computers
makes the problem even harder. Although significant effort
has been put in automated natural language processing (e.g.,
[7, 8, 19]), current approaches fall short of understanding

the precise meaning of human text. In fact, the questions of
whether computers will ever become as proficient as humans
in understanding natural language text is an open problem.

To the best our knowledge, our previous research in the
area [34, 36] is the only study on how structured and un-
structured information from WordNet can be combined to
model the semantic relationship between word forms. How-
ever, all our previous research in the area [34, 33, 36, 37]
considers a similarity graph that is not probabilistic, that
is, the sum of the weights of the edges that go out of a node
can add up to more than one. In this paper, we examine
how a Markov Logic Network (MLN) [26] can be applied to
the problem. The final result is a probabilistic graph where
the weights of the edges that go out of a node add up to
one. In Section 6, we show how applying a strict probabilis-
tic model and using a MLN affects the quality of the data
in the graph.

Our algorithm for creating the probabilistic graph first
examines WordNet and creates a node for each word form
and each sense. The label of a word form node is the word
form and the label of a sense node is the definition of the
sense. Next, we represent the relationship between nodes
using logical formulas with weights. Following the MLN
approach, the weight of a formula is equal to the natural
logarithm of the odds of the formula being true. We slightly
modify this expression to ensure that all the weights are
positive. Our probability space consists of a random vari-
able for each node in the graph and a single predicate called
rel. For example, the main sense of the word chair is “a
seat for one person” (Note that a word form can have many
senses and several word forms can represent the same sense.)
We can model part of this information by creating the for-
mula rel(a seat for one person) ⇒ rel(seat) and assigning
it a weight based on how strongly we believe that someone
who is interested in the sense will also be interested in the
first non-noise word in its definition. After all the formulas
are created, we draw edges between each pair of nodes that
participate in a formula. We use the MLN model to aggre-
gate the evidence about the conditional probability for each
of these pairs. The resulting weight of an edge between two
nodes is a normalized probability value that assures that the
sum of the weights of all the edges that leave a node add up
to one.

We experimentally validate the quality of the data in the
probabilistic graph on two independent benchmarks: Miller
and Charles [20] and WordSimilarity-353 [6]. The two bench-
marks contain the degree of semantic relevance between pairs
of words as determined by humans. We compare this data
with the results of applying a similarity metric that uses the
probabilistic graph. Roughly, we compute the semantic sim-
ilarity between two nodes as the average of the conditional
probability of the first node being relevant given the sec-
ond node and the conditional probability of the second node
being relevant given the first node. The conditional prob-
ability of one node given another is computed as a func-
tion of the sum of the conditional probabilities along all
the cycleless paths between them, where we use the MLN
model together with dynamic programming to compute the
conditional probability along a path. The experimental re-
sults show that our approach produces good results on both
benchmarks. We believe that the reason is that we process a
lot of information, including natural language descriptions,
and we are able to apply this information to build a math-

ematical model of the semantic relationships between word
forms that is based on probability theory and MLNs. This
approach is preferred to previous research (e.g. [34]) because
it uses existing probabilistic theory algorithms.

In what follows, in Section 2 we review related research.
The major contributions of the paper are in the next four
sections. Section 3 shows our algorithm for creating logi-
cal formulas with weights from WordNet. Section 4 shows
how this information can be transformed into a probabilistic
graph. Section 5 shows a novel algorithm for measuring the
semantic similarity between word forms based on the MLN
model. Section 6 shows how our system compares with exist-
ing systems that measure word similarity, while concluding
remarks and areas for future research are outlined in Sec-
tion 7.

2. RELATED RESEARCH
Existing research that applies Bayesian networks to rep-

resent knowledge deals with the uncertain or probabilistic
information in the knowledgebase [24, 22]. Our approach
slightly differs because we do not store the probability that
a word form is relevant given that an adjacent in the graph
word form is unrelated. We only store a single number along
every edge (the conditional probability that the destination
concept is relevant given that the source concept is relevant)
and we do not store all the information that is needed to cre-
ate the full joint distribution of the word forms. Our model
is more compact and, as we will show in the experimental
section, contains high quality data.

The idea of creating a graph that stores the degree of se-
mantic similarity between word forms is not new. For exam-
ple, Simone Ponzetto and Michael Strube show how to create
a graph that only represents inheritance of words [14, 29],
while Glen Jeh and Jennifer Widom show how to approx-
imate the similarity between words based on information
about the structure of the graph in which they appear [11].
These papers, however, differ from our approach because
we suggest representing available evidence from all type of
sources, including natural language descriptions. Our ap-
proach is also different from the use of a semantic network
[38] because the latter does not assign weights to the edges
of the graph.

In this paper we show a method that uses the probabilis-
tic graph to measure the semantic similarity between word
forms. However, there are alternative methods to measure
the semantic similarity between word forms. The most no-
table approach is the Google approach [4] in which the sim-
ilarity between two word forms is measured as a function of
the number of Google results that are returned by each word
form individually and the two word forms combined. Other
approaches that rely on data from the Internet include pa-
pers by Danushka Bollegala, Yutaka Matsuo, and Mitsuru
IshizukaRef [2] and by Swarnim Kulkami and Doina Caragea
[15]. The first paper searches for lexicographical patterns be-
tween the words using a search engine. For example, in order
to compute the similarity between the words “dog” and “cat”
the system will search the Internet for the phrase “dog is a
cat”, among others. The second paper uses the Internet to
create a concept cloud around each word and then computes
the semantic distance between two words as a function of
the distance between their concept clouds. For example, the
word “feline” is part of the concept cloud for the word “cat”.
Although these approaches produce good measurement of

semantic similarity, they have their limitations. First, they
do not make use of structured information, such as the hy-
ponym (i.e., is-a) relationship in WordNet. Second, they do
not provide evidence about the strength of the relationship
between the two word forms that are compared. In contrast,
our approach can show the paths in the probabilistic graph
between the two word forms, which serves as evidence that
supports the similarity score.

Since the early 1990s, research on LSA (stands for latent
semantic analysis) has been carried out [5]. The approach
has the advantage of not relying on external information.
Instead, it considers the closeness of word forms in text doc-
uments as proof of their semantic similarity. For example,
LSA can be used to detect words that are synonyms [16].
This differs from our approach because we do not consider
the closeness of the words in a document. For the most
part, we process natural language text as a bag of terms,
where the main exception is that we consider the order of
the words in the definition of a WordNet sense when we cre-
ate the logical formulas. The reason is that we assume that
the first words in the definition of a sense are more impor-
tant. The other difference is that our algorithm can extract
overlapping terms from a text source. Although the LSA
approach has its applications, we believe that using a high-
quality corpus, such as WordNet, is beneficial. Note as ell
that the LSA approach cannot be directly used to process
structured knowledge.

Research from information retrieval is also relevant to cre-
ating and using the probabilistic graph. For example, if the
word “ice” appears multiple times in the definition of one
of the senses of the word “hockey”, then this provides evi-
dence about the relationship between the two words. Our
approach uses a model that is similar to TF-IDF [13] (stands
for term frequency – inverse document frequency) to com-
pute the strength of the relationship. In the TF-IDF model,
if the word “ice” appears two times in the definition of one
of the senses of the word “hockey”, then the term frequency
can be computed as two. This number is multiplied by a
number that is inversely proportional to how often the word
“ice” appears in the definition of other senses. For exam-
ple, if most senses contain the word “ice” as part of their
definition, then the fact that one of the senses of the word
“hockey” contains this word is inconsequential. Conversely,
if the word “ice” appears only in the definition of few senses,
then the fact that the definition of one of the senses of the
word “hockey” contains the word “ice” in its definition is
statically meaningful.

Note that plenty of research effort has recently focused
on using a description language, such as ontology web lan-
guage (OWL) [41], to describe resources. A semantic query
language, such as SPARQL [31] (a recursive acronym that
stands for SPARQL Protocol and RDF Query Language),
can be used to search for relevant items. This research dif-
fers from our approach to semantic search in [36] because it
does not provide ranking of the query result. At the same
time, a SPARQL query returns exactly the resources that
fulfill the query description. Alternatively, our system for
semantic search can return resources that are related to the
input query in ranked order. In our approach there is no
need to describe the resources using a mathematical lan-
guage, there is no need to phrase the query using a math-
ematical language, and the system is much more scalable
(OWL knowledgebases are usually applied only to a lim-

ited knowledge domain because query answering over them
is intrinsically computationally expensive.) Lastly, there are
papers that consider a hybrid approach for information re-
trieval using both an ontology and keyword matching. For
example, [28] examines how queries can be expanded based
on the information from an OWL knowledgebase. Alter-
natively, [39] proposes a ranking function that depends on
the length of the logical derivation of the result, where the
assumption is that shorter derivations will produce more rel-
evant documents. Unfortunately, these approaches are only
useful in the presence of an ontology and research on auto-
matic annotation of resources with OWL descriptions is still
in its early stages of development.

There has also been research in the area of combining
a subset of OWL called RDF [25] (stands for Resource De-
scription Framework) with information retrieval approaches,
such as BM25F [27]. For example, [1] shows how to use
natural language to query RDF stores. Note that this is
a keywords-matching search approach and it does not take
into account that the same query can be phrased differently
using different words and terms.

Lastly, note that the probabilistic graph can be applied to
the problem of query expansion in natural language search
systems [30]. For example, a user may search for “Mediter-
ranean Restaurants”. A smart search engine needs to ex-
pand the search query and also search for Egyptian, Moroc-
can, Syrian, and Turkish restaurants, among others. This
expansion is based on the knowledge in the probabilistic
graph.

3. BUILDING LOGICAL FORMULAS FROM
WORDNET

3.1 About WordNet
WordNet [21] gives us information about the words in the

English language. In our study, we use WordNet 3.0, which
contains approximately 150,000 different words. WordNet
also contains phrases, such as “sports utility vehicle”. Word-
Net uses the term word form to refer to both the words and
the phrases in the corpus. Note that the meaning of a word
form is not precise. For example, the word “spring” can
mean the season after winter, a metal elastic device, or the
natural flow of ground water, among others. This is the rea-
son why WordNet uses the concept of a sense. For example,
earlier in this paragraph we cited three different senses of
the word “spring”. Every word form has one or more senses
and every sense is represented by one or more word forms.
A human can usually determine which of the many senses a
word form represents by the context in which the word form
is used.

WordNet contains a plethora of information about word
forms and senses. For example, it contains the definition and
example use of each sense. Consider the word “chair”. One
of its senses has the definition: “a seat for one person, with a
support for the back” and the example use: “he put his coat
over the back of the chair and sat down”. Two other senses
of the word have the definitions: “the position of a professor”
and “the officer who presides at the meetings of an organiza-
tion”. We will process these textual descriptions to extract
evidence about the strength of the relationship between the
initial word forms and the word forms that appear in the
definition and example use of their senses. Note that Word-

Net also provides information about the frequency of use of
each sense. This represents the popularity of the sense in
the English language relative to the popularity of the other
senses of the word form. For example, the first sense of the
word “chair” (a seat for one person, with a support for the
back) is given a frequency of 35, the second sense (the posi-
tion of a professor) is given frequency of just two, while the
third sense (the officer who presides at the meetings of an
organization) is given a frequency of one.

WordNet also contains information about the relation-
ship between senses. The senses in WordNet are divided
into four categories: nouns, verbs, adjectives, and adverbs.
For example, WordNet stores information about the hyper-
nym and hyponym relationships between nouns. The hy-
pernym relationship corresponds to the “kind-of” relation-
ship. For example, “canine” in a hypernym of “dog”. The
hyponym relationship is the reverse. For example, “dog” is
a hyponym of canine. WordNet also provides information
about the meronym and holonym relationship between noun
senses. The meronym relationship corresponds to the “part-
of” relationship. Note that WordNet provides three types of
meronyms: part, member, and substance. The three types of
meronyms can be explained with the following examples: a
“tire” is part of a“car”, “car” is a member of“traffic jam”, and
a “wheel” is made from “rubber”, respectively. The holonym
relationship is the reverse of the meronym relationship. For
example, “building” is a holonym of “window”. For verbs,
WordNet defines the hypernym and troponym relationships.
X is a hypernym of Y if performing X is one way of per-
forming Y. For example, “to perceive” is a hypernym of “to
listen”. The verb Y is a troponym of the verb X if the ac-
tivity Y is doing X in some manner. For example, “to lisp”
is a troponym of “to talk”. Lastly, WordNet defines the re-
lated to and similar to relationship between adjective senses,
which are self explanatory. We will use all this structured
information from WordNet as evidence about the degree of
conditional probability between senses.

3.2 The Probability Model
We create a random variable for each sense and each word

form in WordNet. We will refer to a random variable by its
label, where the label of a word form variable is the word
form and the label of a sense variable is the definition of the
sense. In order to avoid ambiguity, we convert all labels to
lower case. In this model, each random variable will have a
string label and no two random variables will have the same
label.

We add a single predicate to the model. The name of
the predicate is rel and it tells us if a word form or sense
is relevant in the current world. Our model contains only
logical formulas that are Horn clauses of the form: rel(X)⇒
rel(Y). We will add a weight to each logical formula, where
the weight will be computed using the following expression.

w(rel(X)⇒ rel(Y)) = ln(
P+(Y |X)

1− P+(Y |X)
) (1)

Following the MLN model [26], the weight of a logical for-
mula is equal to the natural logarithm of the odds of the for-
mula being true, that is ln(p

(1−p)
). However, this will allow

formulas with negative weights, which is undesirable. When
aggregating evidence, a MLN works by interpreting formulas
with positive weights as positive reinforcement and formu-
las with negative weights as evidence why the formula does

not hold. By making all weights positive, we ensure that all
the formulas will have a positive contribution to the aggre-
gated conditional probability between two concepts. Note
that when we say that there is a 10% probability that the
given the word “chair” we are interested in the word “table”,
we want this evidence to increase the conditional probabil-
ity of the word “table” given the word “chair”. We make
the weights positive by performing a linear transformation
of the probability to the range [0.5, 1]. Specifically, we define
P+ as follows.

P+(Y |X) = 0.5 +
P e(Y |X)

2
(2)

We use P e(Y |X) to denote our confidence of the formula
being true and refer to this value as the evidence probability.
In our example, if we know that the evidence probability is
0.10 (i.e., we are 0.10 confident that someone who is inter-
ested in the word “chair” will also be interested in the word
“table”), then P+(table|chair) = 0.55 and the weight of the
formula will be equal to ln(0.55/0.45) = 0.2.

Note that the same formula can appear multiple times
in our knowledgebase. In the next section we will show how
we can apply the MLN model to aggregate multiple evidence
about the conditional probability between two concepts. In
the remaining of this section, we describe how we model
WordNet as a set of Horn clauses with weights. Note that,
for the most part, we will only describe how to compute the
evidence probabilities, where the weight of each formula can
be computed using Equation 1 and 2.

3.3 Processing the Senses
We first show how to create logical formulas that show the

relationship between a word form and all its senses. Con-
sider the word chair and its three meanings: “a seat for one
person”, “the position of a professor” and “the office who
presides at meetings”. Suppose that WordNet gives a fre-
quency of 35, 2, and 1, respectively, to the three senses. We
will then crate the following formula and probability for the
first sense (Similar formulas and weights will also be created
for the other two senses.)

rel(chair)⇒ rel(a seat for one person), (35/38)

Note that the word“chair”has three meannings. Based on
the frequencies that we are given, the evidence probability
for the relationship to the first meaning is 35/38. Note that
for each formula, we put the evidence probability in paren-
theses. We can then compute the weight of the formula
using Equations 1 and 2. When we assign an actual weight
to a formula, we omit the parenthesis around the number.
In general, we will compute the evidence probability as the
frequency of the sense divided by the sum of the frequencies
of all the senses.

In our example, we will also add the following formula
and weight. Since there are no parentheses, the expression
shows a weight and not an evidence probability.

rel(a seat for one person)⇒ rel(chair), 10

In general, we always add a formula with weight 10 be-
tween a sense and all the word forms that it represents. The
reason in that we have a very high degree of confidence that
if a sense is relevant, then so are all the word form that de-
note the sense. A weight of 10 means that we have a very
high degree of confidence (above 99.99%) of the formula be-
ing true. Note that in a MLN we cannot assign an evidence

probability of one to a formula because this translates in a
weight that is equal to infinity.

3.4 Processing The Definition of a Sense
We next show how to model the relationship between a

sense and the non-noise word forms in its definition. Note
that our algorithm uses a list of about one hundred noise
words. Consider the second sense of the word “chair”: “the
position of a professor”. The noise words: “the”, “of”, and“a”
will be ignored. We will therefore be left with two words:
“position” and “professor”. As a result, we will create the
following formulas.

rel(the position of a profeesor)⇒ rel(position), (0.6)

rel(the position of a profeesor)⇒ rel(professor), (0.48)

The formulas represent the connection between a sense
and the non-noise words in its definition. We assume that
the first words in the definition of a sense are far more im-
portant than the later words. We will therefore multiply the
probability by coef = 1.0 for the first non-noise word form
and keep decreasing this coefficient by 0.2 for each sequential
word form until the value of the coefficient reaches 0.2.

We compute the evidence probability of each formula as
coef ∗computeMinMax (0, 0.6, ratio), where the variable ratio
is calculated as the number of times the word form appears
in the definition of the sense divided by the total number
of non-noise words in the sense. The variable denotes the
importance of the word form in the definition of the sense.
For example, if there are only two words in the definition of
the sense, then they are both very important. However, if
there are 20 words in the definition of the sense, then each
individual word is less important. In our example, ratio = 1

2
for both formulas. However, coef = 1.0 for the first formula
and coef = 0.8 for the second formula.

The computeMinMax function returns a number that is
in most cases between the first two arguments, where the
magnitude of the number is determined by the third argu-
ment. Since the appearance of a word in the definition of
a sense is not a reliable source of evidence about the rela-
tionship between the word and the sense, the value of the
second argument is set to 0.6. The constant 0.6 is related
to the probability that someone who is interested in a sense
will be also interested in one of the words in the definition
of the sense.

The computeMinMax function smoothens the value of the
ratio parameter. For example, a word that appears as one
of the 20 non-noise words in the definition of a sense is not
ten times less important than a word that appears as one
of the two non-noise word in the definition of a sense. The
function makes the difference between the two cases less ex-
treme. Using this function, the evidence probability of the
formula in the second case will be only roughly four times
smaller than the evidence probability of the formula in the
first case. This is a common approach when processing text.
The importance of a word in a text decreases as the size of
the text increases, but the importance of the word decreases
at a slower rate than the rate of the growth of the text. For-
mally, the computeMinMax function is defined as follows.

computeMinMax (minV alue,maxV alue, ratio) =

minV alue+ (maxV alue−minV alue) ∗ −1

log2(ratio)

Note that when ratio = 0.5, then the function returns
maxValue. An unusual case is when the value of the vari-
able ratio is bigger than 0.5. For example, if ratio = 1,
then we have division by zero and the value for the func-
tion is undefined. We handle this case separately and assign
value to the function equal to 1.2 ∗ maxValue. This is an
extraordinary case when there is a single non-noise word in
the text description and we need to assign higher evidence
probability to the formula.

In our example, ratio = 1
2

and therefore computeMin-
Max(0,0.6,ratio)=0.6. Therefore, the evidence probability
of the first formula is coef ∗ 0.6 = 1 ∗ 0.6 = 0.6 and for the
second formula: coef ∗0.6 = 0.8∗0.6 = 0.48. To summarize,
we assume that the probability that a user is interested in
a word form will be higher if : (1) the word form appears
multiple times in the definition of the sense, (2) the word
form is one of only few words in the definition of the sense,
and (3) the word form is one of the first word forms of the
definition of the sense.

3.5 Processing the Example Uses of a Sense
WordNet also includes example use for each sense. In this

subsection we show how to represent this information as
logical formulas with weights. For example, in WordNet the
sentence “he put his coat over the back of the chair and sat
down” is shown as an example use of the first sense of word
“chair”. Since an example use does not have as strong as
significance as the definition of a sense, we will calculate the
evidence probability as computeMinMax (0, 0.2, ratio). Here,
the variable ratio is the number of times the word form ap-
pears in the example use divided by the total number of
non-noise word forms in the example use. The constant 0.2
is related to the probability that someone who is interested
in a sense will be also interested in one of the word forms
in the example use of the sense. The following formulas are
created from the first sense of the word “chair” and its ex-
ample use. Note that the noise words have been omitted.

rel(a seat for one person)⇒ rel(put), (0.09)
rel(a seat for one person)⇒ rel(coat), (0.09)
rel(a seat for one person)⇒ rel(back), (0.09)
rel(a seat for one person)⇒ rel(sat), (0.09)

rel(a seat for one person)⇒ rel(down), (0.09)

The evidence probability is the same for all edges because
all words appear once in the example use. For all words,
the value of ratio is 1

5
. Unlike the case with the definition

of a sense, the first words in the example use are not more
important. Therefore, we ignore the order of the words in
the example use of a sense. The precise calculation for the
evidence probability is 0.2 ∗ (−1

log2(0.2)
) = 0.09.

3.6 Processing the Backward Relationships
We also create a formula for the conditional probability of

a sense node given a word form for every word form that ap-
pears in the definition of the sense. The evidence probability
of the formula is computed as computeMinMax (0, 0.3, ratio),
where the variable ratio is the number of times the word
form appears in the definition of the sense divided by the
total number of occurrences of the word form in the label of
the sense. The constant 0.3 relates to the probability that
someone who is interested in a word form will also be inter-
ested in one of the senses that have the word form in their

definition. Here, we assume that the backward relationship
is not as strong as the forward relationship. As an example,
if the word “position” occurred as part of the definition of
only three senses and exactly once in each definition, then
we will add the following formula for the second sense of
the word “chair”. The evidence probability is computed as
computeMinMax (0, 0.3, 1/3) = 0.19.

rel(position)⇒ rel(the position of a professor), (0.19)

Similarly, we will create a formula that shows the con-
ditional probability between a sense and a word form that
appears in its example use. The weight of an edge in this
case will be equal to computeMinMax (0, 0.1, ratio), where
ratio is the number of the times the word form appears in
the example use of the sense divided by the total number
of occurrences of the word form in the example use of all
senses. The constant 0.1 relates to the probability that
someone who is interested in a word form will also be in-
terested in one of the senses that have the word form in
their example use. This value is smaller than the value for
the definition of a sense because the words in the definition
of a sense are closely related to the meaning of the sense. As
an example, if the word “coat” occurred as part of the exam-
ple use of only three senses and exactly once in each sense,
then we will add the following formula for the first sense of
the word “chair”. The evidence probability is computed as
computeMinMax (0, 0.1, 1/3) = 0.06.

rel(coat)⇒ rel(a seat for one person), (0.06)

3.7 Populating the Frequency of the Senses
So far, we have shown how to extract information from

textual sources, such as the text for the definition and ex-
ample use of a word sense. We will next show how structured
knowledge, such as the hyponym (a.k.a. kind-of) relation-
ship between senses, can be represented in the similarity
graph. Most existing approaches [23] explore these rela-
tionships by evaluating the information content of different
word forms. Here, we adjust this approach and focus on
the frequency of use of each word in the English language
as described in the University of Oxford’s British National
Corpus. The British National Corpus is a 100 million word
collection of samples of written and spoken language from
a wide range of sources, designed to represent a wide cross-
section of British English, both spoken and written, from
the late twentieth century [3].

Definition 1. Let s be a sense. Let {wf i}ni=1 be the word
forms for that sense. We will use BNC (wf) to denote the
frequency of the word form in the British National Corpus.
Let ps(wf) be the frequency of use of the sense s of the word
form wf , as specified in WordNet, divided by the sum of
the frequencies of use of all senses of wf (also as defined
in WordNet). Then we define the size of s to be equal to
n∑

i=1

(BNC (wf i) ∗ ps(wf i)).

The above formula approximates the size of a sense by
looking at all the word forms that represent the sense and
figuring out how much each word form contributes to the
sense. The size of a sense approximates its popularity. For
example, according to WordNet the word “president” has
six different senses with frequencies: 14, 5, 5, 3, 3, and

1. Let us refer to the fourth sense: “The officer who pre-
sides at the meetings ...” as s. According to Definition 1,
ps(president) = 3/31 = 0.096 because the frequency of s is
3 and the sum of all the frequencies is 31. Since the British
National Corpus gives the word “president” a frequency of
9781, the contribution of the word “president” to the size of
the sense s will be equal to BNC (president)∗ps(president) =
9781∗0.096 = 938.976. Other word forms that represent the
sense s, such as “chairman”, will also contribute to the size
of the sense.

3.8 Processing Structured Knowledge About
Nouns

WordNet defines the hyponym (a.k.a. kind-of) relation-
ship between senses that represent nouns. For example, the
most popular sense of the word “dog” is a hyponym of the
most popular sense of the word “canine”. Consider the first
sense of the word “chair”: “a seat for one person ...”. Word-
Net defines 15 hyponyms for this sense, including senses for
the words “armchair”, “wheelchair”, and so on. We will add
formulas that show the conditional probability between this
first sense of the word“chair”and each of the hyponyms. Let
the probability that someone who is interested in a sense is
also interested in one of the sub-senses be equal to 0.9. This
probability is high because, for example, someone who is
interested in the first sense of the word “chair” is probably
also interested in one of the chair types. In order to deter-
mine the evidence probability of each formula, we need to
compute the size of each sense. In the British National Cor-
pus, the frequency of “armchair” is 657 and the frequency of
“wheelchair” is 551. Since both senses are associated with a
single word form, we do not need to consider the frequency
of use of each sense. If “armchair” and “wheelchair” were the
only hyponyms of the sense “a seat for one person ...”, then
we need to add the following formulas.

rel(a seat for one person)⇒ rel(chair with support ...), (0.49)
rel(a seat for one person)⇒ rel(a moveable chair ...), (0.41)

The first formula shows the conditional probability for the
sense“chair with a support on each side for arms”of the word
“armchair”, while the second formula shows the conditional
probability for the sense “a movable chair on large wheels”
for the word “wheelchair”. The evidence probabilities were
computed as 0.9∗657/1208 = 0.49 and 0.9∗551/1208 = 0.41.
In general, the evidence probability is computed as 0.9 mul-
tiplied by the size of the sense and divided by the sum of the
sizes of all the hyponym senses of the initial sense. The idea
is that the conditional probability for “bigger” senses will be
bigger because it is more likely that a bigger sense is rele-
vant. Note that here we do not apply the computeMinMax
function. The reason is that the function is only relevant for
words in text.

We will also create formulas for the hypernym relationship
(the inverse of the hyponym relationship). For example, the
first sense of the word “canine” is a hypernym of the first
sense of the word “dog”. The evidence probability for each
formula will be the same and equal to the constant 0.3. This
represents the probability that someone who is interested in
a sense will be also interested in the hypernym of the sense.
For example, if a user is interested in the sense “wheelchair”,
then they may be also interested in the first sense of the
word chair. However, this probability is not a function of

the different hypernyms of the sense. Here is a formula from
our example that will be added.

rel(chair with support ...)⇒ rel(a seat for one person), (0.3)

We next consider the meronym (a.k.a. part-of) relation-
ship between nouns. Note that we do not make a distinc-
tion between the three types of meronyms (part, member,
and substance) and process them identically. For example,
WordNet contains information that the sense of the word
“back”: “a support that you can lean against ...” and the
sense of the word “leg”: “one of the supports for a piece of
furniture” are both meronyms of the first sense of the word
“chair”. In other words, back and legs are building parts of
a chair. Part of this information can be represented using
the following formulas.

rel(a seat for one person)⇒ rel(a support that ...), (0.3)
rel(a seat for one person)⇒ rel(one of the supports ...), (0.3)

In general, we compute the evidence probability as 0.6/n,
where n is the number of meronyms of the sense. The con-
stant 0.6 represents the probability that a user that is in-
terested in a sense of a word form is also interested in one
of its meronyms. In our system, this coefficient is set to 0.6
because the meronym relationship is not as strong as the
hyponym relationship. The reasoning behind the formula is
that the more meronyms a sense has, the less likely is that
we are interested in a specific meronym.

We also represent the holonym (a.k.a. contains) relation-
ship. For example, the main sense of the word “building” is
a holonym of the main sense of the word “window”. Simi-
lar to hypernyms, we set the evidence probabilities for the
holonym relationship to a constant. The constant is 0.15
because the holonym relationship is not as strong as the
hypernym relation. For example, the fact that someone is
interested in the first sense of the word “window” does not
translate in strong confidence that they are also interested
in the whole building. For our running example, we create
the following formulas.

rel(a support that ...)⇒ rel(a seat for one person), (0.15)
rel(one of the supports ...)⇒ rel(a seat for one person), (0.15)

3.9 Processing Structured Knowledge About
Verbs

We will first represent the troponym (a.k.a. doing in some
manner) relationship for verbs. For example, to lisp is a
troponym of to talk. Suppose that the verb “talk” has only
three troponyms: “lisp”, “orate”, and “converse”. If the sizes
of the main senses of the three verbs are 18, 1, and 95, re-
spectively, then we will create the following formulas.

rel(an exchange of ideas via...)⇒ rel(talk with a lisp), (0.14)
rel(an exchange of ideas via...)⇒ rel(talk pompously), (0.01)

rel(an exchange of ideas via...)⇒ rel(carry on ...) (0.75)

The left side of the formulas contains the first sense of
the word “talk”: “an exchange of ideas via conversation”,
while the right side of the formulas contains the senses for
“lisp”, “orate” and “converse”, which have definitions “talk
with a lisp”, “talk pompously”, and “carry on a conversa-
tion”, respectively. The first formula express the conditional

probability between the senses for “talk” (an exchange of
ideas via conversation) and “lisp”. The evidence probability
for the formula is equal to 0.9 ∗ 18

114
= 0.14. The constant

0.9 represents that there is a 90% chance that if someone is
interested in a verb, then they are also interested in one of
its troponyms. We arrive at the expression 18/114 by divid-
ing the size of the sense by the sum of the sizes of all the
troponym senses. We will all add formulas for the reverse
relationship with evidence probability of 0.3. For example,
we will ad the following formula.

rel(talk with a lisp)⇒ rel(an exchange of ideas via...), (0.3)

This means that if someone is interested in one of the
troponyms, then there is 30% chance that they are also in-
terested in the original verb.

The hyponym and hypernym relationships are defined not
only for nouns, but also for verbs. The two relationships are
the reverse of each other. In other words, if X is a hyponym
of Y, then Y is a hypernym of X. The hypernym relationship
for verbs corresponds to the “one way to” relationship. For
example, the verb “perceive” is the hypernym of the verb
“listen” because one way of perceiving something is by lis-
tening. As expected, the verb “listen” is a hyponym of the
verb “perceive”. The first sense of the word “perceive” is “to
become aware of through the senses”. Suppose that the first
senses of the verbs “listen” and “see” are the only hypernyms
of the verb “perceive”.

We will assume that the probability that someone who
is interested in a verb sense is also interested in one of the
hyponym senses be equal to 0.9. This probability is high be-
cause, for example, someone who is interested in perceiving
is probably also interested in one of the ways to perceive. In
order to determine the evidence probabilities of the formu-
las, we need to compute the size of each sense. In the British
National Corpus, the frequency of “listen” is 1241 and the
frequency of “see” is 3624. Since both senses are associated
with a single word form, we do not need to consider the fre-
quency of use of each sense. If “perceive” and “see” were the
only hyponyms of the sense “to become aware of thought
and senses”, then we will create the following formulas.

rel(to become aware ...)⇒ rel(pay attention to sound), (0.23)
rel(to become aware ...)⇒ rel(percieve by sight), (0.67)

The evidence probability for each formula is equal to 0.9
multiplied by the size of the sense and divided by the sum of
the sizes of all the hyponym senses of the initial sense. For
example, the evidence probability of the first formula is 0.9∗
1241/4865 = 0.23. The general idea is that the conditional
probabilities to “bigger” senses will be bigger because it is
more likely that they are relevant.

We will use an evidence probability of 0.3 for the hyper-
nym relationship. Here is an example.

rel(pay attention to sound)⇒ rel(to become aware...), (0.3)
rel(percieve by sight)⇒ rel(to become aware...), (0.3)

The number 0.3 represents the probability that someone
who is interested in a sense will also be interested in the
hypernym of the sense. For example, if a user is interested
in the sense “see”, then they may be also interested in the
first sense of the word perceive. However, this probability is

not a function of the different hypernyms of the sense.

3.10 Processing Structured Knowledge About
Adjectives

WordNet defines two relationships for adjectives: related
to and similar to. For example, the first sense of the adjec-
tive “slow” has definition: “not moving quickly...”, while the
first sense of the adjective “fast” has the definition: “acting
or moving or capable of acting or moving quickly”. WordNet
specifies that the two senses are related to each other. We
will represent this relationship using the following formulas.

rel(not moving quickly)⇒ rel(acting or moving ...), (0.6)
rel(acting or moving ...)⇒ rel(not moving quickly), (0.6)

This represents that there is a 60% probability that some-
one who is interested in an adjective is also interested in a
“related to” adjective. This probability is high because the
“related to” relationship represents relatively strong seman-
tic similarity.

WordNet also defines the similar to relationship between
adjectives. We create formulas with evidence probability of
0.8 for this relationship because the “similar to” relation-
ship is stronger than the “related to” relationship. In other
words, we believe that there is an 80% probability that some-
one who is interested in an adjective is also interested in a
“similar to” adjective. For example, WordNet contains the
information that the sense for the word “frequent”: “coming
at short intervals or habitually” and the sense for the word
“prevailing”: “most frequent or common” are similar to each
other. We will therefore create the following formulas.

rel(coming at short intervals...)⇒ rel(most frequent ...), (0.8)

rel(most frequent ...)⇒ rel(coming at short intervals...), (0.8)

Note that both the “similar to” and “related to” relation-
ships are symmetric and therefore the evidence probability
for the formula and its reverse is the same.

4. BUILDING THE PROBABILISTIC GRAPH
In this section we describe how to convert the logical for-

mulas from the previous section into a probabilistic graph.
Fist, we create a node for each random variable, that is, for
each word form and each sense. Next, we convert the evi-
dence probabilities of the formulas to weights using Equa-
tion 1 and 2. Note that there can be several identical for-
mulas that are generated in the previous section. When this
is the case, we will merge all such formulas into a single for-
mula. The weight of the new formula is equal to the sum of
the weights of the old formulas. For example, consider the
following formulas.

rel(X)⇒ rel(Y), 2.3

rel(X)⇒ rel(Y), 1.1

The old formulas will be removed and the following new
formula will be created.

rel(X)⇒ rel(Y), 3.4

First, note that we are adding the weights of the formulas
and not the probabilities and therefore the evidence prob-
ability of the formula will always stay below 1.0. Second,
note that since the evidence probabilities are always above
0.5, our model is monotonic (i.e, adding a new formula will
always increase the weight of the old formula). Lastly, note
that adding the weights is consistent with the MLN model.
A probability of a world X is computed using the following
formula.

P (X) =
1

total
e
(
∑
F

w(F)∗|F (X)|)
(3)

In the formula, total is a normalizing constant that is used
to make sure that all the probabilities over all worlds add up
to one. The sum is over all formulas F in our knowledgebase.
The expression w(F) is used to denote the weight of the
formula F and |F (X)| is equal to one when the formula F is
true in the world X and is equal to 0 otherwise. Obviously,
merging identical formulas by adding up their weights will
not change the value of the above formula in any world.

Next, we add an edge between X and Y in the graph for
each logical formula of the following type.

rel(X)⇒ rel(Y), w

The weight of the edge will be converted to a probability
and will be computed using the following formulas.

p =
1

1 + e−w

edgeweight =
2 ∗ p− 1

total

The first formula converts the weight to a probability. The
second formula maps the probability from the interval [0.5,1]
back to the interval [0,1] and divides the result by the sum of
the weights of all edges that leave the source node X. This
guarantees that the sum of the weights of all the edges that
leave a node will be equal to one.

In the so constructed probabilistic graph, the weight of
each edge is equal to the probability that a user is interested
in the destination concept given that they are interested
in the source concept, where we assume that the user is
interested in only one of the destination concepts.

5. MEASURING THE SEMANTIC DISTANCE
BETWEEN WORD FORMS

One of the applications of the probabilistic graph is to
compute the semantic distance between two word forms in
the graph. We will show two ways of performing this calcu-
lation as a function of the conditional probability between
the word forms.

5.1 Conditional Probability Between Nodes
Let A0 and An be two nodes in the probabilistic graph.

We will next describe an efficient way of computing the prob-
ability that An is relevant given that A0 is relevant. From
probability theory, we have the following formula.

P (rel(A0)|rel(An)) =
P (rel(A0) ∧ rel(An))

P (rel(An))
(4)

Let there be a path from An to A0 in the graph – see
Figure 1. We will show how to compute the numerator and

...

w0
An An−1 A1

wn−1

A0

Figure 1: Example path in the graph.

denominator of the above expression using the probabilities
along the path. In other words, for these calculations we
assume that we only know the conditional probabilities along
a single path. Let wi be the weight of the edge from Ai+1

to Ai. We can compute these weights from probabilities
using Equations 1 and 2. Let f00(i) be the non-normalized
probability from Equation 3 (i.e., we do not divide by total)
that Ai+1 and A0 are both irrelevant. Similarly, let f01(i) be
the non-normalized probability that Ai+1 is irrelevant and
A0 is relevant, f10(i) be the non-normalized probability that
Ai+1 is relevant and A0 is irrelevant, and f11(i) be the non-
normalized probability that both Ai+1 and A0 are relevant.
In order to understand why we need these functions, note
that Equation 4 can be rewritten as follows.

P (rel(A0) ∧ rel(An))

P (rel(An))
=

f11(n− 1)

f10(n− 1) + f11(n− 1)
(5)

The numerator expresses the non-normalized probability that
both A0 and An are relevant. The non-normalized probabil-
ity of An being relevant is computed as f10(n−1)+f11(n−
1). The reason is that this formula computes the probability
of An being relevant and A0 being irrelevant plus the prob-
ability of An being relevant and A0 being relevant, which is
equal to exactly the probability of An being relevant. Lastly,
note that the fact that the probabilities are not-normalized
will not affect the result because we divide a non-normalized
probability by a non-normalized probability. That is, the
value for total in Equation 3 will be canceled out if added to
the formulas.

We will compute f00, f01, f10, and f11 using dynamic
programming. Using MLN theory, we have the following
base case.

f00(0) = ew0

f01(0) = ew0

f10(0) = 1

f11(0) = ew0

The four values follow from Equation 3. Note that we
have the following formula and weight.

rel(A1)⇒ rel(A0), w0

For example, if A1 is not relevant and A0 is not relevant,
then the formula rel(A1) ⇒ rel(A0) will be true and ac-
cording to Equation 3 the non-normalized probability for
this world will be equal to ew0 . However, if A1 is relevant
and A0 is irrelevant, then the formula will be false and the
non-normalized probability will be equal to e0 = 1.

Next, we present the recursive formulas for computing the
four functions.

f00(i) = f00(i− 1) ∗ ewi + f10(i− 1) ∗ ewi (6)

f10(i) = f00(i− 1) ∗ 1 + f10(i− 1) ∗ ewi (7)

f01(i) = f01(i− 1) ∗ ewi + f11(i− 1) ∗ ewi (8)

f11(i) = f01(i− 1) ∗ 1 + f11(i− 1) ∗ ewi (9)

Let us examine the first formula in details. In this case,
we want to compute the non-normalized probability of the
world where both A0 and Ai+1 are irrelevant. We have two
sub-cases: when Ai is relevant and when Ai is irrelevant.
When Ai is relevant, the following formula will be true.

rel(Ai + 1)⇒ rel(Ai), wi (10)

We will therefore add to the probability f00(i−1)∗ewi in
this case. We use the expression f00(i−1) because we know
that both Ai and A0 are irrelevant in this sub-case. The
second sub-case is when Ai is irrelevant. The above formula
will be true again and therefore we add to the probability
f10(i− 1) ∗ ewi .

Next, let us examine Equation 7. In this case, we want to
compute the non-normalized probability of the world where
A0 is irrelevant, but Ai+1 is relevant. We have two sub-
cases: when Ai is relevant and when Ai is irrelevant. When
Ai is irrelevant, Equation 10 does not hold and therefore
will add the probability f00(i − 1) ∗ e0. The second sub-
case is when Ai is relevant and we will add the probability
f10(i−1)∗ewi because Equation 10 holds. Equations 8 and
9 can be derived similarly.

Note that our program for computing the f functions uses
dynamic programming instead of recursion and runs in lin-
ear time relative to the size of the path. It first computes
the value for the functions with input 0 and then it applies
Equations 6 through 9 with values for i from 2 to n− 1.

5.2 Linear and Logarithmic Distance Metrics
Consider two nodes X and Y in the probabilistic graph.

There can be multiple paths between them. Our approach is
to compute P (rel(Y)|rel(X)) using Equation 5 as explained
in the previous section for each acyclic path Pt between X
and Y . We then convert each probability to a weight and
then we add the weights. As we explained in last section,
adding the weights of identical formulas follows the MLN
approach. Finally, the total weight of all paths between
X and Y can be converted back to a probability using the
following formula.

p = 2 ∗ (
1

1 + e−w
) + 1 (11)

From now on, we will use the shorthand P (Y |X) to de-
note the result of computing P (rel(Y)|rel(X)) using the al-
gorithm that was just presented. Note that one may con-
sider our approach coarse because the paths from X to Y
can overlap. A more precise approach would be to compute
P (rel(Y)|rel(X)) from first principles similar to the way we
computed the conditional probability along a path in the
previous section. However, the computations can get very
involved and we leave this approach for future research.

Next, we present two functions for measuring semantic
similarity between word forms. The linear function is shown
in Equation 12.

|wf 1,wf 2|lin = min(α,
P (wf 1|wf 2) + P (wf 2|wf 1)

2
) ∗ 1

α
(12)

The minimum function is used in order to to cap the value
of the similarity function at one. α is a coefficient that
amplifies the available evidence (α ≤ 1). The experimental
section of the article shows how the value of α is picked.
Note that when α is equal to one, then the function simply
takes the average of the two numbers and caps the result at
one.

The second semantic similarity function is inverse loga-
rithmic, that is, it amplifies the smaller values. It is shown
in Equation 13. The norm function simply multiplies the
result by a constant (i.e., −log2(α)) in order to move the
result value in the range [0,1]. Note that the norm function
does not affect the correlation results.

|wf 1,wf 2|log = norm(
−1

log2(min(α, P (wf 1|wf 2)+P (wf 2|wf 1)

2
))

)

(13)

Given two nodes, the similarity between them is computed
by performing a depth-first traversal of the graph from one of
the nodes. The algorithm runs in linear time relative to the
number of visited nodes. Given a path Pt with conditional

probabilities {p}ni=1, we prune it out if
n∏

i=1

pi falls bellow

0.0002. This helps us eliminate paths that contain very weak
evidence. It turns out that this is the only pruning condition
that we need because the pruning value decreases pretty
quickly as we add more edges to a path.

6. EXPERIMENTAL EVALUATION
The system consists of two programs: one that creates the

probabilistic graph and one that queries the graph. We used
the Java API for WordNet Searching (JAWS) to connect to
WordNet. The interface was developed by Brett Spell [32].
All experiments were performed on a multi-core machine. It
takes about three minutes to build the probabilistic graph
and save it to the hard disk. The size of the graph file is
81MB and it easily fits in main memory. It takes about 5
seconds to load the graph in main memory and the average
time for computing the similarity distance between two word
forms is about 100 milliseconds.

6.1 The Millers and Charles Benchmark
The goal of this section is to evaluate the quality of the

data in the similarity graph. We use the system to com-
pute the similarity of 28 pairs of words from the Miller and
Charles study [20]. The study presented the words to hu-
mans and computed the mean score of the human ranking.

We ran both the linear and the logarithmic algorithm with
different value for α. We got best results for α = 0.28 for
both the linear and logarithmic metrics. The results are
shown in Table 1. Note that if the average of the condi-
tional probability is below 0.00001, then we make it equal
to 0.00001 because we believe that evidence with such low
level of confidence is just noise. Note that this rounding up
is done before we apply the logarithmic or linear metric.

Table 2 show the correlation of the results of the Miller

Table 1: Results on the Millers and Charles bench-
mark for the 28 words.
word 1 word 2 M&C Linear Logarithmic
car automobile 3.92 0.99 0.99
gem jewel 3.84 1.0 1.0
journey voyage 3.84 1.00 1.00
boy lad 3.76 0.72 0.80
coast shore 3.7 0.95 0.96
asylum madhouse 3.61 1.0 1.00
magician wizard 3.5 1.0 1.00
midday noon 3.42 0.95 0.96
furnace stove 3.11 0.98 0.98
food fruit 3.08 0.03 0.26
bird cock 3.05 0.63 0.73
bird crane 2.97 0.76 0.82
tool implement 2.95 0.78 0.83
brother monk 2.82 0.41 0.59
crane implement 1.68 0.00004 0.11
lad brother 1.66 0.53 0.67
journey car 1.16 0.10 0.36
monk oracle 1.1 0.00004 0.18
food rooster 0.89 0.42 0.60
coast hill 0.87 0.00004 0.11
forest graveyard 0.84 0.00004 0.11
monk slave 0.55 0.00004 0.11
coast forest 0.42 0.00004 0.11
lad wizard 0.42 0.00004 0.11
chord smile 0.13 0.00004 0.11
glass magician 0.11 0.00004 0.11
noon string 0.08 0.00004 0.11
rooster voyage 0.08 0.00004 0.11

and Charles study with the results of different algorithms.
As the table suggests, our approach produces results of bet-
ter quality then previous approaches that consider only the
structured or unstructured data in WordNet. Our approach
is also comparable to the result from [34]. In that paper,
we also showed a linear and a logarithmic algorithm. The
difference is that the graph was not probabilistic and we did
not use the MLN approach. In [34], both the linear and log-
arithmic approach gave correlation of 0.93 on the Miller and
Charles benchmark. The results in this paper are similar
and we believe that the difference is due to better parame-
ter adjustment in [34].

6.2 The WordSimilarity-353 Benchmark
Next, we discuss the results of applying our algorithm to

Table 2: Correlation results with the Millers and
Charles benchmark.
algorithm correlation
Hirst and St-Onge [9] 0.74
Leacock and Chodorow citeLC98 0.82
Resnik [23] 0.77
Jiang and Conrath [12] 0.85
Lin [18] 0.83
| · |lin [34] 0.93
| · |log [34] 0.93
| · |lin 0.89
| · |log 0.90

Table 3: Correlation results with the
WordSimilarity-353 benchamrk.
algorithm correlation
Jarmasz[10] 0.27
Hirst and St-Onge[9] 0.34
Jiang and Conrath [12] 0.34
Strube and Ponzetto[40] 0.19-0.48
Leacock and Chodrow[17] 0.36
Lin[18] 0.36
Resnik[23] 0.37
Bollegala et al.[2] 0.50
| · |lin [34] 0.54
| · |log [34] 0.54
| · |lin 0.52
| · |log 0.53

the WordSimilarity-353 dataset [6]. It contains 353 word
pairs. Thirteen humans were used to rate the similarity be-
tween each pair of words and give a score between 1 and 10
(10 meaning that the words have the same meaning and 1
meaning that the words are unrelated). The average simi-
larity rating for each word pair was recorded.

We ran the experiments with value for α = 0.28, which is
the value that produced the best results for the Miller and
Charles benchmark. Table 3 shows how our system com-
pares with nine existing systems that have documented their
performance on the WordSimilarity-353 benchmark. As the
table suggests, our system produces better results than all
systems that examine only structured or only unstructured
information. Note that some algorithms use additional in-
formation from the web [2], while our algorithm only uses
information from WordNet. The results are similar to the
results from our previous work [34] and we believe that the
difference is due to the way the parameters of the algorithm
are adjusted.

7. CONCLUSION AND FUTURE RESEARCH
We presented an algorithm for building a proababalistic

graph from WordNet. We verified the data quality of the al-
gorithm on both the Miller and Charles and WordSimilarity-
353 word pairs benchmarks. We believe that the high quality
of the data is due to the fact that our algorithm processes
not only structured data, but also natural language infor-
mation from WordNet. The experimental results are similar
to the results in [34]. However, this paper uses the MLN
model and a sound probabilistic approach.

In the future, we plan on continuing our work with the
MLN model. Specifically, we want to extend our algorithm
to compute the conditional probability between two nodes
in the graph from first principles. This will eliminate the
double counting that we currently do when different paths
between two nodes share edges. The other area for future
research is extending the probabilistic graph with informa-
tion from Wikipedia. The biggest challenge there will be
the efficiency of the algorithm because Wikipedia contains
about 10GB of data as compared to about 100 MB of data
in WordNet.

8. REFERENCES
[1] R. Blanco, P. Mika, and S. Vigna. Effective and

efficient entity search in RDF data. The Semantic

Web?ISWC, pages 83–97, 2011.

[2] D. Bollegala, Y. Matsuo, and M. Ishizuka. A
Relational Model of Semantic Similarity Between
Words Using Automatically Extracted Lexical Pattern
Clusters from Web. Conference on Empirical Methods
in Natural Language Processing, 2009.

[3] L. Burnard. Reference Guide for the British National
Corpus (XML Edition). http://www.natcorp.ox.ac.uk,
2007.

[4] R. L. Cilibrasi and P. M. Vitanyi. The Google
Similarity Distance. IEEE ITSOC Inforamtion Theory
Workshop, 2005.

[5] S. Deerwester, S. T. Dumais, G. W. Furnas, T. K.
Landauer, and R. Harshman. Indexing by Latent
Semantic Analysis. Journal of the Society for
Information Science, 41(6):391–407, 1990.

[6] L. Finkelstein, E. Gabrilovich, Y. Matias, E. Rivlin,
Z. Solan, G. Wolfman, and E. Ruppin. Placing Search
in Context: The Concept Revisited. ACM
Transactions on Information Systems, 20(1):116–131,
January 2002.

[7] C. Fox. Lexical Analysis and Stoplists. Information
Retrieval: Data Structures and Algorithms, pages
102–130, 1992.

[8] W. Frakes. Stemming Algorithms. Information
Retrieval: Data Structures and Algorithms, pages
131–160, 1992.

[9] G. Hirst and D. St-Onge. Lexical chains as
representations of context for the detection and
correction of malapropisms. Fellbaum, pages 305–332,
1998.

[10] M. Jarmasz. Roget’s Thesaurus as a Lexical Resource
for Natural Language Processing. Master’s thesis,
University of Ottawa, 1993.

[11] G. Jeh and J. Widom. SimRank: A Measure of
Structural-context Similarity. Proceedings of the Eight
ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, pages
538–543, 2002.

[12] J. Jiang and D. Conrath. Semantic Similarity Based
on Corpus Statistics and Lexical Taxonomy.
Proceedings on International Conference on Research
in Computational Linguistics, pages 19–33, 1997.

[13] K. Jones. ”a statistical interpretation of term
specificity and its application in retrieval”. Journal of
Documentation, 28(1):11–21, 1972.

[14] R. Knappe, H. Bulskov, and T. Andreasen. Similarity
Graphs. Fourteenth International Symposium on
Foundations of Intelligent Systems, 2003.

[15] S. Kulkami and D. Caragea. Computation of the
Semantic Relatedness Between Words Using Concept
Clouds. International Conference of Knowledge
Discovery and Information Retrieval, 2009.

[16] T. K. Landauer, P. Foltz, and D. Laham. Introduction
to Latent Semantic Analysis. Discourse Processes,
pages 259–284, 1998.

[17] C. Leacock and M. Chodorow. Combining Local
Context and WordNet Similarity for Word Sense
Identification. WordNet: An electronic lexical
database, pages 265–283, 1998.

[18] D. Lin. An Information-theoretic Definition of

Similarity. Proceedings of the Fifteenth International
Conference on Machine Learning, pages 296–304,
1998.

[19] M.F.Porter. An Algorithm for Suffix Stripping.
Readings in Information Retrieval, pages 313–316,
1997.

[20] G. Miller and W. Charles. Contextual Correlates of
Semantic Similarity. Language and Congnitive
Processing, 6(1):1–28, 1991.

[21] G. A. Miller. WordNet: A Lexical Database for
English. Communications of the ACM, 38(11):39–41,
1995.

[22] R. Pan, Z. Ding, Y. Yu, and Y. Peng. A Bayesian
Network Approach to Ontology Mapping. Proceedings
of the Fourth International Semantic Web Conference,
2005.

[23] P.Resnik. Using Information Content to Evaluate
Semantic Similarity in a Taxonomy. International
Joint Conference on Artificial Intelligence, pages
448–453, 1995.

[24] Q. Rajput and S. Haider. Use of Bayesian Networks in
Information Extraction from Unstructured Data
Sources. Proceedings of International Conference on
Ontological and Semantic Engineering, pages 325–331,
2009.

[25] RDF Wordking Group. Resource Description
Framework (RDF). http://www.w3.org/RDF/, 2014.

[26] M. Richardson and P. Domingos. Markov Logic
Networks. Machine Learning, 62(1-2):107–136, 2006.

[27] S. Robertson and H. Zaragoza. The probabilistic
relevance framework: BM25 and beyond, foundations
and trends in information retrieval. Foundations and
Trends in Information Retrieval, 3(4), 2009.

[28] C. Rocha, D. Schwabe, and M. Aragao. A Hybrid
Approach for Searching in the Semantic Web.
Thirteenth International World Wide Web Conference
(WWW 2004), pages 374–383, 2004.

[29] Simone Paolo Ponzetto and Michael Strube. Deriving
a Large Scale Taxonomy from Wikipedia. 22nd
International Conference on Artificial Intelligence,
2007.

[30] S. Simske, I. Boyko, and G. Koutrika. Multi-Engine
Search and Language Translation. ExploreDB, 2014.

[31] E. Sirin and B. Parsia. SPARQL-DL: SPARQL Query
for OWL-DL. 3rd OWL: Experiences and Directions
Workshop (OWLED), 2007.

[32] B. Spell. Java API for WordNet Searching (JAWS).
http://lyle.smu.edu/ tspell/jaws/index.html, 2009.

[33] L. Stanchev. Creating a Phrase Similarity Graph from
Wikipedia. Eight IEEE International Conference on
Semantic Computing, 2014.

[34] L. Stanchev. Creating a Similarity Graph from
WordNet. Fourth International Conference on Web
Intelligence, Mining and Semantics, 2014.

[35] L. Stanchev. Fine-Tuning an Algorithm for Semantic
Search Using a Similarity Graph. International
Journal on Semantic Computing, 9(3):283–306, 2015.

[36] L. Stanchev. Semantic Search using a Similarity
Graph. Ninth IEEE International Conference on
Semantic Computing, 2015.

[37] L. Stanchev. Semantic Document Clustering Using a

Similarity Graph. Tenth IEEE International
Conference on Semantic Computing, 2016.

[38] M. Steyvers and J. Tenenbaum. The Large-Scale
Structure of Semantic Networks: Statistical Analyses
and a Model of Semantic Growth. Cognitive Science,
29(1):41–78, 2005.

[39] N. Stojanovic. On Analyzing Query Ambiguity for
Query Refinement: The Librarian Agent Approach.
Twenty Second International Conference on
Conceptual Modeling, pages 490–505, 2003.

[40] M. Strube and S.P.Ponzetto. Wikirelate! Computing
Semantic Relatedness using Wikipedia. Association
for the Advancement of Artificial Intelligence
Conference, 2006.

[41] The World Wide Web Consortium. OWL Web
Ontology Language Guide.
http://www.w3.org/TR/owl-guide/, 2014.

