
Creating a Similarity Graph from WordNet

Lubomir Stanchev
Indiana University – Purdue University Fort Wayne

Fort Wayne, Indiana, USA
stanchev@gmail.com

ABSTRACT
The paper addresses the problem of modeling the relation-
ship between the words in the English language using a sim-
ilarity graph. The mathematical model stores data about
the strength of the relationship between words expressed as
a decimal number. Both structured data from WordNet,
such as that the word “canine” is a hypernym (i.e., kind of)
of the word “dog”, and textual descriptions, such as that
the definition of the word “dog” is: “a member of the genus
Canis that has been domesticated by man since prehistoric
times”, are used in creating the graph. The quality of the
graph data is validated by comparing the similarity of pairs
of words using our software that uses the graph with results
of studies that are performed with human subjects. To the
best of our knowledge, our software produces better corre-
lation with the results of both the Miller and Charles study
and the WordSimilarity-353 study than any other published
research.

Categories and Subject Descriptors
I.2.7 [Computing Methodologies]: Artificial Intelligence—
Natural Language Processing

General Terms
Algorithms

Keywords
similarity graph, similarity distance, WordNet

1. INTRODUCTION
The main goal of the paper is to describe how to create

a similarity graph that can be used to calculate the degree
of semantic similarity between the words of the English lan-
guage. For example, the graph can be used to tell us that the
similarity between the words “dog” and “cat” is around 0.13
because the two words are somewhat similar. In the same

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from Permissions@acm.org.
WIMS ’14, June 2-4, 2014 Thessaloniki, Greece
Copyright 2014 ACM 978-1-4503-2538-7/14/06$15.00
http://dx.doi.org/10.1145/2611040.2611055.

way, the graph can be used to tell us that the similarity be-
tween the words “dog” and “phone” is around 0.02 because
there is little correlation between the two words. The graph
can also be used to compute the strength of the asymmetric
relationship between words. For example, the graph can tell
us that someone who is interested in documents about the
word “bird” is also interested in documents about the word
“animal” with relatively high probability. However, just be-
cause someone is interested in documents about the word
“animal” does not give us confidence that they are also in-
terested in documents about the word “bird” because most
animals are not birds.

If we type “automobile” in our favorite Internet search en-
gine, for example Google or Bing, then all top results will
contain the word“automobile”. Most search engines will not
return web pages that contain the word“car”but do not con-
tain the word “automobile” as one of the top results. The
reason is that most Internet search engines rely on keyword
matching to compute the query result and do not posses
the knowledge that the words “automobile” and “car” are
semantically similar and the degree of this semantic similar-
ity. The similarity graph captures this semantic similarity.
For example, the graph can be used to find words that are
semantically similarly to the word “automobile” and rewrite
the query using these words. In this way, the similarity
graph will allow us to not only perform semantic search (i.e.,
search based on the meaning of the words), but it will also
help us rank the result. For example, results that contain
the word “car” should appear before results that contain the
word “auto” if, according to the graph, the word “car” is
semantically closer to the word “automobile” than the word
“auto”. Another interesting software application is using the
similarity graph to partition a set of documents based on the
meaning of the words in them. The similarity graph can be
used to measure the semantic similarity between any pair of
documents. Then a clustering algorithm, such as K-Means
clustering ([17]), can be applied. The similarity graph can
also be used as part of a query-answering system, such as
the IBM Watson Computer that competed on the Jeopardy
game show and the Siri system for the iPhone. For exam-
ple, suppose that the word “automobile” is part of the user
query. Then the similarity graph can be used to rewrite the
query using similar words, for example the word “car”. Such
a rewrite can help the system find more information that is
related to the user query.

The problem of evaluating the strength of the seman-
tic relationship between words is intrinsically hard because
computers are not as proficient as humans in understanding

natural language text. However, natural language descrip-
tions can provide important evidence about the similarity
between words. For example, the definition of the word
“cat” in WordNet is: “feline mammal usually having thick
soft fur and no ability to roar”. This definition can be used
as evidence about the strength of the semantic relationship
between the words “cat” and “feline”. Although significant
effort has been put in automated natural language process-
ing (e.g., [6, 7, 18]), current approaches fall short of under-
standing the precise meaning of human text. In fact, the
question of whether computers will ever become as fluent as
humans in understanding natural language text is an open
problem. In this paper, unlike most natural language pro-
cessing applications, we do not parse text and breakdown
sentences into the primitive elements of the language (e.g.,
nouns, verbs, etc.). Instead, we only examine the words in
the text and the order in which they appear.
Current approaches that extract information about word

similarity from freely accessible sources focus on the struc-
tured information. In particular, most papers that deal
with WordNet (e.g., [15, 35]) adapt the approach taken in
[25] that semantic similarity can be measured solely based
on the inheritance (a.k.a. kind-of) links and possibly data
about the specificity of the words (i.e., their information
content – see [24, 16, 11]). More recent papers, such as [36],
explore additional relationship between words, such as the
holonym (a.k.a. part-of) relationship. Although these ap-
proaches work well in practice and produce similarity data
that closely correlates to data from human studies, such as
[19], we show that there is room for improvement. In par-
ticular, unstructured information, such as the definition of a
word or an example use of a word, is not considered. For ex-
ample, the WordNet definition of one of the senses of “New
York” is that it is a city that is located on the Hudson river.
This close relationship between “New York” and“Hudson” is
not considered by the algorithms of the papers that are cited
in this paragraph because these algorithms do not process
textual information.
In this paper, we propose a novel mechanism for measur-

ing the semantic similarity between words based on Word-
Net. We show how information from WordNet can be used
to create a similarity graph, where the algorithm can be eas-
ily extended to include other sources (e.g., Wikipedia). The
graph is created using probability theory and corresponds
to a simplified version of a Bayesian network ([23]). The
weight of an edge represent the probability that someone is
interested in the content of the destination node given that
they are interested in the content of the source node. Note
that the weight function is asymmetric. We experimentally
validate the quality of our algorithm on two independent
benchmarks: Miller and Charles ([19]) and WordSimilarity-
353 ([5]). Our approach outperforms existing algorithms
that we are familiar with on both benchmarks because we
process more information as input, including natural lan-
guage descriptions, and we are able to apply this informa-
tion to build a better model of the semantic relationships
between words.
In what follows, in Section 2 we review related research.

The major contributions of the paper are the introduction of
the similarity graph, see Section 3, and the introduction of
two novel algorithms for measuring the semantic similarity
between words, which are presented in Section 4. Section 5
describes how the similarity graph can be used to measure

the semantic similarity between a pair of documents. Sec-
tion 6 shows how our system compares with existing systems
that measure word similarity, while concluding remarks and
areas for future research are outlined in Section 7.

2. RELATED RESEARCH
A preliminary version of this paper was published in a

workshop ([30]). Since then, all the algorithms have been
significantly revised. As a result, the experimental results
show significant improvement. The correlation with the re-
sults of human subjects in both the Miller and Charles study
and the WordSimilarity-353 study is now higher. For exam-
ple, the algorithms from [30] produces worst quality data
than the results that are published in [2], while the revised
algorithms that are presented here produce correlation that
is higher than the results from [2]. In addition, this paper
includes a previously unpublished algorithm for comparing
the semantic similarity between a pair of text documents.

Existing research that applies Bayesian networks to rep-
resent knowledge deals with the uncertain or probabilistic
information in the knowledgebase (e.g., [26, 22]). In this
paper, we will take a different approach and we will not
use Bayesian networks to model uncertain information. In
contrast, we will create a probabilistic graph that stores in-
formation about the similarity of different words. Unlike
Bayesian networks, we store only the probability that a word
is relevant given that an adjacent (in the graph) word is also
relevant (e.g., unlike Bayesian networks, we do not store the
probability that a word is unrelated given that an adjacent
in the graph word is unrelated).

The idea of creating a graph that stores the degree of
semantic similarity between words is not new. For example,
[13, 27] show how to create a graph that only represents
inheritance of words, while [10] approximates the similarity
of words based on information about the structure of the
graph in which they appear. These papers, however, differ
from our approach because we suggest representing available
evidence from all type of sources, including natural language
descriptions. Our approach is also different from the use of a
semantic network ([32]) because the latter does not consider
the strength of the relationship between the nodes in the
graph.

There are alternative methods to measure the semantic
similarity between words. The most notable approach is the
Google approach ([4]) in which the similarity between two
words is measured as a function of the number of Google
results that are returned by each word individually and the
two words combined. Other approaches that rely on data
from the Internet include [2] and [14]. Although these ap-
proaches produce good measurement of semantic similarity,
they have their limitations. First, they do not make use of
structured information, such as the hyponym relationship in
WordNet. Second, they do not provide evidence about how
the two words that are compared are related. In contrast,
our approach can show the paths in the similarity graph be-
tween the two words, which serves as evidence that supports
the similarity score.

Research from information retrieval is also relevant to cre-
ating and using the similarity graph. For example, if the
word “ice” appears multiple times in the definition of the
word “hockey”, then this provides evidence about the re-
lationship between the two words. Our approach will use
a model that is similar to TF-IDF (stands for term fre-

quency, inverse document frequency – see [12]) to compute
the strength of the relationship. In the TF-IDF model, if
the word “ice” appears two times in the definition of the
word “hockey”, then the term frequency can be computed as
2. This number is multiplied by a number that is inversely
proportional to how often the word “ice” appears in the def-
inition of other words. For example, if most words contain
the word “ice” as part of their definition, then the fact that
the word “hockey” contains this word is not consequential.
Conversely, if the word “ice” appears only in the definition
of few words, then the fact that the word “hockey” contains
the word “ice” in its definition is statically meaningful.
Note that a lot of research effort has recently focused on

using a description language, such as OWL (stands for Web
Ontology Language – [1]), to describe document resources.
A semantic query language, such as SPARQL (a recursive
acronym that stands for SPARQL Protocol and RDF Query
Language – [28]), can be used to search for relevant docu-
ments. This approach differs from our approach because it
does not provide ranking of the query result. At the same
time, a SPARQL query returns exactly the resources that
fulfil the query description. Alternatively, our system can re-
turn resources that are related to the input query in ranked
order. Using a similarity graph has some added advantages:
there is no need to describe the resources using a mathe-
matical language, there is no need to phrase the query us-
ing a mathematical language, and the system is much more
scalable (OWL knowledgebases are usually applied only to
a limited knowledge domain because query answering over
them is intrinsically computationally expensive.)

3. MODELING WORDNET AS A SIMILAR-
ITY GRAPH

WordNet ([20]) gives us information about the words in
the English language. In our study, we use WordNet 3.0,
which contains approximately 150,000 different words. Word-
Net also contains phrases, such as “sports utility vehicle”.
WordNet uses the term word form to refer to both the words
and the phrases in the corpus. Note that the meaning of a
word form is not precise. For example, the word “spring”
can mean the season after winter, a metal elastic device, or
natural flow of ground water, among others. This is the rea-
son why WordNet uses the concept of a sense. For example,
earlier in this paragraph we cited three different senses of
the word “spring”. Every word form has one or more senses
and every sense is represented by one or more word forms.
A human can usually determine which of the many senses a
word form represents by the context in which the word form
is used.
WordNet contains a plethora of information about word

forms and senses. For example, it contains the definition
and example use of each sense. It also contains informa-
tion about the relationship between senses. The senses in
WordNet are divided into four categories: nouns, verbs, ad-
jectives, and adverbs. For example, WordNet stores infor-
mation about the hyponym and meronym relationship for
nouns. The hyponym relationship corresponds to the “kind-
of” relationship (for example, “dog” is a hyponym of “ca-
nine”). The meronym relationship corresponds to the “part-
of” relationship (for example, “window” is a meronym of
“building”). Similar relationships are also defined for verbs,
adjectives, and adverbs. Our software system also uses in-

formation from the University of Oxford’s British National
Corpus ([3]). The corpus contains information about the
frequency of use of a little over 200,000 of the most com-
mon words in the English language. In addition to that, our
computer system uses a list of about 100 noise words in the
English language.

The output of our computer system is a similarity graph
that stores the relationship between the word forms and
senses in WordNet and the strength of each relationship
expressed as a decimal number. A node in the graph is
created for every word form and every sense. While the la-
bel of a word form node is the word form, the label of a
sense node is the definition of the sense. In order to calcu-
late the strength of the semantic relationship between two
word forms, the system may go through several word form
nodes and several sense nodes. In general, our similarity al-
gorithms traverses the paths in the graph between two word
form nodes. Note that the graph is directed and there can
be edges with different weights in each direction between
two nodes. The weight of an edge is the approximation of
the probability that a user is interested in the concept that
is described by the destination node of the edge given that
they are interested in the concept that is described by the
source node. We calculate this probability based on the data
from WordNet, the University of Oxford’s British National
Corpus, and our list of noise words.

We next present the algorithm for creating the similarity
graph in great details. Each subsection describes a method
in our system. Note that there maybe multiple evidence
about the strength of the relationship between two nodes.
Instead of drawing multiple edges between the two nodes,
we draw a single edge that has weight that is equal to the
sum of the weights of these edges.

3.1 Processing the Word Forms
WordNet contains files that contain all the nouns, verbs,

adverbs, and adjectives in the corpus. Our program scans
through these files and creates a node for every word form.
We extract every word form from the file and store it as a
node in the graph. The label of a node is the word form
it originated from in all lowercase letters. This helps us to
avoid storing the same word in the graph multiple times, but
with different capitalization of letters. We use Berkeley DB
([21]), which is a popular key-value store that is supported
by Oracle Corporation, to store the graph. By testing dif-
ferent systems, we have reached the conclusion that this is
a more efficient approach for our needs than using a full-
fledged database management system or a graph database,
such as Neo4J ([34]).

3.2 Processing the Senses
We next examine all the word form nodes in the graph

(i.e., all the nodes that we have so far) and use JAWS ([29]),
theWordNet Java API, to find the senses for each word form.
Then we create a node for every sense. The label of a sense
node is the definition of the sense in all lowercase letters. We
also add edges between the word form nodes and the sense
nodes. For example, we will create edges between the node
for the word “chair” and the nodes for the three different
senses of the word – see Figure 1. WordNet gives us the
information about the frequency of use of each sense. The
frequency of the first use is 35, the frequency of the second
use is 2, and the frequency of the third use is 1. We will

therefore create the outgoing edges from the node “chair”
that are shown in Figure 1. The reasons is that, based on
the available information, the probability that a user that
requests information about the word “chair” is interested in
the first sense of the word is equal to 35/(35 + 2 + 1) =
0.92. We assume that the information in WordNet tells us
that 92% of the time when someone refers to a chair, they
have in mind the first meaning. The backward edges to the
node “chair” represent the knowledge that all three senses
represent the same word “chair”. The weight is 1 because
if someone is thinking about one of the three senses in the
figure, then they must be thinking about the word “chair”.

1

chair

the position of a
professor

the officer who
presides at meetings ...

a seat for one
person ...

35/38
1

2/38 1 1/38

Figure 1: Example edges between a word form and
its senses.

3.3 Adding Definition Edges
Next, let us consider the second sense of the word “chair”:

“the position of a professor”. The noise words: “the”, “of”,
and “a” will be ignored. We will therefore create edges be-
tween the node for the sense and the words “position” and
“professor” (see Figure 2). The graph represents the connec-
tion between a sense and the non-noise words in its defini-
tion. Empirical studies have shown that the first words in
the definition of a sense are far more important than the later
words. We will therefore multiple the weight of the edge be-
tween the sense and the first word by coef = 1.0 and keep de-
creasing this coefficient by 0.2 for each sequential word until
the value of the coefficient reaches 0.2. We will compute the
weight of each edge as coef ∗ computeMinMax (0, 0.6, ratio),
where the variable ratio is calculated as the number of times
the word appears in the definition of the sense divided by
the total number of non-noise words. The variable denotes
the importance of the word in the definition of the sense.
For example, if there are only two words in the definition of
the sense, then they are both very important. However, if
there are twenty words in the definition of the sense, then
each individual word is less important.
The computeMinMax function returns a number that is in

most cases between the first two arguments, where the mag-
nitude of the number is determined by the third argument.
Since the appearance of a word in the definition of a sense
is not a reliable source of evidence about the relationship
between the two, the value of the second argument is set to
0.6 for definition edges. The constant 0.6 is related to the
probability that someone who is interested in a sense will be
also interested in one of the words in the definition of the
sense. The computeMinMax function smooths the value of
the ratio parameter. For example, a word that appears as
one of the twenty non-noise words in the definition of a sense
is not ten times less important than a word that appears as
one of the two non-noise word in the definition of a sense.
The function makes the difference between the two cases
less extreme. Using this function, the weight of the edge in
the second case will be only roughly four times smaller than
the weight of the edge in the first case. This is a common

approach when processing text. The importance of a word
in a text decreases as the size of the text increases, but the
importance of the word decreases at a slower rate than the
rate of the growth of the text. Formally, the function com-
puteMinMax is defined as follows.

computeMinMax (minV alue,maxV alue, ratio) =
minV alue+ (maxV alue−minV alue) ∗ −1

log2(ratio)

Note that when raio = 0.5, then the function returns max-
Value. An unusual case is when the value of the variable
ratio is bigger than 0.5. For example, if ratio = 1, then
we have division by zero and the value for the function is
undefined. We handle this case separately and assign value
to the function equal to 1.2 ∗maxValue. This is an extraor-
dinary case when there is a single non-noise word in the
text description and we need to assign higher weight to the
similarity edge.

Figure 2 shows the portion of the graph that we described.
For ratio of 1

2
, −1

log2(ratio)
will be equal to 1. As the ratio

decreases, so will the similarity score. We have used the
logarithmic function in order to smoothen the decrease of
the similarity score as the value of the ratio decreases. To
summarize, we assume that the probability that a user is
interested in a word will be higher if : (1) the word appears
multiple times in the definition of the sense, (2) the word
is one of only few words in the definition of the sense, and
(3) the word is one of the first words of the definition of the
sense. For now, ignore the backward edge between the word
“position” and the sense.

0.4

the position of a professor

position professor

0.6 0.19

Figure 2: Example edges between a sense and the
word forms in its definition.

3.4 Adding Example Use Edges
WordNet also includes example use for each sense. For

example, it contains the sentence “he put his coat over the
back of the chair and sat down”as an example use of the first
sense of word“chair”. Since an example use does not have as
strong a correlation as the definition of a sense, we will calcu-
late the weight of an edge as computeMinMax(0, 0.2, ratio).
Here the variable ratio is the number of times the word ap-
pears in the example use divided by the total number of
non-noise words in the example use. The constant 0.2 is
related to the probability that someone who is interested in
a sense will be also interested in one of the words in the
example use of the sense. Figure 3 shows the graph that is
created for the example use of the first sense of the word
“chair”. Note that the noise words have been omitted. The
similarity is the same for all edges because all words appear
once in the example use. Unlike the case with the defini-
tion of a sense, there is not empirical evidence that the first
words of the example use are more important. We will ex-
plain the backward edge from the word “coat” to the sense
in the next subsection.

0.06

a seat for one person

put coat back sat down

0.09
0.09 0.09

0.090.09

Figure 3: Example edges between a word sense and
the words in its example use.

3.5 Adding Backward Edges
We also draw an edge between a word form node and

a sense node for every edge between a sense node and a
word form that appears in its definition. The weight of an
edge will be computed as computeMinMax (0, 0.3, ratio) for
reverse definition edges. The variable ratio is the number
of the times the word form appears in the definition of the
sense divided by the total number of occurrences of the word
form in the label of a sense. The constant 0.3 relates to the
probability that someone who is interested in a word will also
be interested in one of the senses that have the word in their
definition. For example, if the word “position” occurred as
part of the definition of only three senses and exactly once in
each definition, then there will be an edge between the nodes
“position” and “the position of a professor” in Figure 2 with
weight that is equal to computeMinMax (0, 0.3, 1/3) = 0.19
(see Figure 2).
Similarly, we will draw an edge between a word form and

a sense node for every edge between a sense node and word
form that appears in its example use. The weight of an edge
in this case will be equal to computeMinMax (0, 0.1, ratio),
where ratio is the number of the times the word form appears
in the example use of the sense divided by the total number
of occurrences of the word form in the example use of senses.
The constant 0.1 relates to the probability that someone
who is interested in a word will also be interested in one
of the senses that have the word in their example use. For
example, if the word “coat” occurred as part of the example
use of only three senses and exactly once in each sense, then
there will be an edge between the nodes “coat” and “a seat
for one person” in Figure 3 with weight that is equal to
computeMinMax (0, 0.1, 1/3) = 0.06 (see Figure 3).

3.6 Populating the Frequency of the Senses
So far, we have shown how to extract information from

textual sources, such as the text for the definition and ex-
ample use of a word sense. We will next show how structured
knowledge, such as the hyponym (a.k.a. kind-of) relation-
ship between senses, can be represented in the similarity
graph. Most existing approaches (e.g., [24]) explore these
relationships by evaluating the information content of dif-
ferent word forms. Here, we adjust this approach and focus
on the frequency of use of each word in the English language
as described in the University of Oxford’s British National
Corpus ([3]).

Definition 1 (size of a sense). Consider the sense m.
Let {wi}ni=1 be the word forms for that sense. We will use
BNC (w) to denote the frequency of the word form w in the
British National Corpus. Let pm(w) be the frequency of use
the sense m of the word form w, as specified in WordNet,
divided by the sum of the frequencies of use of all senses of
w (also as defined in WordNet). Then we define the size of

m to be equal to
n∑

i=1

(BNC (wi) ∗ pm(wi)).

The size of a sense approximates its popularity. For exam-
ple, according to WordNet the word “president” has six dif-
ferent senses with frequencies: 14, 5, 5, 3, 3, and 1. Let us re-
fer to the fourth sense: “The officer who presides at the meet-
ings ...” as m. According to Definition 1, pm(president) =
3/31 = 0.096 because the frequency of m is 3 and the sum of
all the frequencies is 31. Since the British National Corpus
gives the word “president” a frequency of 9781, the contri-
bution of the word “president” to the size of the sense m will
be equal to BNC (president)∗pm(president) = 9781∗0.096 =
938.976. Other word forms that represent the sense m will
also contribute to the size of the sense.

3.7 Processing Structured Knowledge About
Nouns

WordNet defines the hyponym (a.k.a. kind-of) relation-
ship between senses that represent nouns. For example, the
most popular sense of the word “dog” is a hyponym of the
most popular sense of the word “canine”. Consider the first
sense of the word “chair”: “a seat for one person ...”. Word-
Net defines fifteen hyponyms for this sense, including senses
for the words “armchair”, “wheelchair”, and so on. In the
similarity graph, we will draw an edge between this first
sense of the word “chair” and each of the hyponyms. Let
the probability that someone that is interested in a sense
is also interested in one of the sub-senses be equal to 0.9.
In order to determine the weight of the edges, we need to
compute the size of each sense. In the British National Cor-
pus, the frequency of “armchair” is 657 and the frequency of
“wheelchair” is 551. Since both senses are associated with a
single word form, we do not need to consider the frequency
of use of each sense. If “armchair” and “wheelchair” were
the only hyponyms of the sense “a seat for one person ...”,
then the corresponding part of the similarity graph will be
constructed as shown in Figure 4. The weight of each edge
is equal to 0.9 multiplied by the size of the sense divided by
the sum of the sizes of all the hyponym senses of the initial
sense. The idea is that the weights of the edges to “bigger”
senses will be bigger because it is more likely that the user
is thinking about one of these senses.

0.3

large wheels

a seat for one person

chair with a support on each
side for arms

0.9*657/1208 0.9*551/1208

a movable chair on

Figure 4: Example edges between a word sense and
its hyponyms.

We will also draw edges for the hypernym relationship
(the inverse of the hyponym relationship). For example, the
first sense of the word “canine” is a hypernym of the first
sense of the word “dog”. The weight of each edge will be
the same and equal to the value 0.3. This represents the
probability that someone who is interested in a sense will be
also interested in the hypernym of this sense. For example, if
a user is interested in the sense “wheelchair”, then they may

be also interested in the the first sense of the word chair.
However, this probability is not a function of the different
hypernyms of the sense. Figure 4 shows an example of how
the edge weights are computed.
We next consider the meronym (a.k.a. part-of) relation-

ship between nouns. For example, WordNet contains the
information that the sense of the word “back”: “a support
that you can lean against ...” and the sense of the word
“leg”: “one of the supports for a piece of furniture” are both
meronyms of the first sense of the word “chair”. In other
words, back and legs are building parts of a chair. This in-
formation can be represented in a similarity graph, as show
in Figure 5. In general, the weight of a forward edge is set
to 0.6/n, where n is the number of meronyms of the sense.
The constant 0.6 represents the probability that a user that
is interested in a sense of a word form is also interested in
one of its meronyms. In our system, this coefficient is set
to 0.6 because the meronym relationship is not as strong as
the hyponym relationship. The idea of the formula is that
the the more meronyms a sense has, the less likely is that
we are interested in one of the meronyms.

0.15

a seat for one person ...

a support that you
can lean against ...

one of the supports for
a piece of furniture

0.6/2 0.6/2

Figure 5: Representing meronyms and holonyms.

We also represent the holonym relationship in the similar-
ity graph. For example, the main sense of the word “build-
ing” is a holonym of the main sense of the word“window”. In
general, X is a holonym of of Y exactly when Y is a meronym
of X. Similar to hypernyms, we set the weights of edges for
the holonym relationship to a constant. The constant is 0.15
because the holonym relationship is not as strong as the hy-
pernym relation. It provides information that the an object
is a building part of a different object, which does not trans-
late in strong relevance about the relationship between the
two objects. In our example, we draw an edge between the
sense for the word “back” and the sense for the word “chair”
that is equal to 0.15 (see Figure 5).

3.8 Processing Structured Knowledge About
Verbs

We will first represent the troponym relationship for verbs.
The verb Y is a troponym of the verb X if the activity Y is
doing X in some manner. For example, to lisp is a troponym
of to talk. Suppose that the verb “talk” has only three tro-
ponyms: “lisp”, “orate”, and “converse”. If the sizes of the
main senses of the three verbs is 18, 1, and 95, respectively,
then we will create the edges that are shown in Figure 6.
Note that the forward edges are multiplied by the constant
0.9. This represents that there is a 90% chance that if some-
one is interested in a verb, then they are also interested in
one of its troponyms. We will add a reverse edge with con-
stant weight of 0.3. This means that if someone is interested
in one of the troponyms, then there is 30% chance that they
are also interested in the original verb – see Figure 6.

0.3

conersationtalk with a
lisp talk pompously

speak

0.9*(18/114) 0.9*(95/114)

0.9/114
carry on a

Figure 6: Representing troponyms.

The hypernym relationship is defined not only for nouns,
but also for verbs. For example, the verb Y is a hypernym
of the verb X if the activity X ia a kind of Y. For example,
the verb “perceive” is the hypernym of the verb “listen”. We
will handle the hypernym relationship for verbs the same
way that we handled it for nouns.

3.9 Processing Structured Knowledge About
Adjectives

WordNet defines two relationships for adjectives: related
to and similar to. For example, the first sense of the adjec-
tive “slow” has definition: “not moving quickly...”, while the
first sense of the adjective “fast” has the definition: “acting
or moving or capable of acting or moving quickly”. WordNet
specifies that the two senses are related to each other. We
will draw an edge between the two senses with weight 0.6
– see Figure 7. This represents that there is a 60% proba-
bility that someone who is interested in an adjective is also
interested in a related to adjective.

0.6

acting or moving or capable of
acting or moving quickly

not moving quickly ...

0.6

Figure 7: Representing the related to relationship
between adjectives.

WordNet also defines the similar to relationship between
adjectives. We draw edges with weight 0.8 between similar
senses because the similar to relationship is stronger than
the related to relationship. In other words, we believe that
there is 80% probability that someone who is interested in
an adjectives is also interested in a similar to adjective. For
example, WordNet contains the information that the sense
for the word“frequent”: “coming at short intervals or habitu-
ally” and the sense for the word “prevailing”: “most frequent
or common” are similar to each other. We will therefore
draw edges with weight of 0.8 between the two senses – see
Figure 8.

4. MEASURING SEMANTIC SIMILARITY
BETWEEN WORD FORMS

The similarity graph is used to represent the conditional
probability that a user is interested in a word form given
that they are interested in an adjacent word form in the
graph. We compute the directional similarity between two

0.8

most frequent or common

coming at short intervals or habitually

0.8

Figure 8: Representing the similar to relationship
between adjectives.

nodes using the following formula.

A →s C =
∑

Pt is a cycleless path from node A to node C

PPt(C|A)

(1)

PPt(C|A) =
∏

(n1,n2) is an edge in the path Pt

P (n2|n1) (2)

Informally, we compute the directional similarity between
two nodes in the graph as the sum of all the paths between
the two nodes, where we eliminate cycles from the paths.
Each path provides evidence about the similarity between
the word forms that are represented by the two nodes. We
compute the similarity between two nodes along a path as
the product of the weights of the edges along the path, which
follows the Markov chain model. Since the weight of an
edge along the path is almost always smaller than one (i.e.,
equal to one only in rear circumstances), the value of the
conditional probability will decrease as the length of the
path increases. This is a desirable behavior because a longer
path provides less evidence about the similarity of the two
end nodes.
Next, we present two functions for measuring similarity.

The linear function for computing the similarity between
two word forms is shown in Equation 3.

|w1, w2|lin = min(α,
w1 →s w2 + w2 →s w1

2
) ∗ 1

α
(3)

The minimum function was used in order to to cap the
value of the similarity function at 1. α is a coefficient that
amplifies the available evidence. The experimental section
of the paper shows how the value of α affects the correla-
tion between the results of the system and that of human
judgement.
The second similarity function is inverse logarithmic, that

is, it amplifies the smaller values. It is shown in Equation 4.
The norm function simply multiplies the result by a con-
stant (i.e., −log2(α)) in order to move the result value in
the range [0,1]. Note that the norm function does not affect
the correlation results.

|w1, w2|log = norm(
−1

log2(min(α, w1→sw2+w2→sw1
2

))
) (4)

Given two nodes, the similarity between them is com-
puted by performing a breadth-first traversal of the graph
from each node in parallel. Common nodes between the two
traversals identify paths between the two nodes. When the
weight of a path becomes under 0.001, we prune out the
path. We do this in order to make the algorithm more effi-
cient. Paths with weight under 0.001 will have little effect

on the semantic similarity between two word forms. In our
experimental results, we only consider path of lengths 100
edges or less. A path with length more than 100 edges will
provide little evidence about the relationship between two
word forms.

Note that we take the average of the two directed simi-
larity distances to determine the similarity score. Empirical
observations have shown that multiplying the two numbers
is a inferior approach because often one of the two num-
bers is very small. For example, consider trying to compute
the similarity distance between the words“ostrich”and ”ani-
mal”. One should hope this score to be high because the two
words are clearly related. However, the directional similar-
ity between the words “animal” and “ostrich” is low because
there is very little evidence that someone who is interested
in an animal is interested exactly in an ostrich.

5. MEASURING SEMANTIC SIMILARITY
BETWEEN DOCUMENTS

In the previous section, we described how to measure the
semantic similarity between two word forms that appear in
WordNet. If one of the inputs is not a word form fromWord-
Net, then the algorithm returns 0 as the semantic similarity.
In this section we describe how to measure the semantic
similarity between any two text documents. The idea is to
create a node for each document and then connect the nodes
to the existing graph. The semantic similarity between the
two documents will then be measured by computing the se-
mantic distance between the two nodes using one of the al-
gorithms from the previous section.

In order to demonstrate our approach, consider a ficti-
tious document that contains a total of one hundred non-
noise words. Among these non-noise words, suppose that
the word “cat” appears three times and the word “car” ap-
pears six times. We will represent this information by draw-
ing the graph that is shown in Figure 9. The weight of the
edge between the document and the word “car” is equal to
computeMinMax (0, 0.6, 6/100) = 0.15. Similarly, the weight
of the edge between the document and the word “cat” is
equal to computeMinMax (0, 0.6, 3/100) = 0.12. This is the
same formula that we used to compute the weight of an edge
between a sense and the words in its definition.

Next, consider the backward edge between the word “cat”
and the document. Suppose that the word appears a to-
tal of 200 times in all documents. Then the weight of the
edge between the word“cat” and the document will be equal
to computeMinMax (0, 0.3, 3/200) = 0.05. This is the same
formula that we used for computing the weights of the back-
ward edges between a word form and the sense definitions
in which it appears.

0.12

document with 200 non−noise words with
the word "cat" appearing 3 times and
the word ‘‘car" appearing 6 times

cat car

0.15 0.05

Figure 9: Example of edges between a document
node and word form nodes.

First, note that the noun “cat” has eight different senses.

Our algorithm does not try to identify which of these senses
the document refers to. For example, it may be possible
that different occurrences of the word in the document re-
fer to different senses. Instead, our algorithm identifies the
edges to the word forms. The strength of the relationship to
particular senses will be computed based on additional evi-
dence. For example, if the document also contains the word
“feline”, then there will be stronger connection between the
document and the main sense of the word “cat”.
Second, note that the distance between two documents is

not calculated in isolation. In particular, the other docu-
ments in the corpus are also taken into account when calcu-
lating the backward edges. In other words, we calculate how
similar two documents are relative to the other documents
in the corpus. If we want to cluster the documents, then
we can perform K-Means clustering after we calculate the
distances between all pairs of documents.

6. EXPERIMENTAL RESULTS
The system consists of the two programs: one that cre-

ates the similarity graph and one that queries the similar-
ity graph. We used the Java API for WordNet Searching
(JAWS) to connect to WordNet. The interface was devel-
oped by Brett Spell ([29]). All experiments were performed
on a Silicon Graphics UV10 Linux machine. The Web in-
terface of the system was created using JavaServer Pages
(JSP)([31]). It takes about ten minutes to build the similar-
ity graph and save it to the hard disk and about one minute
to load it from the hard disk. The average time for com-
puting the similarity distance between two words is thirty
seconds.
We used the system to compute the similarity of 28 pairs

of words from the Miller and Charles study ([19]). The
study presented the words to humans and computed the
mean score of the human ranking. The results are shown in
Table 1. The table shows the result for α equal to 0.1, 0.2,
and 0.3 for the linear and logarithmic similarity distance.
As Table 2 suggests, the correlation drops as the value of α
diverges from these values.
Table 2 shows the result of the correlation with different

values for α. Table 3 show how our results compare with
other proposals for extracting semantic similarity between
word forms from WordNet. The results are for α = 0.1. As
the table suggests, both our algorithms produce better re-
sults (i.e., closer correlation with the results from the human
judgement experiment in [19]) than existing algorithms.

α | · |lin | · |log
0.1 0.92 0.88
0.2 0.88 0.89
0.3 0.84 0.85
0.4 0.82 0.82
0.5 0.79 0.77
0.6 0.76 0.71
0.7 0.70 0.64
0.8 0.72 0.54
0.9 0.69 0.43
1.0 0.67 0.32

Table 2: Correlation results for different values of α
on the Millers and Charles benchmark.

algorithm correlation
Hirst and St-Onge ([8]) 0.74

Leacock and Chodorow ([15]) 0.82
Resnik ([24]) 0.77

Jiang and Conrath ([11]) 0.85
Lin ([16]) 0.83
| · |lin 0.92
| · |log 0.88

Table 3: Correlation results with the Millers and
Charles benchmark.

We explore how the coefficient α affects the quality of the
result. We get the highest correlation with the results from
the Miller and Charles study ([19]) when α is equal to 0.1
and when we use the linear similarity metric (0.92 corre-
lation score). A correlation score of 0.92 shows very close
correlation between the results produced by our system and
the human judgement from the Miller and Charles study.
To the best of our knowledge, this is the highest correlation
with the study ever achieved in published research.

In order to avoid overfitting, we decided to check if sim-
ilar results hold for a different benchmark. In particular,
we used the WordSimilarity-353 dataset ([5]). It contains
353 word pairs. Thirteen humans were used to rate the
similarity between each pair of words and give a score be-
tween 1 and 10 (10 meaning that the words have the same
meaning and 1 meaning that the words are unrelated). The
average similarity rating for each word pair was recorded.
Table 4 shows the correlation of our linear and logarithmic
algorithms with different values of α with the results from
the WordSimilarity-353 benchmark.

α | · |lin | · |log
0.1 0.51 0.49
0.2 0.53 0.53
0.3 0.53 0.53
0.4 0.52 0.52
0.5 0.50 0.49
0.6 0.49 0.45
0.7 0.47 0.40
0.8 0.46 0.35
0.9 0.45 0.29
1.0 0.45 0.17

Table 4: Correlation results for different values of α
on the WordSimilarity-353 benchmark.

Table 5 shows how our system compares with eight exist-
ing systems that have documented their performance on the
WordSimilarity-353 benchmark. The results of our system
are for α = 0.2. As the table shows, our system produces
better results then all other systems. Note that some al-
gorithm (e.g., [2]) use additional information from the web,
while our algorithm only uses information from WordNet.
As we extend our system to use information fromWikipedia,
we hope to further improve the quality of the results of our
system.

7. CONCLUSION AND FUTURE RESEARCH
We presented an algorithm for building a similarity graph

from WordNet. We verified the data quality of the algo-

algorithm correlation
Jarmasz ([9]) 0.27

Hirst and St-Onge ([8]) 0.34
Jiang and Conrath ([11]) 0.34
Strube and Ponzetto ([33]) 0.19-0.48
Leacock and Chodrow ([15]) 0.36

Lin ([16]) 0.36
Resnik ([24] 0.37

Bollegala et al. ([2]) 0.50
| · |lin 0.53
| · |log 0.53

Table 5: Correlation Results with [5]

rithm by showing that it can be used to compute the se-
mantic similarity between word forms and we experimen-
tally verified that the algorithm produces better quality re-
sults than existing algorithms on the Charles and Miller and
WordSimilarity-353 word pairs benchmarks. We believe that
we outperform existing algorithms because our algorithm
processes not only structured data, but also natural lan-
guage. The next major topic for future research is to extend
the similarity graph and incorporate data from Wikipedia.

8. REFERENCES
[1] OWL Web Ontology Language Guide.

http://www.w3.org/TR/owl-guide/.

[2] D. Bollegala, Y. Matsuo, and M. Ishizuka. A
Relational Model of Semantic Similarity Between
Words Using Automatically Extracted Lexical Pattern
Clusters from Web. Conference on Empirical Methods
in Natural Language Processing, 2009.

[3] L. Burnard. Reference Guide for the British National
Corpus (XML Edition). http://www.natcorp.ox.ac.uk,
2007.

[4] R. L. Cilibrasi and P. M. Vitanyi. The Google
Similarity Distance. IEEE ITSOC Inforamtion Theory
Workshop, 2005.

[5] L. Finkelstein, E. Gabrilovich, Y. Matias, E. Rivlin,
Z. Solan, G. Wolfman, and E. Ruppin. Placing Search
in Context: The Concept Revisited. ACM
Transactions on Information Systems, 20(1):116–131,
January 2002.

[6] C. Fox. Lexical Analysis and Stoplists. Information
Retrieval: Data Structures and Algorithms, pages
102–130, 1992.

[7] W. Frakes. Stemming Algorithms. Information
Retrieval: Data Structures and Algorithms, pages
131–160, 1992.

[8] G. Hirst and D. St-Onge. Lexical chains as
representations of context for the detection and
correction of malapropisms. Fellbaum, pages 305–332,
1998.

[9] M. Jarmasz. Roget’s Thesaurus as a Lexical Resource
for Natural Language Processing. Master’s thesis,
University of Ottawa, 1993.

[10] G. Jeh and J. Widom. SimRank: A Measure of
Structural-context Similarity. Proceedings of the Eight
ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, pages
538–543, 2002.

[11] J. Jiang and D. Conrath. Semantic Similarity Based
on Corpus Statistics and Lexical Taxonomy.
Proceedings on International Conference on Research
in Computational Linguistics, pages 19–33, 1997.

[12] K. Jones. ”a statistical interpretation of term
specificity and its application in retrieval”. Journal of
Documentation, 28(1):11–21, 1972.

[13] R. Knappe, H. Bulskov, and T. Andreasen. Similarity
Graphs. Fourteenth International Symposium on
Foundations of Intelligent Systems, 2003.

[14] S. Kulkami and D. Caragea. Computation of the
Semantic Relatedness Between Words Using Concept
Clouds. International Conference of Knowledge
Discovery and Information Retrieval, 2009.

[15] C. Leacock and M. Chodorow. Combining Local
Context and WordNet Similarity for Word Sense
Identification. WordNet: An electronic lexical
database, pages 265–283, 1998.

[16] D. Lin. An Information-theoretic Definition of
Similarity. Proceedings of the Fifteenth International
Conference on Machine Learning, pages 296–304,
1998.

[17] J. B. MacQueen. Some Methods for classification and
Analysis of Multivariate Observations. Proceedings of
5th Berkeley Symposium on Mathematical Statistics
and Probability, page 281Ű297, 1967.

[18] M.F.Porter. An Algorithm for Suffix Stripping.
Readings in Information Retrieval, pages 313–316,
1997.

[19] G. Miller and W. Charles. Contextual Correlates of
Semantic Similarity. Language and Congnitive
Processing, 6(1):1–28, 1991.

[20] G. A. Miller. WordNet: A Lexical Database for
English. Communications of the ACM, 38(11):39–41,
1995.

[21] Oracle. Berkeley DB. http://www.oracle.com.

[22] R. Pan, Z. Ding, Y. Yu, and Y. Peng. A Bayesian
Network Approach to Ontology Mapping. Proceedings
of the Fourth International Semantic Web Conference,
2005.

[23] J. Pearl. Bayesian Networks: A Model of
Self-Activated Memory for Evidential Reasoning.
Proceedings of the 7th Conference of the Cognitive
Science Society, University of California, Irvine, CA.,
page 329Ű334, 1985.

[24] P.Resnik. Using Information Content to Evaluate
Semantic Similarity in a Taxonomy. International
Joint Conference on Artificial Intelligence, pages
448–453, 1995.

[25] R. Rada, H. Mili, E. Bickness, and M. Blettner.
Development and Application of a Metric on Semantic
Nets. IEEE Transactions on Systems, Man, and
Cybernetics, 19(1):17–30, 1989.

[26] Q. Rajput and S. Haider. Use of Bayesian Networks in
Information Extraction from Unstructured Data
Sources. Proceedings of International Conference on
Ontological and Semantic Engineering, pages 325–331,
2009.

[27] Simone Paolo Ponzetto and Michael Strube. Deriving
a Large Scale Taxonomy from Wikipedia. 22nd
International conference on Artificial intelligence,

2007.

[28] E. Sirin and B. Parsia. SPARQL-DL: SPARQL Query
for OWL-DL. 3rd OWL: Experiences and Directions
Workshop (OWLED), 2007.

[29] B. Spell. Java API for WordNet Searching (JAWS).
http://lyle.smu.edu/ tspell/jaws/index.html, 2009.

[30] L. Stanchev. Building Semantic Corpus from
WordNet. The First International Workshop on the
role of Semantic Web in Literature-Based Discovery,
2012.

[31] L. Stanchev. Similarity Software.
http://softbase.ipfw.edu:8080/Similarity, 2012.

[32] M. Steyvers and J. Tenenbaum. The Large-Scale
Structure of Semantic Networks: Statistical Analyses
and a Model of Semantic Growth. Cognitive Science,
29(1):41–78, 2005.

[33] M. Strube and S.P.Ponzetto. Wikirelate! Computing
Semantic Relatedness using Wikipedia. Association
for the Advancement of Artificial Intelligence
Conference, 2006.

[34] J. Webber and I. Robinson. Graph Databases.
O’Reilly, 2013.

[35] Z. Wu and M. Palmer. Verb semantics and lexcial
selection. Annual Meeting of the Association for
Computational Linguistics, pages 133–138, 1994.

[36] D. Yang and D. M. Powers. Measureing Semantic
Similarity in the Taxonomy of WordNet. Australian
Computer Science Conference, pages 315–322, 2005.

(linear) (logarithmic)
word 1 word 2 M&C 0.10 0.20 0.30 0.1 0.2 0.3
car automobile 3.92 1.00 1.00 1.00 1.00 1.00 1.00
gem jewel 3.84 1.00 1.00 1.00 1.00 1.00 1.00

journey voyage 3.84 1.00 1.00 0.83 1.00 1.00 0.87
boy lad 3.76 1.00 1.00 1.00 1.00 1.00 1.00
coast shore 3.7 1.00 1.00 1.00 1.00 1.00 1.00
asylum madhouse 3.61 1.00 1.00 1.00 1.00 1.00 1.00
magician wizard 3.5 1.00 1.00 0.93 1.00 1.00 0.94
midday noon 3.42 1.00 1.00 1.00 1.00 1.00 1.00
furnace stove 3.11 0.71 0.36 0.24 0.87 0.61 0.46
food fruit 3.08 0.62 0.31 0.21 0.83 0.58 0.43
bird cock 3.05 1.00 0.50 0.33 1.00 0.70 0.52
bird crane 2.97 0.44 0.22 0.15 0.74 0.52 0.39
tool implement 2.95 1.00 1.00 1.00 1.00 1.00 1.00

brother monk 2.82 0.80 0.40 0.27 0.91 0.64 0.48
crane implement 1.68 0.06 0.03 0.02 0.44 0.31 0.23
lad brother 1.66 0.59 0.30 0.20 0.81 0.57 0.43

journey car 1.16 0.54 0.27 0.18 0.79 0.55 0.41
monk oracle 1.1 0.01 0.00 0.00 0.31 0.22 0.16
food rooster 0.89 0.42 0.21 0.14 0.72 0.51 0.38
coast hill 0.87 0.19 0.10 0.06 0.58 0.41 0.30
forest graveyard 0.84 0.23 0.11 0.08 0.61 0.42 0.32
monk slave 0.55 0.04 0.02 0.01 0.41 0.29 0.22
coast forest 0.42 0.10 0.05 0.03 0.50 0.35 0.26
lad wizard 0.42 0.05 0.02 0.02 0.43 0.30 0.23

chord smile 0.13 0.25 0.13 0.08 0.62 0.44 0.33
glass magician 0.11 0.05 0.03 0.02 0.44 0.31 0.23
noon string 0.08 0.16 0.08 0.05 0.56 0.39 0.29
rooster voyage 0.08 0.06 0.03 0.02 0.46 0.32 0.24

correlation 1.0 0.92 0.88 0.84 0.88 0.89 0.85

Table 1: Similarity results for different values of α on the Milers and Charles benchmark.

