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Abstract—Given a set of documents and an input query that
is expressed using natural language, the problem of document
search is retrieving all relevant documents ordered by the
degree of relevance. Semantic document search fetches not only
documents that contain words from the input query, but also
documents that are semantically relevant. For example, the
query “friendly pets” will consider documents that contain the
words “dog” and “cat”, among others. One way to implement
semantic search is to use a probabilistic graph in which the
input query is connected to the documents through paths that
contain semantically similar words and phrases, where we use
WordNet to initially populate the graph. Each edge in the graph
is labeled with the conditional probability that the destination
node is relevant given that the source node is relevant.

Our semantic document search algorithm works in two phases.
In the first phase, we find all documents in the graph that are
close to the input query and create a bounded subgraph that
includes the query, the found documents, and the paths that
connect them. In the second phase, we simulate multiple random
walks. Each random walk starts at the input query and continues
until a document is reached, a jump outside the bounding
subgraph is made, or the number of allowed jumps is exhausted.
This allows us to rank the documents based on the number
of random walks that terminated in them. We experimentally
validated the algorithm on the Cranfield benchmark that contains
1400 documents and 225 natural language queries. We show
that we achieve higher value for the mean average precision
(MAP) measure than a keywords-based search algorithm and
a previously published algorithm that relies on a variation of the
probabilistic graph.

I. INTRODUCTION

Quite often, different words are used to describe the same
concept in the query and in the documents. When this is
the case, a simple keywords-based search algorithm will not
retrieve all relevant document and recall will be low. For
example, a keywords-based search for “furniture” will not
fetch documents that do not contain the search term, but
contain related words, such as “chair” and “couch”. A proba-
bilistic graph that contains words and phrases from the English
language can help us address this problem. In our example, the
input query will be connected to the word “furniture”, which
in turn will be connected to the words “chair” and “couch”,
which will be connected to documents that contain one or
both words. In [40], we showed an efficient way for creating
the probabilistic graph using information from WordNet and
experimentally validated the quality of data in the graph. In
this paper, we focus our attention on how the probabilistic

graph can be used for semantic document search. Specifically,
we present a novel algorithm that ranks the documents based
on data from multiple random walks in a bounded subgraph
of the probabilistic graph.

A document search engine needs to consider a medley of
factors, such as which documents contain words from the input
query, what is the frequency of these words in the documents,
how rare are these words, are the words in the correct order and
close to each other, how trust-worthy are the documents, and
so on. In this paper, we present a document retrieval system
that addresses some of these heuristics, including finding
documents that contain rare words from the input query and
finding documents that contain words that are similar to words
from the input query. Our system does not consider the order
or the proximity of the query words in each document and
the trustworthiness of the documents. However, we believe
that these features can be added to our algorithm and this
remains a topic for future research. The hallmark of our system
is that it can retrieve documents that contain words that are
semantically similar to the words in the input query. This is
an important characteristic because it allows us to find more
relevant documents and increase the recall.

Our approach to semantic document search involves finding
words and phrases that are similar to those in the input query.
The most challenging part is building a precise probabilistic
model that correctly captures the degree of semantic relevance
between words. For example, our system should be able to
determine whether a document that contains the word “chair”
or a document that contains the phrase “coffee maker” is
more relevant to a query that asks for “furniture”. Note that
computing the degree of semantic similarity between words is
not trivial and it is sometimes challenging even for humans
that are experts in the domain area. There is also a trade-off
in our system between the precision of the answer and the
efficiency of the algorithm, where tuning parameters allow us
to balance between the two choices.

Most document retrieval algorithms are based on some
version of the TF-IDF (stands for term frequency – inverse
document frequency [20]) algorithm and the cosine document
similarity metric and do not return documents that contain
words and phrases that are similar to those in the input
query. Those systems that do consider similar words (e.g.,
[21]) usually expand the input query by adding synonyms.



This approach differs from our system in two ways. First, we
are capable of finding similar words that are not synonyms.
Second, we measure the semantic similarity between the words
and phrases in the query and in the documents. To summarize,
our approach is more flexible and it allows us to find the
probability that a document is relevant given that it contains
words that are similar to words in the input query.

Our semantic document search system is based on a prob-
abilistic graph [40]. The graph is initially built using infor-
mation from WordNet, which contains about 150,000 of the
most common words and phrases in the English language.
WordNet uses the concepts of a word form and sense. A word
form is a single word or a short phrases that represents a single
entity, such as “sports utility vehicle”. Every word form can
represent one or more senses and each sense is represented
by one or more word forms. For example “the season when
leaves fall from the trees” and “a sudden drop from an upright
position” are two of the senses of the word ”fall”. In the
probabilistic graph, a node is created for every word form and
every sense. Next, we use information from WordNet to create
Horn clauses with probabilities. The logical formulas use only
the unary predicate rel, which is true when the input concept
is relevant. The Horn clauses with probabilities allow us to
build a very precise Markov Logic Network (MLN) model
[32] of our system and compute the weight of the edges in the
graph. Note that the input query and documents are also added
as nodes in the graph. The problem of finding and ranking
relevant documents is translated into the problem of finding
the probability that a document is relevant given that the input
query is relevant. As [40] describes, computing the conditional
probability of a node being relevant given that a different node
in the probabilistic graph is relevant is straight forward when
we consider a single path between the two nodes. However,
when we consider multiple interweaving paths between two
nodes in the graph, the problem becomes computationally
expensive and we are not aware of any polynomial time
solutions. This is why in this paper we present a Monte Carlo
approximation algorithm that performs multiple random walks
that start from the node for the input query.

We experimentally validate our semantic search algorithm
on the Cranfield benchmark that contains 1400 documents and
225 queries. Human subjects have determined the documents
that are relevant for every query. We compare our algorithm
with the TF-IDF algorithms that is implemented in Apache
Lucene and the algorithm from [39], which looks only at
disjoint paths when comparing two nodes. The experimental
section shows that our semantic search algorithm produces
higher value for the mean average precision (MAP) over all
queries than the other two algorithms. The reason why our
system has higher value for the MAP measure than the Apache
Lucene system is because we find not only documents that
contain words from the input query, but also documents that
contain words and phrases that are semantically similar to
those in the input query. In comparison with our previous
work ([39]), the presented system performs better because our
old algorithm considers only disjoint paths between the input

query and each of the documents and it does not take into
account the complex interweaving network of edges that can
exist in the probabilistic graph.

In what follows, in Section II we review related research.
Section III does a quick overview of the algorithm for creating
logical formulas with weights from WordNet. The novelty
here is that we also show how to create logical formulas
that link documents and queries to words and phrases from
WordNet. Section IV reviews how the logical formulas can be
transformed into a probabilistic graph. The main contribution
of the paper is in the next sections. Section V presents
an approximation algorithm for finding the top-N relevant
documents. Section VI shows how the algorithm compares
with the Apache Lucene algorithm that is based on keywords-
matching and our old algorithm from [39] on the Cranfiled
benchmark [6], while concluding remarks and areas for future
research are outlined in Section VII.

II. RELATED RESEARCH

In this section, we present a chronological overview of the
major breakthroughs in semantic search research. In 1986,
W. B. Croft proposed the use of a thesaurus of concepts for
implementing semantic search [9]. The words in both the user
query and the documents can be expanded using informa-
tion from the thesaurus, such as the synonym relationship.
Sequentially, there have been multiple papers on the use of
a thesaurus to implement semantic search (e.g., [14], [17],
[22], [35], [42]). This approach, although very progressive
for the times, differs from our approach because we consider
indirect relationships between words (i.e., relationships along
paths of several words). We also do not apply query and
document expansion. Instead, we use the probabilistic graph
to find the documents that are semantically related to the input
query. Similarly to the approach in [9], we use a probabilistic
model to rank the documents in the result. Croft also proposed
retrieving documents based on user interaction, where this
direction has been further extended in the area of folksonomies
[12]. Our system currently does not allow for user interaction
when computing the list of relevant documents. However, we
believe that allowing interactive mode during document search
and implementing user profiling can improve our system and
we identify this topic as an area for future research.

In later years, the research of Croft was extended by creating
a graph that represents a semantic network [7], [31], [36]
and graphs that contain the semantic relationships between
words [3], [2], [8]. Later on, Ponzetto and Strube showed
how to create a graph that only represents inheritance of
words in WordNet [24], [37], while Jeh and Widom showed
how to approximate the similarity between phrases based on
information about the structure of the graph in which they
appear [18]. All these approaches differ from our approach
because they do not consider the strength of the relationship
between the nodes in the graph. In other words, there are no
weights that are associated with the edges in the graph.

The problem of semantic search is somewhat related to
the problem of question answering. Instead of returning a



set of documents, question answering deals with the problem
of finding the answer to a question inside the available
documents. Natural language techniques are used to determine
the type of expected answer [15], [28], [38]. For example,
if the natural language analyzer determines that the answer
to a question must be an animal, than words or concepts in
the documents that can represent an animal are identified as
potential query answers.

Since the early 1990s, research on LSA (stands for latent
semantic analysis [11]) has been carried out. The approach
has the advantage of not relying on external information.
Instead, it considers the closeness of words in text documents
as proof of their semantic similarity. For example, LSA can
be used to detect words that are synonym [25]. This differs
from our approach because we do not consider the closeness
of the words in a document. We only consider the order of
the words in the definition of a WordNet sense when we
build the probabilistic graph, where we assume that the first
words are more important. Although the LSA approach has its
applications, we believe that WordNet provide higher quality
of data than the input documents alone.

Since the late 1990s, ontologies have been examined as
tools to improve the quality of the data that is returned by in-
formation retrieval systems [34]. However, ontologies use the
Boolean search model. An ontology language, such as OWL,
can be used to precisely annotate the input documents. Queries
are expressed in a language that is based on mathematical
logics, such as SPARQL, and a document is either part of the
query result or it is not. Unlike the probabilistic model that
is used in this paper, there is no notion of approximate query
answering or ranking the documents based on their relevance
to the input query. Therefore, this approach is better suited
for query answering than for document search problems [27],
[1], [5]. Research on automatic annotation of documents with
OWL descriptions is also relevant [23], [29], [13].

Note that there are papers that consider a hybrid approach
to information retrieval using both an ontology and keywords
matching. For example, [33] examines how queries can be
expanded based on the information from an OWL knowl-
edgebase. Alternatively, [41] proposes a ranking function that
depends on the length of the logical derivation of the result,
where the assumption is that shorter derivations will produce
more relevant documents. Unfortunately, these approaches are
only useful in the presence of an ontology. However, research
on automatic annotation of documents with OWL descriptions
is still in its early stages of development.

Lastly, note that recent research has examined using a
random walk over a version of the probabilistic graph for
computing similarity between words ([16]) and between texts
[30]. However, unlike our approach, they use the random
walks to create stationary distributions for words (or texts) and
compare two stationary distributions to compute the similarity
between the respective words (or texts).

III. CREATING THE HORN CLAUSES

A. About WordNet

In our study, we use WordNet 3.0, which contains approxi-
mately 150,000 different word forms. Recall that a word form
is a single word or short phrase, such as “United Nations”.
Throughout the paper, we will refer to both words and word
forms as terms. WordNet also contains information about the
senses of each term, where a term can have many senses
and a sense can be represented by many terms. When a term
has multiple senses, WordNet specifies the frequency (i.e., the
popularity) of each sense. For each sense, WordNet gives us
its definition and example use of a term that represents the
sense in a sentence.

WordNet also contains information about the relationship
between senses. The senses in WordNet are divided into
four categories: nouns, verbs, adjectives, and adverbs. For
example, WordNet stores information about the hypernym
and hyponym relationships between nouns. The hypernym
relationship corresponds to the super class relationship. For
example, “canine” is a hypernym of “dog”. The hyponym
relationship is the reverse (i.e., it corresponds to the “kind-
of” relationship). For example, “dog” is a hyponym of canine.
WordNet also provides information about the meronym and
holonym relationship between noun senses. The meronym
relationship corresponds to the “part-of” relationship. Note that
WordNet provides three types of meronyms: part, member, and
substance. The three types of meronyms can be explained with
the following examples: a “tire” is part of a “car”, “car” is a
member of “traffic jam”, and a “wheel” is made from “rubber”,
respectively. The holonym relationship is the reverse of the
meronym relationship. For example, “building” is a holonym
of “window”. For verbs, WordNet defines the hypernym and
troponym relationships. X is a hypernym of Y if performing
X is one way of performing Y. For example, “to perceive” is a
hypernym of “to listen”. The verb Y is a troponym of the verb
X if the activity Y is doing X in some manner. For example,
“to lisp” is a troponym of “to talk”. Lastly, WordNet defines
the related to and similar to relationship between adjective
senses, which are self-explanatory. WordNet does not define
any relationships for adverbs.

B. The Probability Model

We create a random variable for each sense and each term
in WordNet. We use the single predicate rel in our model that
tells us if the concept is relevant. We will model WordNet as
a set of formulas of the form rel(X) ⇒ rel(Y ). Following
the MLN model [32], the weight of a formula is computed
as the natural logarithm of the odds of the formula being
true, that is, ln( p

1−p ). However, since we want all available
evidence to have positive influence on the formulas, we first
apply a transformation from the interval [0,1] to the interval
[0.5,1] for each probability value before computing the weight
of the formula. Note that, in the MLN model, events with
probabilities below 0.5 are considered as negative events, that
is, events that will most likely not happen. Equation 1 and 2 are



shown next, where we use P e(Y |X) to denote our confidence
of the formula being true and refer to this value as the evidence
probability.

weight(rel(X)⇒ rel(Y )) = ln(
P+(Y |X)

1− P+(Y |X)
) (1)

P+(Y |X) = 0.5 +
P e(Y |X)

2
(2)

As an example, suppose that the probability of someone
who is interested in the word “chair” is also interested in the
word “table” is 10%. Then P+(table|chair) = 0.55 and the
weight of the formula rel(chair) ⇒ rel(table) will be equal
to ln(0.55/0.45) = 0.2.

C. Creating Horn Clauses from the Documents and Queries

Consider the query q1 “Furniture of the European Renais-
sance”. There are three non-noise words in the query. We will
create the following Horn clauses to represent this relationship.

rel(q1)⇒ rel(furniture), (minMax (0, 0.9,
1

3
))

rel(q1)⇒ rel(european), (minMax (0, 0.9,
1

3
))

rel(q1)⇒ rel(renaissance), (minMax (0, 0.9,
1

3
))

Note that we put the evidence probabilities in parenthesis,
where Equations 1 and 2 will be used to translate them into
weights. The minMax function is defined as follows and is
used to smoothen the input.

minMax (minV alue,maxV alue, ratio) =

minV alue+ (maxV alue−minV alue) · −1
log2(ratio)

In almost all cases, the function returns a number
between the first two arguments. The only exception
is that, in order to avoid division by 0, we define
minMax (minValue,maxValue, 1) = 1.2 · maxValue . In
general, the evidence probability for linking queries to terms
is computed as minMax (0, 0.9, ratio), where ratio is the
number of times the term appears in the query divided by the
total number of words in the query. The special case is when
there is a single non-noise word in the query and then we use
the second version of the minMax equation. The number 0.9
represents the probability that if we are interested in the query,
then we are also interested in one of the terms in the query.
The number is relatively high because almost always when we
are interested in a query, we are also interested in one of the
words in it.

Next, suppose that the word “chair” appears a total of ten
times in the titles of documents. Consider the document d1with
title “chair ergonomics and accessories”. We can represent
the relationship between the word “chair” and d1 using the
following formula.

rel(chair)⇒ rel(d1), (minMax (0, 0.6,
1

10
))

In general, the evidence probability for linking a term
to a document that contains it in its title is computed as
minMax (0, 0.6, ratio), where ratio is the number of times the
term appears in the title of the document divided by the total
number of times the term appears in the title of any document.
The parameter 0.6 denotes the probability that given that we
are interested in a term, we are also interested in one of the
documents that contains the term in its title. Note that the
formula rewards terms that are rare because we want to give
greater weight to documents that contain rare query words in
their title.

Lastly, suppose that the word “chair” appears a total of
1,000 times in the bodies of documents. Consider the docu-
ment d1 in which the word appears ten times. We can represent
this knowledge using the following formula.

rel(chair)⇒ rel(d1), (minMax (0, 0.3,
10

100
))

In general, the evidence probability for linking a term
to a document that contains it in its body is computed as
minMax (0, 0.3, ratio), where ratio is the number of times the
term appears in the body of the document divided by the total
number of times the term appears in the body of any document.
The parameter 0.3 denotes the probability that given that we
are interested in a term, we are also interested in one of the
documents that contains the term in its body. Note that the
number is half of the size of the number for document titles
because we believe that a term that appears in the title of a
document is twice as significant as a term that appears in the
body of a document. Again, we reward rare terms by giving
higher value for the evidence probability of such terms.

D. Creating the Horn Clauses for WordNet

A previous paper [40] contains a detailed overview of the
algorithm that models WordNet as a set of Horn clauses
with weights. Here, we only show a previously unpublished
example that demonstrate how the algorithm works.

In the previous subsection, we showed how the query
“Furniture of the European Renaissance” can be connected
to the word “furniture” and how the word “chair” can be
connected to a document that contains the word in its title and
body. Here, we show how the words “furniture” and “chair”
can be connected, which will allow us to connect the query
“Furniture of the European Renaissance” to documents that
contain the word “chair”.

First, note that the word furniture has a single sense: “fur-
nishings that make a room or other area ready for occupancy”.
Accordingly, we will create the following formula.

rel(furniture)⇒, rel(furnishings that make a room . . .), 10

Note that since the number 10 is a weight and not an evidence
probability, it is not put in parenthesis. This translates to
evidence probability of 99.99%. The idea is that since the
word furniture has a single sense, someone who is interested
in the word must be also interested in this sense.

Second, note that this sense has 25 hyponyms, including the
senses for words bed, cabinet, seat, and table. For our example,



we are interested in the sense for the word seat: “furniture
that is designed for sitting on”. Accordingly, we will create
the following formula.

rel(furnishings that make a room . . .)⇒

rel(furniture that is designed for sitting on), (0.9 ∗ 10

1000
)

In order to understand how the evidence probability was
computed, suppose that size of our example sense for “seat”
is 10 and the sum of the sizes of all 25 hyponyms of the
sense for the word “furniture” is 1000. In general, we compute
weight for hyponym formulas as 0.9 multiplied by the size
of the sense and divided by the sum of the sizes of all the
hyponym senses of the initial sense. The number 0.9 represents
the probability that given that we are interested in a sense, we
are also interested in one of its hyponyms. We use information
from the British National Corpus (BNC) [4] to estimate the
size of the sense. Roughly, the equation looks at the frequency
in textbooks, as recorded in BNC, of the different words that
represent a sense and takes the weighted average of these
frequencies.

Next, note that the sense for the word seat “furniture that
is designed for sitting on” has as a hyponym that is the sense
“a seat for one person” for the word “chair”. Accordingly, we
will create the following formula.

rel(furniture that is designed for sitting on)⇒

rel(a seat for one person), (0.9 ∗ 10

100
)

Here, we assumed that the size of the sense for “a seat for
one person” is 10 and the sum of the sizes of all 9 hyponyms
of the sense “furniture that is designed for sitting on” is 100.

Next, given that someone is interested in a sense, they must
also be interested in all the words that represent the sense.
Specifically, we have the following formula.

rel(a seat for one person)⇒ rel(chair), 10

In the next section, we will create an edge in the graph
for each logical formula. In other words, we have shown one
way the words “furniture” and ”chair” will be connected in
the probabilistic graph.

IV. CREATING THE PROBABILISTIC GRAPH

We start by creating a node in the graph for each term and
each sense, that is, for each random variable. Next, we convert
the evidence probabilities of the formulas to weights using
Equations 1 and 2. Note that there can be several identical
formulas with possibly different weights that are generated.
When this is the case, we will merge all such formulas into
a single formula. The weight of the new formula is equal to
the sum of the weights of the old formulas. Note that adding
the weights is consistent with the MLN model [32] because
the probability of a world W being true is computed using the
following equation.

P (W ) =
1

total
· e

∑
F

weight(F )∗|F (W )|
(3)

In the equation, total is a normalizing constant that is used
to make sure that the probabilities over all worlds add up to
one. The sum is over all formulas F in our knowledgebase.
The expression weight(F ) is used to denote the weight of the
formula F and |F (W )| is equal to one when the formula F is
true in the world W and is equal to 0 otherwise. Obviously,
merging identical formulas by adding up their weights follows
the above formula.

Next, we add an edge between X and Y in the graph for
each logical formula of the following type.

rel(X)⇒ rel(Y ), w

The weight of the edge will be converted to a probability and
will be computed using the following equations.

p =
1

1 + e−w
edgeweight =

2 ∗ p− 1

sumof edgeweights

The first equation converts the weight to a probability. The
second equation maps the probability from the interval [0.5,1]
back to the interval [0,1] and divides the result by the sum of
the weights of all edges that leave the source node X . This
guarantees that the sum of the weights of all the edges that
leave a node will be equal to one, which will be important
when we perform our random walk algorithm. Note that in
the probabilistic graph that was constructed, the weight of each
edge is equal to the probability that a user is interested in the
destination concept given that they are interested in the source
concept, where we assume that the user is interested in only
one of the destination concepts.

V. FINDING RELEVANT DOCUMENTS

In this section, we will describe three algorithms for finding
relevant documents. In the next section, we will compare how
they work on the Cranfiled benchmark [6]. The first two
algorithms use a scoring function to compute the distance
between a query and a document, where the resulting doc-
uments are ranked relative to the value of the scoring function
in descending order.

First, let us examine the scoring function that is used
by Apache Lucene [10], which is popular software that
contains a toolkit of routines for information retrieval. Given
a document d and a query q, the scoring function is defined
as follows.

score(q, d) =
∑

t in q

(
√

tf (t in d) ∗ (1 + log2(
numDocs

docFreq(t)+1 ))
2)

In the equation, tf (t in d) denotes the number of ap-
pearances of the term t in the document d, numDocs refers
to the total number of documents, and docFreq(t) refers
to the number of documents in which the term t appears.
This follows the TF-IDF equation because the second part of
the equation is one way of computing the inverse document
frequency. The scoring function can be multiplied by boosting
and normalizing parameters, which are skipped because they
are optional parameters and require user tuning. The problem



with this approach is that it does not compare similar terms
from the query and the documents.

Second, let us quickly examine the algorithm from [39].
Given a document d and a query q, the scoring function is
defined as shown in Equations 4 and 5.

score(q, d) =
∑

Pt is a cycleless path from node q to node d

PPt(d|q) (4)

PPt(d|q) =
∏

(n1,n2) is an edge in the path Pt

P (n2|n1) (5)

In Equation 5, P (n2|n1) is used to denote the weight of the
edge from the node n1 to the node n2. Informally, we compute
the directional similarity between two nodes in the graph as
the sum of the non-overlapping paths between the two nodes,
where we eliminate cycles from the paths. We compute the
similarity between two nodes along a path as the product of
the weights of the edges along the path, which follows the
Markov chain model. The problem with this approach is that
it is not deterministic because there can be multiple way of
enumerating the non-overlapping paths between two nodes.
Depending on our choice, we can produce results that are
significantly different.

Lastly, we presented our bounded random walk algorithm
that consists of two phases. In the first phase, we start at the
query node and find all documents that can be potentially
relevant without worrying about ranking. The algorithm is
shown in Fig. 1. Initially, boundingSet is the empty set. As we
find more nodes, we keep adding them to the set. The initial
call to the method is depthFirst(query , 1, 0). The algorithm
performs a depth-first search starting at the query node and
finds all documents that can be potentially relevant. Note that
if we do not reach a document at the end of the path, then
we remove the visited nodes on the current path from the
bounding set because they do not lead to a document. In the
experimental results, we used maxDepth = 10. This means
that paths of length more than 10 edges are of no interest
because the strength of the evidence weakens as the length
of the path grows. We also set minDistance = 1/(1000 ∗
num documents), where num documents is the total number
of documents. The idea is that the more documents we have,
the lower the probability that we will reach a particular
document. To summarize, the algorithm for the first phase is
built on the hypothesis that if a document is relevant, then there
must exist at least one relatively short path to the document
where the product of the weights of the edges along the path
is bigger than our cutoff value.

The second phase of the algorithm is shown in Figures 2
and 3. Initially, the findRelevantDocuments is called with the
query node as input. The algorithm populates the frequency
array, which tells us how many times each document was
visited. The relevant documents are the ones with the highest
frequency, where the result will be sorted by the value of
the frequency in descending order. The findRelevantDocument
method simply calls the randomWalk method a bunch of times,
where the number of times the method is called depends on

Algorithm 1 depthF irst(currentNode, distance, depth)

if currentNode is a document then
add currentNode to boundingSet
return

end if
if depth > maxDepth or distance < minDistance or
currentNode is in boundingSet then

remove nodes that belong only to current path from
boundingSet
return

end if
add currentNode to boundingSet
for all neighbors neighbor of currentNode do
depthF irst(neighbor, distance ∗
edgeWeigth(currentNode, neighbor) , depth+ 1)

end for

Fig. 1. First phases of the Bounded Random Walk Algorithm.

the number of documents in the bounding set. The idea is that
if the bounding set is small, then there is no reason to perform
too many random walks.

Algorithm 2 findRelevantDocuments(queryNode)

for i ← 1 to |bounding set| ∗ 1000 do
documentID = randomWalk(queryNode)
if documentID = −1 then

continue
end if
frequency [documentID ]← frequency [documentID ]+1

end for

Fig. 2. Second phases of the Bounded Random Walk Algorithm.

The randomWalk function starts at the input node and keeps
hoping until it finds a document, it jumps outside the bounding
set, or the number of allowed hops is exhausted. Note that it
is possible that we reach a node that is a dead end (each
subsequent hop leads to a node that is already visited). When
this is the case, we just return -1, which means that we were
unable to find a document.

VI. EXPERIMENTAL RESULTS

The Cranfield benchmark [6] contains 1400 short documents
about the physics of aviation. Each document contains a title
and a short body that is usually around 10 lines. As part of
the benchmark, 225 natural language queries were created.
The documents and queries were examined by experts in
the area and the documents that are relevant to each query
were identified. The relevant documents were clustered in four
groups. Highly relevant documents were given relevance score



Algorithm 3 randomWalk(currentNode)

for i ← 0 to maxDepth do
if currentNode is a document then

return currentNode //found document
end if
if currentNode not in boudingSet then

return -1
end if
repeat

nextNode ← getRandomNextNode(currentNode)
until nextNode is not already visited or loop has run for
maxDept ∗ 10 times
if above loop ran maxDept ∗ 10 times then

return -1 // dead end
end if
curentNode ← nextNode

end for
return -1 // no document found and hop limit reached

Fig. 3. The method takes a random walk starting at currentNode. It returns
a document if it finds one and -1 otherwise.

of 1, less relevant documents were given a relevance score of
2, and even less relevant documents were given a relevance
score of 3, while documents of minimum interest were given
a relevance score of 4.

Table I shows the Mean Average Precision (MAP) score
for our algorithm, the algorithm that only considers disjoint
paths [39], and the Apache Lucene algorithm. Note that
for the Apache Lucene algorithm we doubled the frequency
of the words in document titles to make it comparable to
the other two algorithms. For each algorithm, we ran four
experiments. In the first experiment, we only considered the
documents with relevance score of 1 to be relevant. In the
second experiment, we only considered the documents with
relevance scores of 1 and 2 to be relevant and so on. Each
of the experiments took about 10 minute to complete on
a typical laptop with an Intel Core i7 processor and 4GB
of main memory. When implementing our algorithm, we set
maxDept = 10 and minDistance = 1/(1000 ∗ 1400). If we
increase the maximum length of a path that we consider, then
the value of the MAP score decreases slightly because we
start discovering associations between words that are not true.
The same applies for the minDistance parameter value. If we
decrease it significantly, for example by a factor of 1000, we
start discovering semantic relationships between words that are
not related and the value for the MAP score decreases.

For each query, we computed the mean average precision
score, which is also known as the MAP score. Consider the
query Q. Let {Di}di=1 be the relevant documents. Let Ri be
the set of documents that are retrieved by the algorithm until
document Di is returned. Then the MAP score for the query
Q is defined as the average precision of Ri over all values, or

Rel. 1 Rel. 1-2 Rel. 1-3 Rel. 1-4
Bounded random
walk

0.31 0.32 0.32 0.37

Disjoint paths [39] 0.29 0.29 0.30 0.35
Lucene algorithm 0.25 0.25 0.27 0.29

TABLE I
MAP VALUES FOR DIFFERENT ALGORITHMS AND DEGREES OF

RELEVANCE FOR THE CRANFIELD BENCHMARK.

formally as shown in Equation 6.

MAP(Q) =
1

d

d∑
i=1

Precision(Ri) (6)

The precision for Ri is defined as the fraction of retrieved
documents that are relevant, or formally as shown in Equa-
tion 7.

Precision(Ri) =
#(relevant items retrieved)

#(retrieved items)
(7)

Next, let us examine Table I in more details. The MAP
score is the average MAP value over all 225 queries. The
top algorithm is the algorithm that is described in the paper.
As the table suggests, it produces higher value for the MAP
metric than the Apache Lucene algorithm and the disjoint
paths algorithm [39]. The reason we get better results than
the Apache Lucene algorithm is because the later algorithm
performs simple keywords matching and does not consider
the semantic relationship between the terms in queries and
documents. It is clear from the table that our algorithm
produces especially good results when we consider documents
with relevance score from 1 to 4 to be relevant. The reason is
that our algorithm is strong at identifying documents that are
weakly related with the input query. Conversely, the Apache
Lucene algorithm fails to discriminate between documents that
do not contain the query words. Our algorithm produces better
results than the disjoint path algorithm because we created a
very precise mathematical model of the words in the English
language. Our bounded random walk algorithm is not only
fast, but it also allows us to rank the documents very precisely
based on the probability that each document is relevant given
that the input query is relevant.

VII. CONCLUSION AND FUTURE RESEARCH

In this paper, we presented a bounded random walk al-
gorithm for finding documents that are relevant to an input
query. It turns out that creating a bounding subgraph is very
efficient. The reason is that most paths are quickly pruned
because the product of the weights of the edges quickly
drops below our threshold. For example, for most queries
the bounded subgraph is relatively small. Once the bounded
subgraph is found, performing multiple random walks in it is
also very efficient. The major advantage of using the bounded
subgraph is that we eliminate paths that do not lead to a
document quickly. This makes the random walks very efficient.
In the experimental section of this paper, we showed that our



algorithm produces good results on the Cranfield benchmark
because it is not only efficient, but it also computes the
probability of a document being relevant in a very precise
manner. Note that our algorithm is also tunable. We can change
the maxDept and minDistance parameters of the algorithm
that creates the bounded subgraph and the number of random
walks in order to trade accuracy for better performance.

We have identified two areas for future research. First, we
plan on extending the probabilistic graph with information
from DBpedia [26]. We believe this will allow us to capture
more semantic relationships between phrases and will increase
the accuracy of our algorithm. Second, we want to incorporate
term ordering and proximity in our algorithm. For example,
[19] shows how to create graphs that represent the term
ordering and we believe that we can incorporate such graphs
in our algorithm. Again, the hope is that this will increase the
accuracy of the algorithm.
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