Index Selection for Compiled Database Applications

in Embedded Control Programs

Lubomir Stanchev and Grant Weddell

School of Computer Science, University of Waterloo
e-mail: {stanchev, gweddell}@uwaterloo.ca

Abstract

A compiled database application is a collection
of modules in a software system that interact
with a common database through a set of pre-
defined transaction types. We call a compiled
database application an embedded control pro-
gram (ECP) if it is reasonable to consider the
execution time of each transaction type to be
either critical or non-critical. Usually, the com-
mon database for an ECP is referred to as the
control data. In this paper, we consider the in-
dex selection problem for the control data of
an ECP. We believe this is a novel problem be-
cause of the presence of real-time requirements.
Unlike the objective of earlier work in index se-
lection that aims to reduce the response time of
queries, ours is to reduce storage requirements
in a way that ensures efficient execution time
for the critical query and update workload. We
propose a solution that abstracts and manipu-
lates the result requirements of the query com-
ponent of the critical workload. The experi-
ments we have conducted show that this ap-
proach can produce small physical structures
that support fast execution of a workload with
many updates.

1 Introduction

A basic problem in database systems is se-
lecting the best possible set of indices for a

given workload, where a workload is usually
abstracted as a set of queries and updates to-
gether with their frequencies. In commercial
systems like IBM DB2 UDB [3, 6] and Mi-
crosoft SQL Server [1, 2], the problem is for-
mulated as an optimization problem in which
the execution time of the queries is minimized
subject to a fixed storage overhead for indexing.
The problem, formulated as such, is similar to
the knapsack problem! and greedy algorithms
are commonly used to solve it.

However, we believe there is an application
area for database technology that requires an
alternative approach to the problem. Consider
for example the Linux kernel. It can be viewed
as a compiled database application consisting
of a collection of modules that interact with
a common database of information about pro-
cesses, open files, etc. This interaction can be
characterized in terms of a predefined collec-
tion of transaction types. We call a compiled
database application an embedded control pro-
gram (ECP) if it is reasonable to consider the
execution time of each transaction type to be
either critical or non-critical, and we refer to
the common database of an ECP as the control
data. The interaction between an ECP and its
control data is usually implemented using a low
level language such as C. An alternative that

1Tt is not identical to the knapsack problem because
the decision to create one index can influence the benefit
of creating other indices.

would benefit the software designer is to sub-
stitute this interaction with static OQL calls
to a database that stores the control data. It
is reasonable to assume that soft real-time re-
quirements will be associated with the static
OQL code that is part of a critical transaction
type. As a result, the static OQL calls can be
characterized into three types:

e critical queries,
e non-critical queries, and
e updates.

For example, a query that lists the files that
have been opened by a specific process could
be considered non-critical, while a query that
finds unused process IDs is more appropriately
classified as critical.

Note that we assume all updates are crit-
ical. For example, consider the Linux fork
command, which creates a new process. The
updates performed by the operation should be
critical. This is because the operation that lists
the unused process IDs will be blocked while
the fork command is executing.

Our approach extends the research published
in [7] in which an algorithm for finding the
fewest number of indices that can be used to
support fast execution of the critical queries in
a workload is described. Specifically, we de-
scribe an algorithm for finding a physical de-
sign of small size that not only supports fast
execution of the critical queries, but also allows
for the changes from all updates to be propa-
gated quickly to the proposed physical struc-
tures. These structures can include Bt trees,
hash indices, doubly linked lists and various
combinations.

An overview of the proposed algorithm is
shown in Figure 1. Note that throughout the
paper we use an object-relational data model.
The reason for this decision is that this model
has rich semantics, which allows for apply-
ing extensive semantic optimizations in the
proposed algorithm. The input of the algo-
rithm consists of a set of critical queries to-
gether with the classes and class attributes
to which updates can be applied. Step 1 of
the algorithm rewrites the critical queries by
simplifying queries containing path functions
in their where conditions and by simplifying
the select parts of queries. In Step 2, the

access requirements of each simplified query
is abstracted as a either a binding pattern
or as a parameterized access requirement type
(PART). In Step 3, the identified PARTSs are
merged using a greedy algorithm and by ex-
ploiting schema information such as integrity
constraints. In the last step, the physical de-
sign that corresponds to the identified binding
patterns and merged PARTSs is created.

INPUT:

1. Critical queries: {Q1,...Qr},

2. Class update constraint: {C4, ..., Cs},

3. Attribute update constraint: a subset of
{C;: A;}, and

4. Schema information.

INDEX SELECTION:
1. Simplify each Q; as follows:

(a) Decompose path expressions; and

(b) Partition each query into a set of ob-
ject search queries and a set of attribute access
queries. Object search queries return a list of
the IDs’ of the objects that match the search
criteria. The attribute access queries return
attribute values for an object with a specified
object ID.
2. Construct an initial parameterized ac-
cess requirement type (PART) for each object
search query (PARTSs eventually become index
structures).
3. Merge PARTSs in order to reduce storage
requirements. (Information from the database
schema can help in this process.)
4. Build the output physical design as follows:

(a) Select database record layouts according
to the attribute access queries.

(b) Modify the database schema and define
indices according to the PART requirements.

Figure 1: An overview of the algorithm

Note the differences between our approach
and that taken by most commercial DBMS im-
plementations. In systems like IBM DB2 UDB
and Microsoft SQL Server the best possible set
of indices is found for a given schema, work-
load and database population statistics, within
a specified amount of storage space. In con-
trast, our algorithm does not have storage re-
quirements, and instead tries to find a solu-

tion with the minimum store overhead. Our
solution is also constrained by the requirement
that it should be possible for all updates to
be efficiently propagated to the proposed phys-
ical structures. Also, our algorithm does not
take into account the exact frequencies of the
queries and updates in the workload. Instead,
it partitions queries as critical and non-critical.
Another difference is that the proposed algo-
rithm explores uniting index structures con-
taining common data, which, to the best of our
knowledge, is not done in the cited commercial
DBMS products.

In what follows, in Section 2 we introduce
the database and query models we will be us-
ing. In Section 3 we formally define the phys-
ical design problem we will be solving and in
Section 4 we present our solution. In Section 5
we do an overview of the experiments we have
conducted and lastly, in Section 6, we summa-
rize the presented work and outline directions
for future research.

2 The Database and Query
Models

We use an object-relational model to describe
the data. An example of a company schema is
shown in Figure 2.

Figure 2: Example company schema

Classes, inheritance and class attributes are
the building blocks of such a schema, where at-
tributes can reference primitive types or other
classes. In order to keep the model simple, we
don’t allow for multiple inheritance and for at-
tributes with multiple or complex domains. In
other words, if C' is a class, ¢ is an object be-
longing to C and A is an attribute of C, then

t.A denotes a single object or a primitive con-
stant. As well, if C7, C3 and Cj are classes,
then C; = C3 and C; = C5 implies that ei-
ther Cy = C5 or C3 = C'; must be true, where
C1 = (5 is used to denote that C inherits Cs.
Primitive types include integers, strings, cur-
rency, etc. We will also include integrity con-
straints as part of our schema model. In this
paper, we only consider integrity constraints of
the form C(X — Y), which denotes that for
the class C, the sequence of attributes X func-
tionally determines the sequence of attributes
Y.

The query language that we will be using is
parameterized OQL. For example, consider the
following OQL query:

select E.ID

from EMPLOYEE E

where E.Department.Budget
between :L and :H

order by E.Age asc

It returns the identifiers for all employees
who work for a department having budget be-
tween the value of the parameters L and H or-
dered by age and starting with the youngest.
Note that all objects have the system attribute
ID, which uniquely identifies them.

3 The Problem

We are given as input a database schema 3,
a set of critical queries {Q;}7_; over X, a sub-
set {C;}5_, of the classes in X, a subset of the
set {C; = Aj}i_q,9=1, which denotes the at-
tributes in ¥ (we have used C; :: A; to denote
the attribute A; of the class Cj) and statistics
about the size and distribution of the data. The
queries {Q;}i_; are simple queries and are of
one of the three types shown in Table 1.

We have used Attr(C) to denote the at-
tributes of the class C' and PFs(C) to denote
the path functions that start from the class C,
i.e. Pf e PFs(C) iff C.Pfis “well defined”.
The classes {C;}5_; are the set of classes for
which objects can be created or destroyed and
are used to define the class update constraint.
The subset of the set {C; :: A;}7_,7_ lists the
attributes, which value could be modified and
forms the attribute update constraint.

(type) (query format)

select z.By, ...
from C' z

, z.By

[order by z.By dirq, ..., .B, dir, |

select z.Bq, ..., z.B,
from C' z

[order by z.By dirq, ..., z.B, dir, |
select z.Byq, ..., z.B,

(3) from C' z
where x.Pf=:P

where z.B,4; = :P; and ... and z.B, 1, =

where z.B,4; = :P; and ... and z.B, 4,

= :P,, and z.B; between :P) and P/

t B, ...
By, ..., By} C Attr(C), Pf € PFs(C)

, Boym } C Attr(C), 0 < p < n, dir; € {asc, desc}

Table 1: A simple query can be of one of these 3 types

The goal is to find a set of structures
that can support fast answering of the criti-
cal queries, can be updated quickly and don’t
take much space. By fast answering of the crit-
ical queries we will mean response time that is
O(|Result(Q)| + log|D| * |Q]) for each query
@, where |Result(())| denotes the result of the
query @, |@Q| denotes the size of the definition
of the query @ and |D| denote the size of the
database. By fast update of the created struc-
tures we will mean that an insert or a delete
of an object or modification of the values of its
attributes should take at most O(log|D| x |Z|)
time. We will only consider plain record struc-
tures (e.g. doubly linked lists), conventional
and distributed index structures (e.g. B¥ trees,
hash indices, distributed B* trees) and com-
binations of them when building the physical
design.

4 The Proposed Solution

We propose a solution consisting of four steps
(see Figure 1). 1In the first step, the input
queries are simplified and broken into even sim-
pler queries, where possible. In the next steps,
a suitable physical design for the simplified
queries is chosen.

4.1 Step 1. Query Simplification

In this step we rewrite the simple queries. Re-
call that a simple query can be of one of the
three query types shown in Table 1. A rewrit-
ten simple query will be of one of the three
query types shown in Table 2.

This step consists of two parts. The first
part involves rewriting simple queries contain-
ing path functions into ones that don’t. Sup-
pose we are given a query of type 3 and Pf =
A1.Ay.Ag. Then, if we know that none
of the attributes forming the path function can
be updated, we can substitute Pfwith A in the
query and create an attribute A in the schema
having the property (Ve € C)(c.A = c.Pf).
Such a constraint can be maintained efficiently
because no updates to the attributes along
the path function Pf are allowed. Next, sup-
pose an update to the attribute A, is allowed,
2 < r < k. Then, we can break a simple query
of type 3 (see Table 1) into the queries:

select z.By, z.Bg, ..., z.B,
from C z
where z.41.45.4,_1 =P

and

select z.ID

(type) (query format)
select z.ID
from C z
where z.B; = :P; and ...

Ok

select z.ID
from C z
where z.B; = :P; and ...

—
(8]
~—

++

select z.B;
(3) from C =z,
where z.ID=:P

and z.B,, = :P,
[order by z.B,41 dirq, ..., £.Bpy, diry,]

and z.B, = :P, and z.B,, ;1 between : P, and :P/
[order by z.B,41 dirq, ..., £.Bpy, dir,]

P {B1, ..., Bnyp} C Attr(C), dir; € {asc, desc}
i B, € AttT’(C)

Table 2: A rewritten simple query can be of one of these 3 types

from C] z
where z.A....Ay = : P,

where C is a newly introduced class for the
schema that is a subclass of the class reached
by following the path function A4;.A4s....4,_4
starting from the class C' (we will refer to this
class as C1) and the objects in C’; can be de-
scribed by the following query:

select z.*
fromCy z,Cy
where y.A1.As. ... A1 = 2.

The following example demonstrates an ap-
plication of the first part of Step 1 to a query
referencing to the example company schema
from Figure 2.

Example 1 Consider the following query and
suppose that updates to all mentioned classes
and attributes in the query are allowed:

select E.ID
from EMPLOYEE E
where E.Department.Budget = :P

We can rewrite this query into the following
simple queries, which we will refer to as @y and
Q. respectively:

select D.ID
from SP_DEPARTMENT D

where D.Budget = :P
and

select E.ID
from EMPLOYEE E
where E.Department = :P.

The original query can then be executed using
the query plan:

for d in Qq(:P)
for e in (Q.(d)

return e.ID.

Note that the simple queries are based on the
modified schema shown in Figure 3, containing
the new class SP_DEPARTMENT. In the figure we
have used a thick arrow to denote inheritance.
The objects in the class SP_ DEPARTMENT corre-
spond to the result of the following query:

select D.DName, D.Budget
from DEPARTMENT D, EMPLOYEE E
where D=E.Department.

The second part of this step involves rewrit-
ing the queries so that they have a single
select attribute. For example, a query of the
form: “select z.Aq, ©.Aq, ... x. A from C =z
where conditions order by attribs” is rewrit-
ten into k41 queries, where the first query is

Budget

4’ DEPARTMENT

Figure 3: A modified schema for the simplified
workload

an object search query of the form “select z.ID
from C z where conditions order by attribs”
and the i** new query, where ¢ > 1, is an at-
tribute access query of the form “select A;_;
from C' z where z.ID = : P”.

4.2 Step 2. Abstracting Query
Requirements

In this step we look at the rewritten simple
queries and abstract the requirements of the
attribute access queries as binding patterns and
of the object search queries as PARTs. We start
by formally introducing the concept of access
requirements.

4.2.1 Defining Access Requirements

Before we formally define what we mean by an
access requirement, we will first need to define
its building blocks, i.e. a binding pattern and
an order description.

Definition 1 (binding patterns) Given a«
class C' over a schema X, we define a binding
pattern for C' as a mapping of the elements of
a subset of the attributes of C' to the elements
of the set {£ b r}. A binding pattern describes
the capability of retrieving the values for the at-
tributes that map to £ for objects for which each
of the attributes that maps to b has some fired
value and the value for each of the attributes
that maps to r is in some specific range.

Example 2 In the example company schema,
the binding pattern EMPLOYEE(EName : b, Age :
r, ID : f) describes the capability of retrieving

the IDs of all employees with a given name and
in a specified age group.

Binding patterns are good for describing sim-
ple parameterized queries without an order by
clause. Since we also care about ordering, we
define order descriptions.

Definition 2 (order descriptions) Given a
class C' over a schema X, we define an order
description for C' as a mapping from the ele-
ments of a subset of k attributes of C' to a pair
(1, order;), where i € [1..k], order; € [0, 1] and
1 takes all values in its range. An order descrip-
tion describes the ordering of the objects belong-
ing to the class C', where objects are ordered
first according to the value of the attribute that
maps to (1, ordery) in ascending order if order;
= 0 and in descending order if ordery = 1, sec-
ond accordingly to the attribute that maps to
(2, ordery) and s.o.

Example 3 In the example company schema
the order description Q;(EName : (1,0), Age :
(2,1)) describes that the result of executing Q4
is ordered first according to EName in ascending
order, and next, if more than one employees
have the same name, then they are ordered ac-
cording to their age, starting with the oldest.

Note that, given a simple rewritten query
@ (see Table 2), it is straight forward to find
its binding pattern and order description. The
way, in which this can be done, in shown in Ta-
ble 3. We will refer to a binding pattern - order
description pair as an access requirement. The
reason for choosing this name is because such a
pair describes the characteristics of the access
plan that computes the result of a query.

Note however that a single physical struc-
ture, such as a Bt tree index, can be used
to answer queries with different access require-
ments. This is why we will examine Param-
eterized Access Requirement Types (PARTS),
and Access Requirement Types (ARTs), where
every (P)ART describes a set of access require-
ments. It also true that every PART describes
a set of ARTs. The physical structures that can
be used to efficiently answer all the queries de-
scribed by a (P)ART are presented in Section
4.4.

e) | (query format)

(order description)

C(Bny1: (1, diry), ..., Boyp : (p, diry))

C(By:b,...,Bu_1:b, B, :r, ID: f)

C(Bn : (1, dir1), ..., Bugp : (p+ 1, dirpiq)

yp
1 C(By:b, ..., B, :b, ID: f)
2
3

C(ID:b, By : f)

€0

Table 3: Access requirements for the query types from Table 2

4.2.2 Finding PARTSs and Binding Pat-
terns

We start this subsection by formally defining
the syntax and semantics of an ART. The se-
mantic of an ART will be defined in terms of

the set of access requirements it corresponds to.

Definition 3 (ARTs) Given a schema X, an
ART expression can be defined using the follow-
ing grammar:

ART:=C() | C(S) | C(S, E) | C(E)
S:=A: (order,dir) | S, S
E:=A:diry | E, E

order := integer

dir := 0, 1 or hash

diry := 0 or 1
A := attribute
C := class of &

It is also true that given an ART expres-
sion I = C(Ay : (ordery, dir), ..., Ag—1 :
(orderg_1, dirg_1), Ag : dirg, ..., Agyr
dirkyr), {AYSET are attributes of the class C
and {order; };Z,' is a permutation of the num-
bers 1 through k — 1. As well, we will require
that if r = —1, i.e. there is no E part in the
ART eaxpression, then there exists p € [l..k]
such that dir; = hash for i € [l..p— 1] and
dir; # hash fori € [p..k—1]. If r > 0 we will
require that dir; # hash for i € [1..k —1].

We define B; = A; and D; = dir; if “A; :
(1,dir;)” is in the S part of I and we also de-
fine B; = A; and D; = dir; for i € [k..k + 7].
Then I will be equivalent to the ART expres-
sion C(By: (1, D1), .., Bg—1: (k= 1, Dg_1),
By, : dirg, ..., Biyr @ dirgy,). The set of ac-
cess requirements that correspond to an ART
expression are shown in Table 4.

We are now ready to define PART expres-
sions, where each object search query will be
abstracted as such. Note the reason we defined
ARTs was to make the definition of what con-
stitutes a valid PART more lucid.

Definition 4 (PARTSs) Given a schema X,
we define a PART expression using the follow-
ing grammar:

PART := C(P)
P:=8|C(S) | C(S, (2 bC(P) ... C(P)))
O1s E

|

S:= A: (order,dir) | S, S
E:=A:dir | E, F

b := positive integer variable
order := positive integer

| positive integer variable

A := attribute

C:= a class of ¥

dir := 0, 1 or hash

dirq := 0 or 1

One of the differences in the syntax of a
PART and an ART is the introduction of the
“” construct. Its semantics is (? b C1(P1)
Ca(P2) ... Cx(Pg)) = Cu(Py), where the value
of b can be an integer between 1 and k. As well,
we will require that no variable can appear more
than once in a PART expression.

Definition 5 (valid valuation for PARTSs)
Let I be a PART expression and v a val-
uation for I that maps the wvariables in T
to constants. Then v(I) will have the form
01(51,CQ(...,Ck(Sk,Ek))..). We wzll say that
v is a valid valuation for I iff C; is a superclass
of C; for 1< i< j <k and J = Cx(51, 5, ...,
Sk, Ex) is a valid ART expression. If v is a
valid valuation, the expression J is the ART
expression that corresponds to the PART ex-
pression I under the valuation v, i.e. v(I) = J.

Definition 6 (valid PART) The PART ea-
pression I is valid iff for any valuation of the
“b” variables in I (see Definition 4) there exists

a valid valuation for the remaining variables.

Example 4 Let us examine the PART ez-
pression DEPARTMENT(DName : (a,0), (? =z
SP_DEPARTMENT(Budget :

D; # hash, i >p

(type) | (ART parameters) (access requirement) (comment)
1 | k=1r=_1 0
k>l r=-1,p<k-1
2 D; = hash, i € [1,p] C(B1:b,...,By:b) 1<¢g<k-1

C(B1:b,...,By:b)
C(Bq+1 : Dq+1, cees Bql : Dql)

p<qg<q <k-1

C(Bi:b,..,By_1:b, By :r)
<g<k-1
[C(Bq : Dy)] Pet=
C(By:b, ..., By_1:b,B,:b)
3 k=1,r>0 Vo e v 1<qg<q¢<r+1
= C(Bgs1 : Dgg1, ooy By i Dyr) 929 =
C(By: wBg_1:b,By:r) 1<qg<r+1,
C(By: wooy By 1 Dyr) g—1<q¢ <r+1
C(Bl .B_libB :b)
4 k>1,7>0 1 1 k—1<¢<q¢ <k+r
= C(Bgs1 : Dyy1y -y By : Dy) S99 =
C(By: wBg_1:b,Bg:r) k<q<r+k,
C(By: Dy, ..., By : Dyr) g—1<q¢ <r+k

Table 4: Access requirements described by the ART expression C(B; : (1, Dy), ...

Dy_1), By : Dy, ooy Bryy : Diyr)

(b,0)) DEPARTMENT())) defined over the exam-
ple company schema. Then a = 1, b = 2
is the only possible valid valuation for those
variables. If x = 1 then the PART expres-
sion will be evaluated to DEPARTMENT(DName :

(1,0), SP_DEPARTMENT(Budget (2,0))),
which corresponds to the ART expression
SP_DEPARTMENT(DName : (1,0), Budget(2,0)),

otherwise it will be evaluated to the ART ex-
pression DEPARTMNET(DName : (1, 0)).

The purpose of this step is to describe the ac-
cess requirements for each type of simple query.
We will describe the requirements for the object
search queries using PART expressions and for
the attribute access queries using binding pat-
terns. Note that attribute access queries don’t
need to be characterized by an order descrip-
tion because they always return a single value.
The following theorem follows from the defini-
tion of a PART and a binding pattern.

Theorem 1 Fach of the rewritten simple
query types from Table 2 corresponds to one
of the query types shown in the left column of
Table 5. Moreover, the requirements of each
of these query types can be described using the
PART expression or binding pattern shown in
the right column of Table 5.

,Bk—l H (k— 1,

4.3 Step 3. Merging PARTSs

In this subsection we describe how PART ex-
pressions can be merged. The reason for this
merging is to save space.

We start by explaining how PARTSs can be
merged. Suppose we have kK PARTS: Iy, I, ...,
I. Suppose as well that they don’t share vari-
ables in common (if they do, we can use vari-
able renaming to rewrite them so they don’t).
We will say that they can be united into a single
PART iff it is true that I; = C;(S;, R;), where
S; and R; are strings, S; contains no part of
an F expression (see Definition 4), C; are class
names, S; are not empty and there exists a valid
variable valuation that makes the elements in
the set {S;}*_, identical, up to equating “hash”
and “dir” attributes (see Definition 4). The
result of merging I, I, ..., Iy is C(S, (? =

Cl(Rl) Cz(Rz) Ck(Rk))), Where C = CJ Cz

and S is an expression with the least number
of variables that is equivalent to every element
of the set {S;}*_, under some variable binding
and z is a newly introduced variable with range
[1,%k]. Uniting a hash subexpression A : (z,
hash) and a dir subexpression A : (z, dir)
yields the subexpression A : (z, dir), where
A is an attribute and dir is equal to 0 or 1.
Note that subexpressions of the form A : (z,

(simple query)

(PART/binding pattern)

select z.ID from C z

c0

select z.ID from C' z

where ©.B; = :P; and ... and z.B,, = : P,

C(By : (z1, hash), ..., By : (zn, hash))

select z.ID from C z
where ©.B; = :P; and ... and z.B,, = : P,

order by By i1 dirq, ..., By, diry,

C(By : (z1, hash), ..., By : (zn, hash),
Byt1 i (n+ 1,dirq), ..., Bayp : (n+ p,diry))

select z.ID from C z
where ©.B; = :P; and ...
and z.B, between :P. and : P,
order by B, dir;

and x.B,,_1 = :P,_1

C(By : (z1, hash), ...,
B,_1: (zn_1, hash), By, : (n,diry))

select z.ID from C' z
where ©.B; = :P; and ...

and .B,,_1 = :P,_1

C(By : (z1, hash), ..., Bo_1 : (xn_1, hash),

and z.B,, between : P, and :P,I; B, : diry, ..., Bpyp 1 dirpiq)
order by B, diry, ..., Buyp dirp

select z.ID from C z

where z.B; between :P; and :Plu C(Bi1 : dirq, ..., Bayp 1 dirpyy)

order by B; diry, ..., Bayp dirn 4y

select z.By from C z
where z.ID = : P

C(ID:b, By : £)

Table 5: Representing the rewritten queries from Table 2.

1) and A : (z, 2) can not be united. We will
refer to {S;}¥_, as the starting sequences and
to {R;}5_, as the remaining sequences.

Note that if R; is empty for some j € [1, k]
then Cj() can be substituted with C%(), where

2

C']’» =C; — i:p:()k(?i and C7 — Cy is used to
denote the set of all objects that are in C;
but not in C3. We will refer to this rule as the
negation rule. The reason this rule can be ap-
plied is because C(S, (? C1(R1) ... Ci() ...
C%(Rk))) can be used to answer a query with
access requirements corresponding to C1(S),

cesy C3(S), ey Ci(S) and therefore it can be

used to answer a query with access require-

i
ments corresponding to ((|

U ey =
i2] i;é;:l o
(_U eyve- U s =)

Example 5 Continuing with our ezample
schema from Section 1, the PART ex-
pressions DEPARTMENT(DName (1,a)) and
SP_DEPARTMENT(Dname : (1,c¢), Budget : (2,b))
can be wunited into the PART expression
DEPARTMENT(Dname : (1,¢), (? z DEPARTMENT()
SP_DEPARTMENT(Budget : (2,b))). We can use

the negation rule to rewrite the last PART
expression as DEPARTMENT(Dname : (1,¢), (7
= NSP_DEPARTMENT() SP_DEPARTMENT(Budget :
(2,b))), where NSP_DEPARTMENT = DEPARTMENT
— SP DEPARTMENT.

There is a second rule, called the functional
dependency rule, that can be applied to sim-
plify a newly created PART expression. The
rule states that if C;(A — B; ;) holds, where
A are attribute of S and B; ; is an attribute in
R; and no part of its F part (see Definition 4),
then the attribute B; ; can be removed from the
R; part of the newly created PART. The rea-
son why this rule can be applied is because the
functional dependency shows that there will be
only one different value for B; ;, when the val-
ues for the attributes in S are fixed, and there-
fore there is no need to index or hash this value.
The following example demonstrates an appli-
cation of this rule.

Example 6 Suppose we are given the queries:

select E.ID

from EMPLOYEE E

where F.Salary > :P; and
FE.EName = : P,

and

select E.ID
from EMPLOYEE E
where F.EName = :P;.

As well, suppose that we know that the in-
tegrity constraint EMPLOYEE(EName — Salary)
holds. The PART expressions for the
two queries will be EMPLOYEE(EName : (I,
hash), Salary : (2,1)) and EMPLOYEE(EName :
(1,hash)). When we merge them we will get the
PART expression EMPLOYEE(EName : (1, hash),
(? « EMPLOYEE(Salary : (2,1)), EMPLOYEE)).
Using the integrity constraint we can rewrite
the PART expression as EMPLOYEE(EName : (1,
hash)). Then, the first query can still be an-
swered, but using the query plan:

for e in Q(:)
if e.Salary > :P; return e,

where) is a query with access requirements
corresponding to the simplified PART.

Now, we are ready to present our algorithm
for uniting PART expressions. It goes as fol-
lows.

1. Cluster the PART expressions in differ-
ent groups in such a way that PART ex-
pressions from different groups can not
be merged because they don’t share at-
tributes in common. Apply the next steps
to each group separately.

2. Find the starting attribute with the great-
est benefit and merge all PART expres-
sions for which there exists a valuation
that evaluates them to valid ART expres-
sions that start with that attribute. Sup-
pose the expressions Iy = Cy(...) ... I =
Ci(...) are the ones for which there exists a
valuation that evaluates them to ART ex-
pressions that all start with the attribute
A}{ Then we calculate the benefit of A as

(3" |Ci(A)]) * |A|, where |C;(A)| denotes
i=1

an approximation of the number of differ-
ent values for the attribute A for objects of
type |C;| in the database and |A| denotes
the size of the encoding for the attribute
A.

3. Simplify the created in the previous step
PART expression. First, apply the nega-
tion and then apply the functional depen-
dency rule.

4. Unite the PART expressions that under
some valuation start with the attribute
with the second greatest benefit and then,
in the same way, repeat the procedure for
the remaining attributes.

. At this step look at all PART expres-
sions that have been created in the pre-
vious steps and apply this algorithm to
their remaining sequences. For example,
given a PART expression C'(4 : (1,.), ?
z C1(P1) ... Cx(Px)), where “” stands
for don’t care, apply the algorithm to
the set of PART expressions {C;(P;)}r,
and use the result to rewrite the origi-
nal PART expression. In our example,
if the algorithm rewrites {C;(P;)}~_, into
{C;(P;)},, then the original PART ex-
pression will be rewritten as: C'(4: (1,.),

72 Cy(P1) ... Cp(Pm)).

ot

It is easy to see that the complexity of the
above algorithm is O(p * n x log(n) * r), where
n is the number of input PART expressions, p
is the number of attributes in the schema and
r is the length of the longest PART expression.

4.4 Step 4. Building the Physical
Design

So far we have described how to create a set
of PART expressions corresponding to the ob-
ject search queries and how to create binding
patterns corresponding to the attribute access
queries. In this section we first define what does
it mean for a physical design to “efficiently sup-
port” a workload, given a database schema and
a description of possible updated. Next, we
describe how to create a physical design that
efficiently supports the attribute access queries
and then we continue by extending the physical
design to also efficiently support the produced
in the previous sub-sections PARTs.

Definition 7 (supporting a workload)
Suppose we are given a database over a
database schema X, a set of classes {C;}i_,

objects to which can be added or removed
through updates, a set of attributes {C}
Ai}?:1a§:1 that can be modified and a critical
workload W. We will say that a physical de-
sign efficiently supports W iff every query Q
in W can be answered in time O(|Result(Q)|+
log|D| # |Q|), where D denotes the size of the
database, and, at the same time, any allowed
update to the database can be propagated to the
physical design in O(log |D| x |X]) time.

4.4.1 Supporting Attribute Access

Queries

Suppose in Step 2 of the algorithm we
have identified the set of binding patterns
{0;}?_;, which correspond to the attribute ac-
cess queries of type 3. Draw a directed graph
where each binding pattern is represented by
a node and there is a directed edge between
C1(ID : b, Ay : £) and C2(ID : b, Ay : £) iff
C is a superclass of (. Initially, each node is
labeled with the corresponding class name and
free attribute of the binding pattern it repre-
sents. We next unite nodes that have edges
between them in both directions into a single
node. The new node will have the class name
of the nodes that are merged (those classes will
be identical) and attribute list corresponding
to the union of the attributes of the two nodes.
Since we don’t allow for multiple inheritance
(see Section 2), the so created graph will be
a forest. Examine each tree starting with the
leaves and for each leaf node create a doubly
linked list of the objects from the class in the
node label, and store for each object only the
attributes specified in the node. Going up the
three, create doubly linked lists of records for
all objects from the corresponding class and
with the corresponding attributes, but create
records only for objects which haven’t already
been stored. It is easy to see that the so created
design efficiently supports the partial workload
consisting of the attribute access queries, re-
gardless of the allowed updates, as long as there
exists an efficient way to identify the record cor-
responding to the object that is being updated
or deleted.

4.4.2 Supporting PART Expressions

We start by defining a language for describ-
ing conventional physical structures (CPSs).
Those will be the atomic building blocks with
which we will extend the design from the previ-
ous subsection to support the merged PARTs.

Definition 8 (CPSs) We define a CPS using
a language over the following grammar:

CPS ::= Ctree(T) | Chash(H) | Cdtree(B’
T)

| thash(B’ H)

T:x=A:dir |T, T

H:=A|H,H

A ::= primitive attribute
B ::= non-primitive attribute
dir::= 0 or 1

Recall that primitive attributes are attributes
with primitive domain such as integers, strings,
ete. Non-primitive attribute are attributes with
a domain containing non-primitive objects.

A CPS expression of the form C"h(Ay, ...,
Ap) corresponds to a hash index on (A, ...
Ap). Such a structure is designed to answer
queries with a binding pattern C(Ay : b, ...,
Ap b, ID: £) and no order description.

On the other hand, a CPS expression of the
form C'°¢(Ay : dirq, ..., Ap : dir,) describes
a Bt index tree, ordered by Ay in direction
diry, through A, in direction dir,. It is well
known that such an index can be used to an-
swer a query with binding pattern C(Aq : b, ...,
Ap_1:1b), where | <r—1<n, and no order
description or order description C(A, : dir,,
veey Ap @ dirg), where r < k < n. This index
can also be used to answer range queries with
binding pattern C'(Ay: b, ..., Ar_1: b, A, : 1),
where r < n, and no order description or order
description C'(A, : diry, ..., Ay : dirg), where
r<k<n.

Thirdly, a CPS ezpression of the form
Cdhash (B Ay, ..., A,) describes a distributed
hash index. A distributed hash indez with these
parameters contains a hash index for each dif-
ferent object in the set {t.B|t € C}. Those
hash indices are on the attributes {A;}7_, and
each hash index indexes all objects having the
corresponding fixed value for the attribute B.
Not surprisingly, a distributed hash index with

kg T hode By ¥ % aode, 1 B ¥ ™ nodey, By D) ¥ O (odey g, BuDy)
. e d A
hode; @ nude,,, nodeP no&eP,l
‘l’Bl ¢B2 ¢Bp ¢BF+1 ¢Bk

Figure 4: A schema for a physical design that
supports an ART of type 2 (see Table 4)

the above parameters can be used to answer a
query with binding pattern C(B : b, Ay : b, ...,
Ap 1 b, ID: £), assuming there is a way to iden-
tify the correct hash index, given a value for the
B attribute.

Finally, a CPS ezxpression of the form
cdtree(B, Ay : diry, ..., A, : dir,) describes
a distributed Bt tree index. Such an inder is
built from a set of BT trees, each ordered ac-
cording to the attributes Ay in direction diry
through A, in direction dir, and each contain-
ing all objects in C' having a value for the B at-
tribute equal to a value in the set {t.B|r € C'}.
Such a distributed BT tree index can answer all
queries with binding pattern C'(B : b, Ay : b, ...,
Ap_1: 1), where 1 <r— 1< n, and no order
description or order description C(A, : dir,,
veey Ag 2 dirg), where r < k < n and all range
queries with binding pattern C(B : b, Ay : b,
vy Ap1 2 b, Ay 1ox), where 1 < r < n,
and no order description or order description
C(A, : diry, ..., Ay : dirg), where r < k < n,
assuming there is a way to identify the correct
BT tree, given a value for the B attribute.

Next, before showing how to create physi-
cal designs that efficiently support queries de-
scribed by different PARTSs, we show physical
designs that support queries describing the four
possible type of ARTSs (see Table 4). After that,
we will generalize the proposed physical struc-
tures to support PARTs.

The queries described by an ART of type 1
can be efficiently supported by adding a linked
list of the I Ds of objects of type C'. However,

such a physical design is already created in Sec-
tion 4.4.1.

The queries described by an ART of type 2
can be efficiently supported by the physical de-
sign graphically depicted in Figure 4. In the
figure we have used V to denote a CPS and
after the triangle we have specified the param-
eters of the CPS. The class node;, i € [1..k],
contains an object for all distinct values in the
set {x.B1,2.Ba,...,z.B;lx € C}. The schema
shown in Figure 4 is implemented by building
the described in the figure CPSs and combin-
ing them. For example, each hash value of the
hash index of node; will be a pointer to one
of the hash indices in the distributed hash in-
dex on node, and s.o. Each hash value of the
hash index of node; will be the start of a dou-
bly linked list of the objects of type C. The
later can be implemented by adding additional
“next pointer” and “previous pointer” fields in
the list of records of type C created in Sec-
tion 4.4.1. In this way if an object is inserted,
deleted or modified, the change can be prop-
agated to the set of records created in Section
4.4.1 in constant time and can be propagated to
each CPS that is affected in logarithmic time.

Similarly, the queries described by ARTs of
type 3 and 4 can be efficiently supported by
the physical designs shown in Figures 5 and 6.
The fact that each of the described physical
designs efficiently supports the queries for the
corresponding ART expressions, regardless of
the defined critical updates, can be easily veri-
fied. Indeed, any insertion or deletion from the
described physical designs can be implemented
by a constant number of insertions or deletions
to CPSs and constant number of changes to the
corresponding fields of the records created in
Section 4.4.1. In tern, an insertion or a deletion
to a CPS will have a logarithmic time bound.
An update of an object’s value can be done by
performing a delete followed by an insert and
therefore can again be done in the required time

bound.

Next, we show how the set of queries describ-
ing a PART can be efficiently supported. Sup-
pose we are given a PART expression I=C(S,
(? 2 C1(P1) ... Cy(Pg))) (see Definition 4).
Then we can build the physical design corre-
sponding to the ART expression S, where we
substitute each pointer to a record of type C
with a set of pointers to the physical structures
T;, where ¢ € [1..k] and the physical structure

7B

t B
V(B D), .

» B Dyt

Figure 5: A schema for a physical design that
supports an ART of type 3 (see Table 4)

7 B=hnnde; B

7 PN node, o, By nnﬂekl By Dy
findey, . 2. nodekl o Ek 1

Bkﬂ 5

v dhee(Bk Dy,

B,

(o) (o)

Figure 6: A schema for a physical design that
supports an ART of type 4 (see Table 4)

T; indexes all the objects in C; that have the
corresponding values for the attributes indexed
in S according to the expression F;. It is easy
to see that each insert, delete or update to the
so described structure consists of a constant
number of inserts, deletes or updates to struc-
tures corresponding to ART expressions, which
can be performed efficiently. Therefore, the so
presented algorithm indeed builds a physical
structure that efficiently supports the queries
described by a PART expression.

This concludes our overview of the presented
algorithm. The theorem stated bellow summa-
rizes the results presented in this section.

Theorem 2 The described in this section al-
gorithm solves the problem stated in Section 3
by producing a solution of small size. The pre-
sented algorithm doesn’t necessarily find the so-
lution with the smallest possible size.

In order to explain why producing an optimal
solution to the problem is not needed, consider
the following example.

Example 7 Suppose we only have the PART

+ By D)

(z,1), B : (y,1)) and C(&
When we unite them we

(1L, 1,

However,

expressions C(A :
(z,1), B : (w,1)).
can produce the PART expression C(A
B:(2,1)) orC(a:(2,1),B: (1,1)).
since we don’t have exact information about
how many different B values do we have on av-
erage for each different A value for the objects
of type C', we can not discriminate between the
two solutions. We can use statistical informa-
tion to do so, however, such fine-grained data
is rarely available.

5 Experimental Results

We conducted a set of experiments based on
the TPC-C benchmark [5]. This benchmark is
based on an OLTP scenario. We have simplified
the experimental setup by running the experi-
ments on a single computer, rather than on a
set of connected modules. In this way we have
eliminated any variations in the results due to
network congestion. The experiments were run
on a PC with 1.5 GHz Intel Pentium IV CPU,
256 MB of main memory and 40GB hard disk
with rotating speed of 7200 rpms and average
seek time of 8.5 ms. The database on which
the experiments were performed was IBM DB2
UDB v7, running on Microsoft Windows 2000.

We first extracted the workload in terms of
the set of queries and updates, together with
their expected frequencies, from the five trans-
action types included in the TPC-C bench-
mark. We presumed that all queries and up-
dates are critical. Next, we supplied this work-
load to the IBM DB2 Index Advisor. The
set of proposed indices consisted only of non-
clustered indices; the reason is that IBM DB2
UDB automatically generates a clustered index
for each table based on its primary key if such
exists.

Next, we applied our algorithm to the ex-
tracted workload. Update and delete queries
were rewritten as select queries in order to
abstract their access requirements. Next, all
queries that were not simple queries (see Ta-
ble 1) were broken down into such. This in-
volved creating access plans for them and ab-
stracting parts of those plans as simple queries.
When applying our algorithm, we only consid-
ered simple tree indices since they were the only

frequency (trans/min)

index types suggested by the IBM DB2 Advisor
software.

During the actual experiments, we ran three
trials, one with only the default clustered in-
dices based on the defined primary keys in the
input tables, one using the recommended by
IBM DB2 Index Advisor indices and one us-
ing the indices recommended by our algorithm.
The initial state of the database was based on
10 warehouses and was of size 776 MB. Each
trial was run for 2 hours. The results of the
experiments are summarized in Figures 7 and

8.

a0 | 727 key mdices N
[IIT0 db2 recommendations
7.)..| BEER proposed indices R | I

111 R | 1 I |

- 111 R | 1 I |

111 R | B I |

A0

L

Idain Mermory Size Index Size

Figure 7: Main memory and index sizes

500

450

300

5 10 16 M 25 30 3% 40 45 50 & B0 65 70 75 80 85 90 95 100 105 110 116 120
time min)

Figure 8: Throughput with different indices

The left part of Figure 7 depicts the amount
of main memory used on average during the
two hour run of the TPC-C workload in the
three trials. The right part of the figure shows
the size of the indices that were created for the

three trials. The first trial was run with only
the clustered indices that were created by de-
fault by IBM DB2 UDB. In the second trial,
the indices recommended by IBM DB2 Index
Advisor were also considered. The third trial
was run with the indices produced by out algo-
rithm. Their actual size is 11MB, but if we ap-
ply out technique for merging PARTs, their size
can be reduced to 8MB. However, the trial was
actually run with secondary indices of size 11
MB; the reason is that IBM DB2 UDB doesn’t
support the presented in the paper extended
physical structures. Also, the third trial in-
cluded the created by default primary keys of
size 200MB since the IBM DB2 UDB software
doesn’t permit their removal.

Figure 8 shows the throughput in trans-
actions per minutes during the trials. The
throughput was measured every 5 minutes dur-
ing the trials and is interpolated on the figure.
The experimental results show that the pro-
posed in this paper solution increases perfor-
mance by a factor of 2.3, relative to the solu-
tion proposed by IBM DB2 Index Advisor. We
believe the main reason for this improvement
comes from the fact that IBM DB2 Index Ad-
visor recommends the best indices for execut-
ing each individual query, without putting too
much emphasis on the cost of index update.

6 Summary and Future Re-
search

We have introduced an algorithm for index se-
lection in the context of compiled database ap-
plication that are ECPs. The algorithm pro-
duces an encoding with small size that ensures
fast execution of the critical queries and up-
dates in a given workload. The main differ-
ences between the presented problem and the
classical problem of index selection include:

e The presented problem separates the input
workload into critical and non-critical queries
and does not consider the exact query frequen-
cies;

e The presented problem finds physical de-
sign that supports fast execution of the critical
queries and updates; and

e The presented problem tries to find the so-
lution with the smallest size.

Those differences are a direct consequence
of the challenges related to index selection
for ECPs. We believe the proposed solution
is applicable to commercial ECPs, including
programs with stringent storage requirements,
such as mobile applications. The reason for
our confidence comes from the results of the
experiments we have conducted. For example,
based on the TPC-C benchmark, our solution
requires 83 times less memory than the IBM
DB2 Index Advisor solution and the quality of
the solution is improved by a factor of 2.3.

Some of the techniques we have used to meet
the challenges related to ECPs include the fol-
lowing.

e Qur algorithm unites index structures con-
taining common data. This not only reduces
the size of the physical design, but also speeds
up update to those structures.

e Our algorithm uses schema information to
simplify the proposed solution.

e Our algorithm suggests index structures
that have direct pointers to data records. In
contrast, most commercial DBMS systems sup-
port indices containing ROW-IDs.

A list of areas of future research follows.

e Extending the algorithm to deal with arbi-
trary queries by pinning down a methodology
for breaking up of an arbitrary query into sim-
ple ones.

e Extending our schema model to include
multiple inheritance and richer integrity con-
straints including equality constraints and ex-
tended functional constraints (see [4]).

e Extending the solution space by including
materialized view as part of the proposed phys-
ical structures.

About the Authors

Lubomir Stanchev is a Ph.D. student in the
School of Computer Science at the Univer-
sity of Waterloo. His interests include physi-
cal database design, distributed databases and
multiple query optimization.

Grant E. Weddell is an Associate Professor
in the Department of Computer Science at the
University of Waterloo. His research interests
derive from the goal of enabling database tech-
nology for embedded control and network man-
agement applications, with a particular focus

on fine-grained information integration and se-
mantic query optimization.

References

[1] Surajit Chaudhuri and Vivek Narasayya.
An Efficient, Cost-Driven Index Selection
Tool for Microsoft SQL Server. Proceedings
of the 23rd VLDB Conference, pages 146—
155, 1997.

[2] Surajit Chaudhuri and Vivek R. Narasayya.
AutoAdmin "What-if’ Index Analysis Util-
ity. SIGMOD, pages 367-378, 1998.

[3] S. Finkelstein, M. Schkol-
nick, and P. Tiberio. Physical Database De-
sign for Relational Databases. ACM Trans-
action on Database Systems, 13(1):91-128,
March 1988.

[4] David Toman and Grant Weddell. On At-
tributes, Roles, and Dependencies in De-
scription Logics and the Ackerman Case of
Decision Problem. Proc. Description Log-

ics, 2001.

[5] Transaction Processing Performance Coun-
cil, http://www.tpc.org. TPC-C OLTP.

[6] Gray Valentin, Michael Zulian, Daniel C.
Zilio, Guy Lohman, and Alan Skelley. DB2
Advisor: An Optimizer Smart Enough to
Recommend its Own Indexes. Proceedings
of the 16th International Conference on
Data Engineering, pages 101-110, February
2000.

[7] Grant Weddell. Selection of Indexes
to Memory-Resident Entities for Seman-
tic Data Models. IEFE Transactions
on Knowledge and Data FEngineering,

1(2):274-284, June 1989.

