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Abstract—One-class classification is a specialized form of
classification from the field of machine learning. A traditional
classifier always assigns a new element to one of the known
classes, but it cannot handle elements that do not belong to any of
the existing classes. One-class classification seeks to identify these
outliers, while still correctly assigning the rest of the elements
to classes appropriately. One-class classification is applied here
to the field of nuclear forensics, which is the study and analysis
of nuclear material for the purpose of nuclear incident inves-
tigations. Nuclear forensics data poses an interesting challenge
because false positive identification can prove costly and the data
is often small, high-dimensional, and sparse, which is problematic
for most machine learning approaches. A web application that
incorporates N-SLOPE (a machine learning ensemble) is built
using the R programming language and the shiny framework.
N-SLOPE combines five existing one-class classifiers with a novel
one-class classifier called SCD (Soft Centroid Distance) algorithm
and uses ensemble learning techniques to combine output. N-
SLOPE is validated on an enhanced version of Galaxy Serpent
3, which is a recent international nuclear forensics exercise. N-
SLOPE achieves high classification accuracy of 85% on this
difficult data set, while minimizing false positive detection rate
to zero by correctly detecting all 16 outliers that are present in
the data set.

I. INTRODUCTION

Classification is a well-known problem in the field of su-
pervised learning that has been studied extensively. Traditional
classification algorithms learn from a training set and attempt
to place a new element from the testing set into one of the
known classes. An interesting problem arises when a new
element that does not belong to any of the known classes
is encountered – see Figure 1. This problem is addressed by
one-class classification.

Known Classes:

Traditional Classifier
Unknown

Prediction

Fig. 1. Incorrect behavior of a traditional classifier when presented with a
new element that does not belong to any of the existing classes

One-class classification is interesting because it solves one
of the fundamental problems of traditional classification. Tra-
ditional classifiers act as discriminators exhibiting only within-
class and between-class generalization [20], meaning they are

only able to differentiate between elements of the same class
and between elements of different classes. True one-class
classifiers act as detectors and exhibit within-class, between-
class, and out-of-class generalization [20]. In this way, a one-
class classifier is able to determine whether a new element
belongs to any of the known classes (and if so, to which
known class) or if it belongs to a separate class altogether
– see Figure 2. This behavior is different from the behavior of
traditional classifiers, which will always misclassify outliers as
belonging to one of the known classes. Note that throughout
this paper we use the term outlier to refer to an element that
does not belong to any of the classes in the training set.
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Fig. 2. Correct behavior of a one-class classifier when presented with an
outlier

One-class classification is difficult because it must cor-
rectly handle a wider range of testing data than traditional
classification, while being provided the same training data.
This problem is made more challenging by focusing on the
domain of nuclear forensics, which introduces several key
constraints. First, data is often high-dimensional, small, sparse,
and restricted. Second, it is unlikely that any training set will
contain all possible classes, meaning that outliers are likely to
occur. Third, misclassification of nuclear material, especially
false-positive identification, can have serious consequences.
Nuclear forensics data poses a unique challenge for any
machine learning solution and the domain makes accuracy a
prime concern.

There are many existing algorithms that attempt to solve the
problem of one-class classification [11] and each algorithm
has strengths and weaknesses that cause it to perform better
or worse under certain conditions. Most machine learning
algorithms struggle under the difficult data domain imposed
by nuclear forensics and these one-class classifiers are no
different. This specific problem is addressed in the thesis of
Justin Kehl [10], which introduces a novel algorithm for one-
class classification and employs ensemble learning to combine
six algorithms for strong generalized performance.



Each of the six algorithms has an associated training accu-
racy that is used when calculating ensemble contributions. We
calculate the weight of each algorithm in the ensemble using
two different approaches: (1) as the overall percentage of cor-
rectly classified samples during ten-fold cross-validation, and
(2) we calculate each algorithm’s training accuracy on each
known class and use the appropriate class training accuracy
when contributing a decision to the ensemble. In the second
approach, when an algorithm identifies a testing sample as
an outlier, the overall training accuracy is used for ensemble
contribution. The second approach provides more granular
control, allowing algorithms to contribute stronger decisions
to classes on which they perform better and weaker decisions
to classes on which they perform poorly. This modification
balances algorithm contributions and provides a slight boost
to the overall classification accuracy.

In what follows, in Section II we present an overview of
the algorithms used in the N-SLOPE ensemble. Our main
contributions are in Sections III, IV, and V, where we present
the design of the N-SLOPE, its implementation, and the
modification that was described in the previous paragraph,
respectively. In Section VI, we validate N-SLOPE by showing
that it is able to achieve high classification accuracy on
a realistically simulated nuclear forensics data set. Lastly,
Section VII summarizes the paper and outlines areas for future
research.

II. RELATED RESEARCH

N-SLOPE is a one-class classification ensemble that em-
ploys five existing classifiers including Partial Least Squares
with Discriminant Analysis (PLS-DA), Soft Independent Mod-
eling of Class Analogies (SIMCA), One-Class Support Vector
Machine (OC-SVM), Local Outlier Factor (LOF), and Ex-
treme Learning Machine (ELM). Each of these algorithms
is described here with justification for being included in N-
SLOPE.

PLS-DA is a specific case of Partial Least Squares (PLS)
in which the response variable is categorical. Madden and
Howley describe PLS as “a two-step multivariate regression
method, which first reduces the data using PCA [Principal
Component Analysis] (using concentration information to ex-
tract the PC [Principal Component] scores) and then performs
linear regression on the PC [Principal Component] scores”
[16]. PLS-DA differs by additionally creating class boundaries
associated with a confidence threshold after performing the
linear regression. PLS-DA is commonly used for chemometric
analysis (classification based on chemical structure or prop-
erties) [16], [28] because it excels with high-dimensional,
low record count data, particularly when there exist linear
relationships between attributes. Support Vector Machine and
Neural Networks have been shown to outperform PLS-DA,
particularly on data sets with many records and nonlinear
relationships between attributes [28], [27]. Despite this, PLS-
DA is a proven chemometric standard and requires minimal
tuning compared to its alternatives, which justifies its inclusion
in N-SLOPE.

SIMCA is a statistical technique for multivariate classifica-
tion. SIMCA operates by first performing Principal Compo-
nent Analysis (PCA) on each class in the training set inde-
pendently, then constructing confidence threshold boundaries
for each class based on the residual of standard deviation
and distance, and then finally mapping each element into
the component space for classification. SIMCA operates as a
“soft” classifier in that it can map the elements in the testing
set to zero, one, or more distinct classes [4]. Because of
this, SIMCA is often outperformed by PLS-DA classification
[4], which itself can be outperformed by more traditional
machine learning techniques [28], [27]. However, SIMCA
excels with small, high-dimensional data sets [23] and acts as a
particularly strong within-class classifier by allowing elements
in the testing set to be assigned to multiple known classes
[4], [23]. SIMCA is included in N-SLOPE for its unique
within-class classification abilities, aptitude for dealing with
the difficult data domain present in chemometrics, and because
it is one of the most common techniques used for chemical
spectral data analysis [23].

OC-SVM, also known as Support Vector Data Description
or Support Vector Domain Description, is a natural modifica-
tion of the traditional Support Vector Machine (SVM). Instead
of creating a decision boundary between known classes as in
traditional SVM, OC-SVM creates either a closed hypersphere
of minimal volume around the entire training set [25] or
a hyperplane between the origin and the training set [22].
Testing set elements are mapped to this space and considered
an outlier if they fall outside the decision boundary. OC-
SVM is flexible with many optimizations, such as training
with outliers (if examples exist) that must fall outside of
the decision boundary, kernel functions to alter the behavior,
shape, and dimensionality of the decision boundary to better
describe different data characteristics, and ignoring statistical
outliers in the training set when building the model [25].
Like most machine learning techniques, OC-SVM struggles
with statistical outliers and smaller, high-dimensional data sets,
although optimizations can be made to improve results under
these conditions [1], [25]. Overall, OC-SVM has been shown
to have excellent performance [1], [9], [25], [24], [18] and it is
often seen as the default one-class classifier in a category of its
own [11]. These qualifications make OC-SVM an exceptional
candidate for N-SLOPE.

LOF is an algorithmic technique for quantifying how
strongly a given element in the testing set resembles a sta-
tistical outlier. LOF resembles k-Nearest Neighbors (kNN)
initially, but differs in that the distance between an element in
the testing set and each of its k-nearest neighbors is compared
to the average distance between each neighbor’s k-nearest
neighbors and this ratio is averaged to produce an outlier factor
for each element [3]. Unlike other outlier detection methods
that attempt to determine whether or not an element in the
testing set is an outlier in a binary fashion, LOF assigns a
floating-point value, starting at one, to each element of the
testing set. Higher values indicate a greater degree of outlying
characteristics [3]. This non-binary approach can be useful for



determining the difference between a weak, possible outlier
and a strong, definite outlier, although a final classification
is not performed. Because LOF is density-based, it struggles
with small, high-dimensional, loosely-clustered data sets [9],
but its local-density approach excels with between-class gen-
eralization and is able to identify outliers often missed by
other approaches [3]. Interestingly, LOF has also been shown
to perform well compared to OC-SVM [1] and in some cases
a relationship may exist where LOF performs well on data
sets where OC-SVM struggles and vice versa [9]. LOF is
included in N-SLOPE for its between-class generalization and
complementary potential with OC-SVM, but challenges due to
the nature of the nuclear forensics data domain are expected.

ELM, as applied to one-class classification, is a very simple
feed-forward neural network (NN) without back-propagation
that contains one hidden layer and a single node in the output
layer [15]. ELM attempts to minimize both the error and the
norm of output weights during training to optimize perfor-
mance [15]. ELM requires minimal tuning, outperforms the
former NN-based one-class classifier known as autoencoder
[17] in both computational speed and classification accuracy,
and has been shown to outperform OC-SVM in some cases
[15]. The ability of ELM to utilize nonlinear kernels also gives
it a distinct advantage over linear approaches, such as PLS-DA
and SIMCA, when working with nonlinear data [27]. ELM is
included in N-SLOPE as a complementary NN approach in
the ensemble and because of its high speed and performance
potential. However, the minimal tuning, simplicity of the
network, and black-box nature of NN in general suggest
caution and verification of results.

III. N-SLOPE VISUAL DESIGN

N-SLOPE is the core classification tool of a web application
for comprehensive data analysis of nuclear forensics data that
is written in the R programming language [21] and runs
using the shiny framework [5]. Both N-SLOPE and the web
application have been developed for and remain the property
of Lawrence Livermore National Laboratory and the United
States Department of Energy.

A. Layout

N-SLOPE is divided into seven separate tabs including one
overview tab and one tab for each algorithm. The overview tab
provides input controls (described in the following subsection)
to modify general algorithm behavior and displays the final
results of running N-SLOPE. Each algorithm tab runs the
respective algorithm and displays meaningful characteristics
and classification results. Any action that involves non-trivial
computation is tracked with progress bars.

B. Inputs

N-SLOPE contains several input controls, including princi-
pal component retention methods, confidence interval classifi-
cation range, 10-fold cross validation repititions, and selectors
for which algorithms to include in the final results. Each input
can be summarized as follows.

1) Principal Components: The number of principal com-
ponents to retain for the novel SCD, LOF, and PLS-DA
algorithms can be determined using eigenvalue analysis or
explained variance. The eigenvalue analysis method keeps
components with eigenvalues greater than one and discards
the remaining components that exhibit only a small amount
of variance in the data set. The explained variance method
keeps as many components as necessary to reach a cumulative
explained variance threshold set by the user, with higher
thresholds usually retaining more components than the eigen-
value analysis method. Both methods use the FactoMineR
package [14] to determine how many components to retain.

2) Confidence Interval: The novel SCD algorithm and LOF
use confidence intervals to produce final classification results.
Computed values are compared against statistics from the
training set and final classifications are made using a number
of standard deviations from training set means. The user is
able to select how many standard deviations to include with
lower numbers being more sensitive to outlier detection.

3) Training Repetitions: Every algorithm in N-SLOPE is
validated on the training set using 10-fold cross-validation re-
peated a settable number of times with training accuracy listed
on each algorithm’s tab. Reported training accuracy reflects
only the algorithm’s ability to correctly classify the training set
with classification error existing as misclassifications within
the training set or incorrect outlier detection. In this way,
a training accuracy of 100% may indicate some degree of
overfitting, as no points in the training set were considered
outliers.

4) Algorithms: The user is able to manually select which
N-SLOPE algorithms to include in the final result calculations,
but the selected algorithms must be run before they can be
included.

All of these controls allow the user to modify the behavior
of N-SLOPE for improved performance on specific data sets
based on external factors or intrinsic knowledge of the data.
For example, the user may choose to retain fewer principal
components to get results more quickly or opt to repeat cross
validation multiple times in an attempt to improve results at
the cost of training time. With some prior knowledge of the
data, the user may select more standard deviations to cope
with noisy data or if outliers are unlikely to occur. Similarly,
the user may choose to exclude linear algorithms, such as
PLS-DA, if the data is expected to be nonlinear.

C. Models

Each N-SLOPE algorithm consists of one or more models
that are used to display output in the application. Internally,
each model is stored as a reactiveValue that updates
when a user requests output that depends on the underly-
ing model (e.g., clicking one of the algorithm tabs). Each
algorithm is tracked by its own model, except for LOF,
which requires a kNN model, calculation model, and summary
model, and OC-SVM, which requires a parameter model in
addition to its base model. The overall design of N-SLOPE and



its integration with shiny [5] mimics the classic Model-View-
Controller (MVC) design pattern where interactions with the
controller (inputs on overview tab) alter the model (underlying
algorithm models) that the view (output on algorithm tabs)
observes to update appropriately. This modular design makes
it easy to add additional views to display more information or
model characteristics without major changes to the algorithms
or their models.

D. Validation

Every algorithm in N-SLOPE is validated on the training
set using 10-fold cross-validation. SIMCA, PLS-DA, ELM,
and the novel SCD algorithm undergo manual cross-validation
purely to calculate a training accuracy that represents the
percentage of correct classifications performed on the training
set. Except for ELM, these algorithms rely solely on hyperpa-
rameters and do not need to train additional parameters as part
of a learning process. ELM modifies weights between nodes in
the network as it trains, but this process is entirely automated
with no external tuning necessary. Manual cross-validation is
run all at once and independently of the algorithms themselves,
meaning that changing N-SLOPE inputs will automatically re-
validate these four algorithms, but each algorithm will still
have to be run to update the underlying model(s). Manual
cross-validation is performed on all four algorithms at once
rather than idependently for simplicity and to reduce code
repetition.

LOF and OC-SVM perform indepentent cross-validation be-
cause both algorithms train parameters as part of the learning
process. LOF trains a kNN model to determine an optimal k
neighbors to consider when calculating local density and OC-
SVM trains gamma and nu, which represent the bias/variance
tradeoff and minimal percentage of support vectors to include
in the model, respectively. These two algorithms are validated
and run sequentially due to their specialized training proce-
dures, unlike the other four algorithms in N-SLOPE.

E. Outputs

N-SLOPE outputs are designed similarly to models with
all outputs being tracked by reactiveValues that update
when an algorithm is validated or run. These values separately
track both the classification results (including probabilities
if applicable) and the training accuracy of each algorithm.
Outputs are combined using the sum rule [12], which involves
summing each algorithm’s prediction output and choosing
the maximal combined sum to produce unified classification
results for the entire N-SLOPE ensemble.

IV. N-SLOPE IMPLEMENTATION

Each algorithm in N-SLOPE has specific strengths and
weaknesses. Combining these algorithms with ensemble learn-
ing attempts to minimize their weaknesses and generate more
stable and accurate results across data sets. Some properties
of each algorithm are displayed in Table I.

TABLE I
SUMMARY AND CHARACTERISTICS OF N-SLOPE ALGORITHMS

Algorithm Package Linearity Prone to High Small Relative
Overfitting Dimensional Data Runtime

SCD Linear X Fast
SIMCA rrcovHD [26] Linear X X Fast

LOF Rlof [7] Linear X Slow
OC-SVM e1071 [19] Nonlinear X X Slow
PLS-DA caret [13] Linear X X Medium

ELM elmNN [6] Nonlinear X X Medium

A. Ensemble Learning

N-SLOPE consists of several different algorithms whose
results must be combined to generate a singular, cohesive
output. This is done using the sum rule because it has been
shown to outperform other ensemble learning techniques [12].
The basic principle is that each algorithm makes predictions
which are summed, and the prediction with the greatest value
is selected as the ensemble’s decision. This requires that each
algorithm in the ensemble produce output that can be summed
in a meaningful way.

N-SLOPEpred =
∑

Alg∈N-SLOPE

Algcont

Algcont = Algacc × Algpred

(1)

N-SLOPE implements the sum rule as shown in Equation 1.
First, each algorithm in N-SLOPE undergoes 10-fold cross-
validation to calculate a training accuracy, which represents
the percentage of correct classifications made on the training
set. Each algorithm is then run on the testing set and pre-
dictions are made. Each algorithm produces slightly different
output that must be coerced to a common state before being
combined. Once the predictions have been standardized, they
are multiplied by each algorithm’s respective training accuracy
before being summed. Equation 1 shows the general form of
these calculations. The final results are tabulated and displayed
on the N-SLOPE overview tab and the greatest decision sum
for each testing sample is selected as the final N-SLOPE
prediction.

B. SIMCA

SIMCA operates by independently performing PCA on each
class in the training set and then projecting all elements in the
testing set to the same space and comparing against a threshold
to determine class membership. SIMCA in N-SLOPE is pro-
vided by the rrcovHD package [26], which implements a
robust SIMCA approach, or RSIMCA, and returns Orthogonal
Distance Scores (ODSC) and Score Distance Scores (SDSC)
for each element in the testing set. ODSC represent the
Euclidean distance between a point and the center of each PCA
subspace, whereas SDSC represent the Mahalanobis distance,
which is the distance along each principal component between
a point and the PCA subspace [2]. These scores are used
to compute the classification rules R1 and R2 proposed by



Branden and Hubert [2]. The minimum of the two values is
kept for each class with membership being associated with
any value less than one. In this way, RSIMCA can assign an
element in the testing set to zero, one, or more classes with
lower values indicating a stronger association. An element
with both R1 and R2 greater than one is not assigned to any
known class and thus labeled as an outlier.

C. LOF

LOF operates by comparing the local density of each
element in the testing set to the local density of neighboring
classes with values of approximately one indicating member-
ship. The LOF implementation in N-SLOPE is provided by
the Rlof package [7] and requires a number of neigbors to
examine when computing densities. This number is determined
by training a kNN classification model courtesy of the caret
package [13] and using the same optimal k. Since LOF
produces a score rather than a fixed classification, statistics
including the mean and standard deviation are calculated for
each sample in the training set by class. Each element’s LOF is
compared against the LOF statistics of its nearest neighboring
class and class membership is determined by whether or not
the LOF falls within a user-settable threshold of standard
deviations from that class’s mean.

D. OC-SVM

OC-SVM operates by creating a hypersphere decision
boundary around the training data and assigning class mem-
bership to the elements in the testing set based on whether or
not they fall within this boundary. OC-SVM in N-SLOPE is
provided by the e1071 package [19] and has two tunable
parameters: gamma and nu. Gamma controls the bias/variance
tradeoff with small gamma leading to high variance and over-
fitting and large gamma leading to high bias and underfitting.
Nu controls the minimal percentage of support vectors used
when building the model, as well as the maximal percentage
of training data allowed to be misclassified. Gamma and nu
are tuned during training and vary between data sets. This OC-
SVM implementation supports linear, polynomial, radial basis,
and sigmoid kernel functions. Since OC-SVM is included in
N-SLOPE to add support for complex, nonlinear relationships,
radial basis or sigmoid are both attractive options. Since N-
SLOPE includes two nonlinear solutions, OC-SVM uses the
radial basis kernel function and ELM, the other nonlinear solu-
tion, uses sigmoid. Since OC-SVM only produces a true/false
value for each element, indicating whether or not the element
belongs to any of the known classes, a traditional SVM is
created using the same gamma and nu values to complete
classification for elements that belong to one of the known
classes. The final output of OC-SVM is simply a classification:
one of the known classes if it is predicted to belong, otherwise
it is marked as an outlier.

E. PLS-DA

PLS-DA operates by performing PCA on the entire training
set to reduce dimensionality and then running linear regression

and creating class decision boundaries based on confidence
intervals. PLS-DA in N-SLOPE is provided by the caret
package [13] and supports two different classification deci-
sion algorithms: Softmax and Bayes. Since PLS-DA does not
act as a true one-class classifier and always attempts to place
an element into one of the known classes, two models are
trained with the same number of principal components using
different decision algorithms. The final output for each element
is the probability of it belonging to each of the possible known
classes and a classification as either one of the known classes
(if both models agree) or the element is marked as an outlier
if they do not agree. In this way, this implementation of PLS-
DA marks elements as outliers more aggressively than other
algorithms in N-SLOPE because true outliers and confusion
between known classes are treated the same. This flaw is
factored into the PLS-DA contribution to the ensemble by
including class probabilities whether or not the element is
marked as an outlier with the final contribution to the ensemble
from PLS-DA being calculated by multiplying the training
accuracy with each element’s associated class probability. If
PLS-DA predicts that an element is an outlier, then the full
training accuracy is applied, but the remaining probabilities
are still included.

F. ELM

ELM operates by building a NN with one input node for
each dimension, a single hidden layer, and a single output node
that predicts whether or not an element belongs to any of the
known classes. ELM in N-SLOPE is provided by the elmNN
package [6] and starts with randomly initialized weights
between nodes that are updated during a single training phase.
This implementation of ELM allows for several different
kernel functions and setting the number of nodes in the hidden
layer. The sigmoid function is chosen to provide a nonlinear
approach and to complement the radial basis kernel function
used by OC-SVM. Selecting an optimal number of hidden
layer nodes for generalized performance is a difficult problem,
but there is some suggestion that single-layer, feed-forward
networks like ELM are more reliant on updating connection
weights than the number of nodes for general performance [8].
Through trial and error, the hidden layer has been chosen to
contain 5000 nodes. Since ELM only indicates whether or not
an element is an outlier, its contribution to the ensemble is
fairly straightforward. If the element is determined to belong
to one of the known classes, the ELM training accuracy is
evenly divided among all known classes. If the element is
determined to be an outlier, then the entire training accuracy
supports this classification.

G. Novel SCD Algorithm

The novel SCD algorithm that is included in N-SLOPE is
inspired by PCA, LOF, Nearest Centroid, and SIMCA. PCA is
performed for dimensionality reduction and summary statistics
are computed for each class, similar to the decision method
used by the LOF implementation in N-SLOPE. Ideas from
Nearest Centroid and SIMCA are incorporated through scaling



the final decision scores into a soft classifier based on distances
between the elements in the testing set and class centroids. The
algorithm is shown in Algorithm 1.

Algorithm 1: SCD Algorithm
Input : trainingData, testingData
Output: Calculated values for each testing sample and

known class that provide one-class
classification with class assignment on values
(0,1)

1 pcaData ← PCA(trainingData, testingData)
2 train ← pcaData[trainingData]
3 test ← pcaData[testingData]

4 foreach class in train do
5 classCenter[class] ← Mean(train[class])
6 end
7 foreach sample in train do
8 distToCenter[sample] ←

Euclidean_Distance(sample,
classCenter[sample.class])

9 end
10 foreach class in train do
11 avgDist[class] ← Mean(distToCenter[sample.class

== class])
12 stdDevDist[class] ←

Std_Dev(distToCenter[sample.class == class])
13 threshold[class] ← avgDist[class] ±

stdDevDist[class]
14 foreach unknown in test do
15 unknownDist[unknown, class] ←

Euclidean_Distance(unknown,
classCenter[class])

16 pred[unknown, class] ←
(unknownDist[unknown,class]−threshold[class].lower)

(threshold[class].upper−threshold[class].lower)

17 end
18 end
19 return pred

1) Implementation: The SCD algorithm implementation is
described here with parenthetical references to line numbers
shown above in Algorithm 1. The algorithm begins by com-
bining the training and testing data into a single data frame,
performing PCA on the data courtesy of the FactoMineR
package [14], and retaining the number of components that
are selected through eigenvalue analysis or explained variance
as specified by the user (Line 1). The data is then split back
into the original training (Line 2) and testing (Line 3) sets.
The center point of each class is calculated (Line 5) by
averaging every column in each class. Next, the Euclidian
distance between each element and its respective class center
is calculated (Line 8). These distances are used to calculate
an average distance-to-center (Line 11) as well as a standard
deviation of distance-to-center measurements (Line 12) for
each class, which is similar to how LOF computes class sum-

mary statistics. These values are used to generate loose class
boundaries in the form of confidence intervals by calculating
upper and lower acceptance thresholds (Line 13) as

Thresholdlower = Distavg − (CI× Distsd)

Thresholdupper = Distavg + (CI× Distsd)
(2)

for each class, where CI is the user-settable number of standard
deviations to include for N-SLOPE decision boundaries. The
algorithm then computes the distance between each element
and the center of each class (Line 15) and compares this
distance with the acceptance thresholds of each class. This
comparison is normalized into the range (0, 1) for each ele-
ment and class by calculating the following (Line 16).

(DisttoCenter − Thresholdlower)

(Thresholdupper − Thresholdlower)
(3)

Class membership is assigned to any computed values between
zero and one. Negative computed values indicate the element
is uncharacteristically close to the mathematical center of the
class, while values greater than one indicate the element lies
uncharacteristically far from the mathematical center of the
class. Since this algorithm acts as a soft classifier like SIMCA,
it is possible to assign a single element to multiple classes.
Unlike SIMCA, the computed value does not necessarily indi-
cate a strength of belonging, meaning that any value between
zero and one is equally indicative of class membership. The
algorithm’s contribution to the ensemble reflects this fact. If
a single decision is required, then the algorithm will draw on
ideas from Nearest Centroid and select the minimal computed
value between zero and one as the final class prediction
because this indicates that the element is statistically closest
to that class centroid.

2) Limitations: The SCD algorithm is somewhat naı̈ve and
assumes data is roughly spherical, causing it to perform poorly
on strongly shaped data. Shaped data is less likely to exist
in the high-dimensional data common to this domain, but
even moderate shaping will negatively impact this algorithm’s
classification accuracy. Another limitation of this algorithm
is that it is distance-based and will thus struggle with sparse
data. Furthermore, since the algorithm uses summary statistics
to make classification decisions, small data sets may also
pose a problem. These last two considerations are common
problems for most machine learning techniques and are one of
the interesting challenges posed by the chemometric domain.

3) Strengths: The SCD algorithm runs significantly faster
than the other N-SLOPE algorithms, particularly on larger,
high-dimensional data sets. It is also able to clearly detect
outliers in the case where data is roughly donut-shaped with
classified elements in a spherical shape surrounding an empty
or hollow core. This is a specialized and uncommon case, but
not unheard of for high-dimensional, sparse data sets.

4) Contribution to Ensemble: Once the novel algorithm has
made class predictions for each element in the testing set, con-
tributing its results to the ensemble is fairly straightforward.
The SCD algorithm’s training accuracy is added to each class,



where membership is predicted, or to the outlier class if the
element is predicted to not belong to any of the known classes.

V. MODIFIED ENSEMBLE CONTRIBUTION

The ensemble contribution of each algorithm in the orig-
inal implementation of N-SLOPE is calculated as shown in
Equation 1. This calculation is somewhat naı̈ve in that it
does not account for varying degrees of algorithm accuracy
between different known classes and therefore does not take
full advantage of each algorithm’s individual classification
strengths. A modified ensemble contribution calculation is
shown in Equation 4, where the predicted class is matched
with the appropriate class accuracy. In the case where the
predicted class is UNKNOWN, meaning the testing sample
is not assigned to any of the known classes and therefore
considered an outlier, the overall classification accuracy is used
as in the original N-SLOPE implementation.

N-SLOPEpred =
∑

Alg∈N-SLOPE

Algcont

Algcont = Algacc.class × Algpred.class

(4)

This modification requires that each algorithm’s classifi-
cation accuracy be calculated for each class independently
during the training and cross-validation stage. This is not
computationally expensive as predictions are already made
during training and averaged to produce an overall training
accuracy. Under this new methodology, training accuracies
for each class are recorded before averaging them together
to produce an overall training accuracy. This simple change
weights ensemble contributions differently depending on how
well a given algorithm is able to classify samples belonging to
each known class. This improves the final ensemble prediction
by capitalizing on each algorithm’s unique strengths and
produces more accurate results as shown in the following
section.

VI. EXPERIMENTAL VALIDATION

N-SLOPE with the modified ensemble contribution pre-
sented here was validated on the Galaxy Serpent 3 (GS3) data
set and compared against the original implementation of N-
SLOPE. Both versions of N-SLOPE were run on the same
data with the same inputs. Validation results are displayed in
Table II and include Classification Accuracy (CA - overall
percentage of elements correctly classified), True Negative
Rate (TNR - percentage of outliers correctly identified as not
belonging to any of the known classes), False Positive Rate
(FPR - percentage of outliers incorrectly classified as belong-
ing to one of the known classes), and False Negative Rate
(FNR - percentage of inlying elements incorrectly classified
as outliers).

Ideal classification performance should yield a high CA,
high TNR, low FPR, and low FNR. FPR and FNR are typically
inversely coorelated such that one must be prioritized over
the other. Since this application is designed to aid nuclear
forensic investigations, minimizing FPR is the priority as
falsely assigning an outlier to a known class is more costly
than failing to identify an inlying element.

A. GS3 Data

GS3 is a tabletop exercise run by the Nuclear Forensics
International Technical Working Group (ITWG) to support the
development of a National Nuclear Forensics Library (NNFL),
which aims to facilitate nuclear forensic investigations. GS3
uses simulated data that attempts to mimic the properties
or characteristics of real uranium ore concentrate. Simulated
data is used due to the sensitive and proprietary nature of
such information. This data set comes courtesy of Naomi
Marks from Lawrence Livermore National Laboratory and
accurately simulates chemometric data used in nuclear forensic
investigations.

The GS3 data set contains both a training set of labeled
knowns and testing set of unknowns. The training set has 821
rows, 45 columns of numerical data, and 4 described classes:
IAB, MORB, OIB, and ZCRFB. IAB is linearly separable
from the other classes, which are overlapping. The testing
set contains 60 elements whose true identities are excluded
from the original exercise, but have been revealed here for
the purpose of validation. The testing set contains a number
of samples from each known class, as well as a number of
samples from at least four distinct groups that do not belong
to any of the known classes for a total of 44 and 16 samples,
respectively.

The training set, by design, is missing about one third of all
possible measurements. This further increases the difficulty of
the exercise, but accurately reflects the reality where certain
samples undergo certain tests and other samples are subject to
different scientific measurements. Missing data in the training
set is substituted with imputation, while columns containing
missing data are dropped from the testing set, as imputation
would prove inaccurate. Columns are then synchronized be-
tween the training and testing set to ensure each set includes
measurements of the same metrics.

B. Results

The first implementation of N-SLOPE misclassified 10
samples in the testing set, while successfully identifying every
outlier in the testing set and producing no false positive
classifications. The modification to N-SLOPE allowed it to
correctly classify one additional sample in the testing set.
A classification summary detailing these results is shown in
Table II.

TABLE II
N-SLOPE CLASSIFICATION RESULTS ON GS3 TEST DATA

SCD SIMCA LOF OC-SVM PLS-DA ELM Original Modified
N-SLOPE N-SLOPE

CA 80.0% 85.0% 78.33% 73.33% 58.33% 88.33% 83.33% 85.0%
TNR 100% 100% 68.75% 100% 37.5% 62.5% 100% 100%
FPR 0% 0% 8.33% 0% 16.67% 10.0% 0% 0%
FNR 10.0% 6.67% 1.67% 23.33% 25.0% 3.33% 6.67% 5.0%

N-SLOPE performed perfectly when it came to classifying
MORB, ZCRFB, and recognizing outliers, but struggled with



classifying IAB and OIB. Internally, certain algorithms ap-
pear better suited for identifying specific classes in this data
set. SIMCA was the only algorithm that correctly identified
every testing sample belonging to IAB, but SIMCA struggled
with MORB (unlike the other algorithms) and OIB (like the
other algorithms). LOF was the only algorithm that correctly
identified every testing sample belonging to OIB, but LOF
struggled with IAB (like the other algorithms) and detecting
outliers (unlike the other algorithms).

C. Discussion

N-SLOPE performed very well on the GS3 data given the
unique challenges posed by this data set. N-SLOPE correctly
classified 85% of testing samples with the modified ensemble
contribution calculation and correctly identified each of the
16 outliers as not belonging to any of the known classes.
This second metric is particularly important, and impressive,
as correctly identifying outliers is the main focus of one-
class classification and the outliers included in this set were
specifically chosen from a variety of excluded classes with
the expectation that certain outliers would be difficult to
distinguish from the known classes.

VII. CONCLUSION AND FUTURE RESEARCH

We showed the design and implementation of N-SLOPE and
modified its ensemble contribution calculation. We validated
N-SLOPE experimentally by measuring its one-class classifi-
cation potential on a realistic nuclear forensics data set. The
results show that N-SLOPE has high classification accuracy,
increased further with the modification presented here, and
excellent outlier detection capabilities.

One area for future research is exploring alternate weighting
schemes for emphasizing specific algorithms in the ensemble
under certain conditions.

VIII. DISCLAIMER
Release number: LLNL-TH-753098. This document was prepared as an

account of work sponsored by an agency of the United States government.
Neither the United States government nor Lawrence Livermore National
Security, LLC, nor any of their employees makes any warranty, expressed
or implied, or assumes any legal liability or responsibility for the accuracy,
completeness, or usefulness of any information, apparatus, product, or process
disclosed, or represents that its use would not infringe privately owned rights.
Reference herein to any specific commercial product, process, or service
by trade name, trademark, manufacturer, or otherwise does not necessarily
constitute or imply its endorsement, recommendation, or favoring by the
United States government or Lawrence Livermore National Security, LLC.
The views and opinions of authors expressed herein do not necessarily state or
reflect those of the United States government or Lawrence Livermore National
Security, LLC, and shall not be used for advertising or product endorsement
purposes.
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