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Abstract

With the growth of the Internet and the new vision for
Web 3.0, ontology knowledgebases have become ex-
tremely popular. The hope is that one day the content
and services on the Internet can be searched based on
their semantics rather than based on keyword matching.
This article shows first steps towards how a OWL-DL
based knowledgebase can be accessed efficiently. We
address challenges related to producing query results
that contain inferred data and index structures that can
support efficient execution.

1 Introduction
The Semantic Web has been a hot research topic for the last
few years. John Markoff coined the phrase Web 3.0 in the
New York Times in 2006 referring to providing semantic ca-
pabilities that enhance the user experience. Two main mod-
els: RDF (RDF ) and OWL-DL (OWL ) have been proposed
to describe web resources, such as html and xml pages, web
services, videos and images, to name a few. Query lan-
guages such as SPARQL and RQL have been proposed for
querying RDF knowledgebases. Their implementation re-
lies on representing RDF graphs as subject-predicate-object
triplets in a relational database. The shortfall of this ap-
proach is that it does not support including inferred knowl-
edge in the query result. Inference is supported in OWL-DL
knowledgebases. However, research on efficient access to
such knowledgebases has been limited.

Consider a user searching for a picture of a chair from the
European Renaissance. The knowledgebase may contain the
description of different chairs that were crafted during the
period. However, without the knowledge that the European
Renaissance took place between the 14th and 17th century
and without the capabilities to reason with this knowledge,
the query result will be empty. We therefore believe that
the vision of Web 3.0 can be only realized by considering
the available knowledgebases and domain ontologies in con-
junction with reasoning capabilities.

This problem is challenging because queries over OWL-
DL knowledgebases, unlike queries over RDF, cannot be
easily translated to queries over a structured or semi-
structured database schema, such as relational, object-
oriented, or XML. Previous efforts have concentrated in

two directions: querying RDF knowledgebases and reason-
ing with OWL-DL knowledgebases. However, little ef-
fort has been spent on supporting OWL-DL knowledgebase
queries through efficient search structures. While papers
like (Haarslev, Möller, and Wessel 2004) and (Sirin and Par-
sia 2007) propose languages for querying OWL-DL knowl-
edgebases, they do not explain how to efficiently support the
execution of such queries.

In this paper we build on the previous work in (Pound et
al. 2008) and (Pound et al. 2007) that focuses on defining
a query language for OWL-DL and building efficient data
structures to support it.

In the next section we present an overview of existing ap-
proaches to searching the web and outline the advantages of
our approach. Our key contributions in this paper are de-
scribing a new language for querying OWL-DL ontologies
in Section 3 and describing index structures that can support
efficient execution of OWL-DL queries in Section 4.

2 Searching in the Internet
There are more than one hundred million web pages on the
Internet and searching in them is analogous to searching
for a needle in a haystack. Most search engines use web
crawlers to populate their database and then process text
queries on the stored data (Lawrence and Giles 1999). Either
the whole text of web pages or their title and selected para-
graphs are indexed. Companies that create and support web
search engines usually make profit by providing appropriate
advertising. Again, index structures for text fields, such as
Patricia Trees (Morrison 1968), are used to index the data.
As a consequence, if a user searches for cars, then they will
not get a link to the web page for Chrysler, unless the ti-
tle or the indexed text of the web pages contains the word
“car” or some derivation of it. Another problem is matching
web pages with advertisements. For example, a user may be
reading a web page on tree data structures and see advertise-
ments for natural tree furniture based on keyword matching.

In our proposal, a web resource (such as a web page, web
service, RSS feed, to name a few) will be described as a
concept description. Of course, we do not expect a casual
user to be knowledgable enough to specify complex con-
cept descriptions against existing ontologies. We therefore
propose that a Web Master can describe a web resource by
answering a serious of guided questions to navigate through



existing ontologies. Similarly, a user that is searching for
a web resource will answer a sequence of guided questions
to specify the content they are interested in. For example,
if a user searches for a car, then they will be asked if they
are interested in real or model cars, whether they are in-
terested in foreign or domestically manufactured cars, and
so on. Then the query that is constructed from the answers
to the questions will be matched against the knowledgebase
and all concepts that have descriptions that subsume the user
request will be returned. Similarly, an advertiser can spend
time answering a series of guided questions to describe the
content of web pages they are interested in advertising on.

We believe that our approach will significantly improve
the semantic quality of the search result. The disadvantage
is that the queries are now much more complex and an infer-
ence engine, such as FaCT++ (Tsarkov and Horrocks 2006)
or Racer (Haarslev and Möller 2003), needs to be invoked
during the query execution.

3 The Query Language
In this subsection we describe our query language. Our
knowledgebase consists of a set of objects, where a concept
description is associated with every object. A query will
have two parts: a concept description describing the query
result and an ordering description describing the ordering
of the result. All objects that have descriptions that satisfy
(i.e., are subsumed by) the query concept description will be
returned in the order specified by the ordering description.

3.1 Concept Description Language
For demonstration purposes, we will use the description
logic dialectALCQ(D) (Baader et al. 2003) to specify con-
cept descriptions, where this choice is rich enough to illus-
trate our approach. However, the described approached can
be applied to any other description logic dialect with a total
linearly ordered domain.

We will use {C,D, . . .} to define a primitive concepts,
{R,S, . . .} for roles, {f, g, . . .} for concrete features, k for
constants, and n for integers.

Definition 1 (Description Logic ALCQ(D)) An arbitrary
concept can then be defined by the following grammar:
D ::= f < g | f < k | f = k | C | D t E | ¬D | ∃R.D |

(> n R D) | (= n R D) .
A concept is defined relative to an interpretation

I = 〈∆I ,∆C , .
I〉, where ∆I is a an abstract domain,

∆C is a linearly ordered concrete domain, and .I is an
interpretation function that maps each primitive concept to
a subset of ∆I , each constant k to an element of ∆C , each
concrete feature to a total function from ∆I to ∆C , and
each role to a binary relation: ∆I ×∆I . The interpretation
function is extended to arbitrary concepts in the following
way (Baader et al. 2003).

(f < g)I ::= {x ∈ ∆I , fI(x) < gI(x)}
(f < k)I ::= {x ∈ ∆I , fI(x) < kI}
(f = k)I ::= {x ∈ ∆I , fI(x) = kI}
(D t E)I ::= DI ∪ EI
(¬D)I ::= {x ∈ ∆I , x /∈ DI}

(∃R.D)I ::= {x ∈ ∆I ,∃y ∈ DI and (x, y) ∈ RI}
(> n R D)I ::= {x ∈ ∆I , |{y ∈ DI |(x, y) ∈ RI}| > n}
(= n R D)I ::= {x ∈ ∆I , |{y ∈ DI |(x, y) ∈ RI}| = n}

Note that we have used |·| to denote the number of items in
the set. We will use the following shortcuts: f = g to denote
¬((f < g) t (g < f)), D u E to denote ¬(¬D t ¬E), (≤
n R D) to denote ¬(> n R D), ⊥ to denote D u ¬D, > to
denote D t ¬D, etc.

For example, a chair can have the description
(= 3 has support leg) u (century crafted =
15 t century crafted = 16) u (∃color .red) u
(date last sold < date photo taken). Every object
that has this description will be supported by three legs,
will be crafted in the 15th or 16th century, at least one of
its colors will be red, and a picture of the object was taken
after the object was last sold.

A terminology T consists of a set of inclusion dependen-
cies of the form D v E (read D is subsumed by E). We
will say that that the inclusion dependency D v E is a con-
sequence of the terminology T and write T |= D v E if
and only if for any interpretation I of T , DI ⊆ EI . An ex-
ample of a subsumption that can be used to correctly answer
the query in the introduction is EuropeanRenaissance v
centry ≥ 14 u century ≤ 17, which means that if some-
thing is described as belonging to the European Renaissance,
then its value for the century concrete feature must be be-
tween 14 and 17.

3.2 Ordering Description Language
We will use D∗ to denote the description D where all arti-
facts are renamed by attaching a * at the end of their names.

Definition 2 (ordering description) An ordering descrip-
tion Od has the following syntax.

Od ::= ε | f : Od | {D1 : Od1, . . . , Dm : Odm}

In order for this ordering description to be valid relative to
a terminology T , it must be the case that T |= DiuDj v ⊥

for 1 ≤ i 6= j ≤ m and T |= > v
m⊔

i=1

Di. We will say

that the concept description D is before E relative to an
ordering description Od and terminology T and write
D ≺Od,T E in the following cases:
• when Od = f : Od1 :

T ∪ T ∗ |= (D u E∗) v (f < f∗) or
T ∪ T ∗ |= (D uE∗) v (f = f∗) and D ≺Od1,T E

• when Od = {D1 : Od1, . . . , Dm : Odm} :
T ∪T ∗ |= (D v Di) and T ∪T ∗ |= (E v Dj) and

i < j for some i and j or
T |= (D u E) v Di for some i and D ≺Odi,T E

Note that ε represents an empty ordering and will be omit-
ted when clear from the context. The ordering descrip-
tion language is very rich. To demonstrate its capabilities,
consider a user who is looking to buy a fuel efficient car,
but also cares about the manufacturer of the car and the
price of the car. Her ordering description may be Odcar =



fuel efficiency : {manufacturer = USA,manufacturer =
Japan : price}. This denotes that the result should be
sorted by fuel efficiency. If two cars have the same effi-
ciency, then USA cars should come before Japanese. Fi-
nally, if two cars have the same fuel efficiency and they are
both produced in Japan, then they should be ordered relative
to their price. Note that in order for this order description
to be valid, it must be the case that American and Japanese
cars are disjoint sets and there are no other cars (i.e., all cars
are manufactured either in the USA or Japan). If the last as-
sumption does not hold, then the ordering description can be
rewritten as: Odcar = fuel efficiency : {manufacturer =
USA,manufacturer = Japan : price,¬(manufacturer =
USA u manufacturer = Japan)}, which denote that cars
that are neither American nor Japanese should come last
among the cars with the same fuel efficiency.

A query is defined as a pair of a concept description and
description ordering: 〈D,Od〉. An example query is 〈Car u
color = Red , Odcar〉, which will return all things that are
described as (or can be inferred to be) red cars in the order
Odcar.

4 Index structures for Concept Descriptions
In relational databases, tree indices are used for efficiently
answering range queries (e.g., give me all employees that
make more than 100K) or order-by queries (e.g., give me
all employee ordered by age), while hash table indices are
useful for efficiently answering partial match queries (e.g.,
give me information about the employee with the following
employee number). These indices are built based on the de-
fined workload (i.e., queries, updates, and their frequency):
see for example (Agrawal, Chaudhuri, and Narasayya 2000;
Valentin et al. 2000). Here we will take the same approach
and show examples of how to build custom indices for differ-
ent parameterized queries. We propose directions on how to
construct an index advisor for OWL-DL queries. We do not
specify what type of hash tables (e.g., linear hashing (Litwin
1980) or extensible (Fagin et al. 1979) hashing) and what
type of search tree data structure (e.g., AVL trees (Adelson-
Velskii and Landis 1962), B+ trees (Bayer and McCreight
1972), to name a few) are to be used because these are or-
thogonal choices.

Hash Tables
Hash tables are useful for efficiently answering queries that
do not define an ordering because the data in hash tables is
spread using a hash function. We therefore consider only
hash tables for queries with no ordering condition.

A general definition of a hash table for concept descrip-
tions follows.

Definition 3 (hash table) A hash table H has the syntax
〈C, f〉, where C is a concept description and f is a con-
crete feature. It partitions all concepts descriptions that are
subsumed by C using a hash function on the different values
of f .

The hash table 〈C, f〉 is useful for efficiently answering
queries of the form 〈D u f = k, ε〉, where T |= D v C.

For example, consider a query with concept description
Car umanufacturer = USA u yearBuilt = k and empty
ordering description. To efficiently support this query, we
can create a hash table on the concrete feature yearBuilt that
stores elements from the view that contains only concepts
that are subsumed by the concept Car u manufacturer =
USA, that is, that hash table 〈Car u manufacturer =
USA, yearBuilt〉. We are therefore going to store in the
hash table only concept description that describe cars man-
ufactured in the USA. Next, we can create buckets based on
the value of the yearBuilt concrete feature.

Note that a single concept may be copied to several buck-
ets. For example, a concept in the knowledgebase may
be described as CAR u ∃safety feature.ESC and the ter-
minology may contain the knowledge that American car
manufactures first introduced electronic stability control in
1997. This knowledge may be represented as CAR u
∃safety feature.ESC v yearBuild ≥ 1997. Based on
this knowledge, the input concept only needs to be copied
to buckets that represent values for the built years between
1997 and 2009. Given an instance of the query and a spe-
cific value for k, the hash function will tell us the bucket that
should be searched. For each concept description C in the
bucket, we need to check whether C v yearBuilt = k. If
this is the case, then the concept description will be added to
the result.

We realize that hash tables over concept descriptions can
result in storage overhead. In our example, a hash table
should only be created if we know that the precise value
for yearBuilt is specified or can be derived for for most con-
cepts in our knowledgebase. Another disadvantage is that
propagating an update to a hash table can be costly because
of the presence of multiple copies of the same concept de-
scription. The advantage of our approach is that it clusters
the data among buckets and therefore, in almost all cases,
will results in improved search performance relative to the
the naı̈ve approach of sequentially traversing through all the
concepts.

Search Trees
The general definition of a search tree for concept descrip-
tion follows.

Definition 4 (search tree) A search tree has the syntax
〈C,Od〉. It describes a tree that contains all concept de-
scriptions D for which T |= D v C. If concept description
D1 comes before concept descriptionD2 in the search order,
then it must be the case that T 6|= D2 ≺Od,T D1.

Note that an ordering description does not define a total
order. Therefore, it may be the case that two concept de-
scriptions are incomparable relative to an order description
and therefore the order in which they appear in the search
tree is not defined.

Consider our example query from Section 3: 〈Car u
color = k, fuel efficiency : {manufacturer =
USA,manufacturer = Japan : price}〉. We can effi-
ciently answer this query using the search tree 〈Car, color :
fuel efficiency : {manufacturer = USA,manufacturer =
Japan : price〉.



Next, we will describe how to search in binary trees,
where searching in other tree types is analogous. Let D be
the query concept description (e.g. 〈Car u color = red〉)
and suppose that C is the concept description for the root
node. If D ≺Od,T C, then we know that we only need to
search in the left subtree. Similarly, if C ≺Od,T D, then
we only need to search in the right subtree for the result. Fi-
nally, if neither of the two conditions is true, then we will
have to search in both the left and right subtrees.

Note that, unlike the relational case, we are not guaran-
teed to return the first concept of the query result in loga-
rithmic time and subsequent concepts in amortized constant
time. The reason is that we may have to search in both the
left and right subtree of the current tree node to find the con-
cept we are searching for.

Inserting a new concept in a description tree is not a trivial
operation. For example, consider a node with concept de-
scription C1 that is age ≥ 1 u age ≤ 8 and a left child node
with concept description C2 that is age ≥ 5uage ≤ 7. Sup-
pose that the concepts in the tree are ordered relative to the
ordering description 〈age〉. Now, if a new concept descrip-
tion C3 that is age = 3 is inserted in the knowledgebase,
then it can be inserted either in the left or right child subtree
of the root node because C1 and C3 are not comparable rel-
ative to the defined search tree order. However, inserting C3

in the right subtree is obviously the wrong choice because
C3 ≺age,T C2.

One way we can solve this insertion anomaly is to always
consider both the left and right subtree of the current node
when performing an insertion. If at some point the query
concept description is strictly smaller or bigger than the con-
cept description in the current node, than we know that the
concept should be inserted to the left or to the right, respec-
tively, of the current node. This process can substantially
slow down concept insertion and the logarithmic time-bound
from the relational database case is no longer guaranteed.

Another way the described anomaly for concept insertion
can be avoided is to require that there is a total order on
the indexed concept descriptions. One way to insure that
this is the case is to require that all indexed concept descrip-
tion satisfy the descriptive sufficiency property ((Pound et al.
2007)), which is described next.

Definition 5 (descriptive sufficiency) A concept descrip-
tion D is sufficiently descriptive relative to an ordering de-
scription Od and terminology T , written as DST ,Od(D) if
at least one of the following holds.

• Od = ε

• Od = f : Od1, DST ,Od1(D) and T |= D v f = k for
some k

• Od = (D1 : Od1, . . . , Dm : Odm) and DST ,Odi
(D)

and T |= D v Di for some i

Conclusion
In this paper we have proposed a new language for querying
knowledgebases and described novel hash table and search
tree data structures that can be used to efficiently support
this language. We realize that this proposal outlines only

the first steps in building an industrial strength knowledge-
base with efficient access. Future research topics include
creating experimental results with the proposed hash table
and search tree data structures over real-world data to mea-
sure their performance. Algorithms for automatically crat-
ing indices from a workload and query optimization tech-
niques that rewrite queries to use the available indices are
also needed. Another important research problem is creat-
ing distributed and replicated version of the proposed data
structures to allow for efficient concurrent access to huge
knowledgebases, even knowledgebases that will be capable
of storing the whole Internet.
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