
On Index Merging for Semantic Web Data

Lubomir Stanchev
Indiana University - Purdue University Fort Wayne

Fort Wayne, IN, USA
stanchel@ipfw.edu

Abstract

In this paper we explore the properties of description in-
dices that store concept descriptions rather than plain data.
Although these novel data structures are beneficial for effi-
ciently answering semantic web queries, expressed in a lan-
guage such as nRQL or SPARQL-DL, they take extra stor-
age and their maintenance can become a performance bot-
tleneck. In order to alleviate these shortcomings, we intro-
duce a procedure for merging description indices. Exper-
imental results over the LUBM benchmark show that this
technique can result in economy of storage space, while the
performance is slightly affected for a static workload and is
improved for a dynamic workload.

1. Introduction

The Internet is a wonderful invention because it allows
us to share knowledge from around the globe. However,
searching for specific piece of information is often com-
pared to searching for a needle in a haystack. Search en-
gines index the Internet based on keywords. Unfortunately,
this fails to capture the semantics of the data. The long
awaited advent of the semantic web has been postponed
due to the innate complexity of creating and efficiently ac-
cessing a general-purpose semantic knowledgebase (i.e., it
is not limited to, for example, only the medical domain -
see the the SNOMED ontology [1]). In this work we ex-
tend previous research ([17]) that explains how to index a
knowledgebase that is expressed in OWL-DL. In particular,
we show how description indices, which store concept de-
scriptions rather than plain data, can be merged in order to
save space. Since our index-merging technique reduces re-
dundant knowledge among indices, our approach can also
lead to improved performance for update-intensive work-
loads because the size of the index structures that need to
be maintained will be smaller.

Description indices make the problem of efficient query
answering over a knowledgebase scalable. The major

downside of description indices is that they take extra stor-
age space and that they introduce maintenance overhead. In
this paper we address these shortcomings by presenting a
procedure for merging description indices. This is an im-
portant research area because index merging can reduce the
performance and space penalty for creating description in-
dices and can therefore make them a more viable option for
integration in existing knowledgebase query engines, such
as Pellet ([16]) and Racer ([6]).

Efficient query answering over semantic web data is
a challenging problem because the information inside a
knowledgebase can be imprecise and additional knowledge
that is stored in a terminology may be needed to interpret it.
The research in [17] shows how to create description indices
that are specific to the input queries. However, merging de-
scription indices is a difficult problem because, except for
the most trivial cases, the duplicate eliminating union of the
data of several description indices cannot be stored in a de-
scription index and still efficiently retrieved (this is also the
case for traditional indices - [5, 4]). We overcome this bar-
rier by adding marker bits to description indices. Marker
bits are beneficial because they allow for efficient search
that is restricted to the elements of a description index that
are subsumed by a predefined concept description and, as a
consequence, our index-merging technique can be applied
in more scenarios.

Existing techniques for optimizing queries over knowl-
edgebases include realization (see for example the Racer
approach [7]) and simplification (see for example [3]). The
first technique precomputes the individuals that are associ-
ated with every concept. Although this technique improves
performance, it does not take into account the type of in-
put queries and therefore it does not create query-specific
indices. The second technique simplifies the problem by
considering only an RDF knowledgebase rather than a full-
blown OWL-DL knowledgebase. The problem of merg-
ing indices for knowledgebases has not been addressed be-
fore because the research in the area of creating indices for
OWL-DL knowledgebases is relatively new.

An OWL-DL knowledgebase consists of individuals that

are described by concept descriptions. Unlike the relational
database case, these descriptions do not need to be descrip-
tive. For example, an individual can be described as being
a department in the Art School without specifying the ac-
tual name of the department. A description index is im-
plemented as a balanced search tree or a hash table that
store the concept descriptions of individuals and potentially
pointers to other data structure instances of the same type.
Throughout the paper, we will refer to the individuals in the
knowledgebase and their concept descriptions interchange-
ably.

In order to demonstrate our description index creation
and merging technique, consider the following query that is
expressed in the SQWRL language ([10]).

Professor(?x1) ˆ rank(?x1,r) ˆ Course(?x2)
ˆ Department(?x3) ˆ name(?x3,?n) ˆ member of(?x1,?x3)
ˆ belongs to(?x2,?x3) → sqwrl:select(?x1,?x2,?x3,?n,?r)
ˆ sqwrl:orderBy(?n,?r)

The query asks for all departments and the courses
and professors inside the department, where the depart-
ments are ordered relative to name and the professors inside
a department are ordered relative to rank. We assume that
every department has a unique name.

Consider a description index that is implemented by a
search tree that contains the concept descriptions of the in-
dividuals that can be deduced to be departments ordered by
the data property name. For each such individual, the index
also stores the concept descriptions associated with the pro-
fessor individuals in that department ordered by rank and
the course individuals in the department. This description
index can be used to answer the example query, where the
level of efficiency is proportional to the descriptiveness of
the knowledgebase. In contrast, such efficient access is not
possible with existing knowledgebase query engine imple-
mentations, such as Pellet ([16]) and Racer ([6]). The rea-
sons are that: (1) existing engines do not create query spe-
cific indices and (2) they do not explore novel index types
that are required for supporting knowledgebase queries and
index merging.

Next, consider a second description index that stores the
concept descriptions for the the individuals that can be de-
duced to be organizations sorted again by the data prop-
erty name. In addition, the description index stores for each
such individual the list of secretary individuals in the orga-
nization. The list of individuals that can be deduced to be
departments will be stored in both description indices be-
cause departments are organizations. In order to avoid this
redundancy, the two indices can be merged into a single
description index that stores a search tree of organization
individuals. The index will also store the associated course
and professor individuals for departments and the associ-

ated secretary individuals for organizations. In addition,
we will mark a node in the organization search tree exactly
when the node or one of its descendants contains an individ-
ual that can be inferred to be a department. The marker bits
will allow us to efficiently search for all the department in-
dividuals in the search tree and therefore the merged index
will yield similar performance characteristics for searches
as the initial two description indices.

The major contributions of the paper are the introduc-
tion of marker bits for description indices in Chapter 3, the
index-merging technique that is present in Chapter 4, and
our experimental results that are described in Chapter 5.
Related research is presented in Chapter 2, while Chapter 6
summarizes the paper.

2 Related Research

The Web Ontology Language - Description Logics
(OWL-DL) [2] was introduced by the World Wide Web
Consortium (W3C) as a standard for representing knowl-
edgebases. While most existing research focuses on consis-
tency checking using a tableau-based approach (Pellet [16],
Fact++ [18], and Racer [6] are three popular implementa-
tions), there have been two notable proposal for SQL-like
query languages over OWL-DL knowledgebases.

The first proposal is SPARQL-DL ([15]). The language
is very expressive and the free variables can be not only in-
dividuals, but also concepts or relationships (i.e., the lan-
guages has capabilities that cannot be expressed in first-
order logics). Notably, [14] describes how cost-best query
optimization can be used to make SPARQL-DL query ex-
ecution decisions, such as join-order selection. Currently,
SPARQL-DL is supported by Pellet. The second language
is nRQL and was created by the developers of Racer [8].

Papers, such as [7], explain how to use realization to pre-
compute the elements of each concept in the terminology.
Although this approach reduces the number of expensive
calls to the reasoner, it can still lead to linear-time complex-
ity for answering certain queries. The reason is the lack of
appropriate indices.

Ground breaking work in the area includes the papers
[12, 13, 17]. They describe how to create an index that
stores concept descriptions rather than individuals. The
concept descriptions in the index are ordered relative to in-
ferred values for some of the data properties. While the first
two papers describe how to create description indices that
can answer queries that ask for the individuals of a single
concept description, the third paper describes how to create
description indices that can be used to efficiently answer
queries that have free variables ranging over several con-
cept description. In this paper we extend the definition of
description indices with marker bits and explain how de-
scription indices can be merged.

Two notable papers that address the problem of index
merging in the relational database case are [5, 4]. Our
approach differs significantly from theirs. Unlike the two
papers, our index merging algorithm produces indices that
have similar performance to the input indices.

3 Description Indices

In this section we review and extend the definition of the
terms: description tree index and description hash table,
which are the building blocks of a description index (the
two terms were initially introduced in [17]). The novelty is
that marker bits are added to description tree indices. The
two artifacts correspond to a search tree index and a hash
table, respectively, in the relational database sense.

A description tree index stores concept descriptions in
a predefined order and allows for efficient range search
queries and for retrieving the result relative to the index or-
der. This index type also allows for the efficient retrieval
of the individuals that are subsumed by a predefined con-
cept description using marker bits. A description hash ta-
ble stores concept descriptions that are clustered relative
to inferred values of one or more properties and supports
the efficient answering of partial-match queries. Our run-
ning example will use OWL-DL concept descriptions that
are expressed using the Manchester OWL syntax([9]). For
completeness, we next present example expressions in this
language, where the reader should refer to [2, 9] for a com-
plete overview.

3.1 The Manchester OWL Syntax

Our running example is based on the terminology of
the LUBM benchmark ([11]). Part of the terminology, ex-
pressed using the Manchester OWL syntax, is shown in
Table 1, where bold is used for language keywords, while
properties (both data and object) are in italic.

The first subsumption states that if someone is a full pro-
fessor, then they are a professor and they work for at least
one organization. The second rule states that if someone is
a graduate student, then they are a student and all their advi-
sors are professors. The third rule states that undergraduate
students must take between two and four courses. The last
rule states that if someone is a student, then they must be
either an undergraduate or graduate student.

Note that the first column of the table contains primi-
tive concepts, while the second column contains concept
descriptions (a primite concept is a special case of a con-
cept description). A concept description describes all indi-
viduals that satisfy certain rules. For example, the concept
description in the right column of the first row in Table 1
describes all professors that work for an organization. The

relationship between the two columns of the table is sub-
sumption (denoted as SubClassOf), that is, if an individual
belongs to the primitive concept shown in the left column,
then it must also belong to the set of individuals described
by the concept description in the right column.

A set of subsumption rules form a terminology (i.e., the
additional knowledge that is used when answering queries
over a knowledgebase). The Manchester OWL Syntax is
also used to describe the individuals in the knowledgebase.
For example, a particular student may be described as
follows.

is taking Calculus 101 and is taking value Stats 101
and member of Computer Science Department and age
value [>= 20]

This student takes Calculus 101 and Statistics 101,
they are member of the Computer Science Department, and
they are at least twenty years of age.

3.2 Description Tree Index

A formal definition of a description tree index follows.

Definition 1 (description tree index) A description tree
index has the syntax 〈{C1, . . . , Cc}, C,O〉, where C and
{Ci}ci=1 are concept descriptions and O is an ordering de-
scription. The index stores all individuals e that have con-
cept description D for which it can be inferred from the
terminology T that C subsumes D (i.e. T implies D Sub-
ClassOf C). The ordering description O defines the order
of the elements in the search tree. The ith bit of a node in
the search tree will be marked (1 ≤ i ≤ c) exactly when
the node or one of its descendants contains an individual
e with concept description D for which it can be inferred
from the terminology T that Ci subsumes D (i.e. T implies
D SubClassOf Ci).

Note that the marker bit part will be omitted from the
syntax of a description tree index when empty. The def-
inition relies on a way for defining order among concept
descriptions, which is presented next.

Definition 2 (ordering description) An ordering descrip-
tion Od has the following syntax.

Od ::= 〈〉 | 〈f dir : Od〉 | 〈D1 : Od1, . . . , Dm : Odm〉

We have used 〈〉 to denote an empty ordering, dir to
denote asc or desc, D to denote a concept description,
and f to denote a data property. In order for this ordering
description to be valid relative to a terminology, it must
be the case that “Di and Dj SubClassOf EMPTY” for
1 ≤ i 6= j ≤ m and “D SubClassOf D1 or . . . or Dm”

(concept) (subsumed by)
Full Professor Professor and (works for some Organization)
Graduate Student Student and (advisor only Professor)
Undergraduate Student Student and (takes course min 2) and (takes course max 4)
Student Undergraduate Student or Graduate Student

Table 1. Part of the LUBM Schema Expressed Using the Manchester OWL Syntax

are both implied by the terminology, where D is a concept
description that describes the set of individuals on which
the order is defined (EMPTY is used to denote the empty
concept - i.e., bottom in description logics). We will say
that the concept description D is before E relative to an
ordering description Od and terminology T and write
D ≺Od,T E in the following cases (x∗ is used to denote
the renaming of x to x∗):

• when Od is 〈f dir : Od1〉:

– T ∪ T ∗ implies (D and E∗) SubClassOf (f <
f∗) when dir=asc and (D and E∗) SubClas-
sOf (f > f∗) when dir=desc or

– T ∪ T ∗ implies ((D and E∗) SubClassOf (f =
f∗)) and D ≺Od1,T E

• when Od is 〈D1 : Od1, . . . , Dm : Odm〉:

– T implies (D SubClassOf Di) and (E Sub-
ClassOf Dj) for some i < j or

– T implies (D or E) SubClassOf Di for some i
and D ≺Odi,T E.

Note that we will omit empty ordering descriptions from
an ordering description. Similarly, when dir is equal to
asc, it may be omitted. Note that if f and g are data prop-
erties, then f = g (f > g) represents the set of individuals
that have the same value for the two properties (for which
the value for the f property is bigger than the value for the
g property).

An example of a description tree index is: 〈{Full
Time}, Professor, 〈worksFor.name: 〈Full Professor :
age, Associate Professor : salary, Assistant Professor:
publications〉〉〉. It denotes a search tree that contains all
individuals that can be inferred to be professors. The order-
ing will be first relative to the name of the place of employ-
ment, which we assume to be unique. In the same work-
place, full professors will come first, followed by associate
and assistant professors. Full professors in the same work-
place will be ordered relative to age, associate professors -
relative to salary, and assistant professors - relative to the
number of publications. If a node in the search tree or one
of its descendants contains a concept description that can be
deduced to be subsumed by the concept “Full Time”, then

the node will be marked. The marker bits will allow one to
efficiently access the full-time professors in the index.

Consider a query that asks for all individuals that repre-
sent full time associate professors that work for a depart-
ment with a given name (we will denote this name as :P)
ordered by salary. In order to answer the query, we can
perform a search in the description tree index, where for
simplicity we assume that the search tree is binary. For
every node with concept description D, we need to com-
pare the concept descriptions D and “Associate Professor
and worksFor.name= :P ” relative to the ordering descrip-
tion of the description tree index. If D comes first, then we
need to continue the search in the right subtree if its root
node is marked. If D comes second, then we need to con-
tinue the search in the left subtree if its root node is marked.
If the two concept descriptions are not comparable relative
to the ordering description, then we need to check if the
terminology implies “D SubClassOf (Associate Professor
and worksFor.name= :P)”. If this is the case, then we have
found a concept description that belongs to the query result.
If the two concept descriptions are not comparable and the
terminology does not imply this subsumption, then we need
to check the subtrees (potentially both left and right) that
have marked root nodes. The reason is that, in general, an
ordering description defines a partial order.

The search will prune out subtrees that have a root node
that is not marked. The search will be efficient (i.e., will
return each element of the query result in logarithmic time),
when the following descriptive sufficiency property ([12])
holds for all concept descriptions in the description tree in-
dex. Note that the descriptive sufficiency property holds for
the data that is generated from the LUBM benchmark.

Definition 3 (descriptive sufficiency) A concept descrip-
tion D is sufficiently descriptive relative to an ordering de-
scription Od and terminology T , written as DSOd,T (D), if
one of the following holds.

• Od = 〈〉

• Od = 〈f dir : Od1〉, DSOd1 ,T (D), and T implies D
SubClassOf f = k for some constant k

• Od = 〈D1 : Od1, . . . , Dm : Odm〉, DSOdi ,T (D),
and T implies “D SubClassOf Di” for some i

3.3 Description Hash Table

The general definition of a description hash table fol-
lows.

Definition 4 (description hash table) A description hash
table H has the syntax 〈C, {pi}ki=1〉, where C is a con-
cept description and {p}ki=1 are properties. It partitions
all concepts descriptions that are subsumed by C using a
hash function on the different values of {p}ki=1.

Note that the second element of the syntax of a descrip-
tion hash table may be empty, in which case we will store
all concept descriptions in a single bucket, that is, the de-
scription hash table will degenerate into a description list.
When the second element is empty, we will omit it from the
syntax.

An example description hash table is: 〈Graduate Stu-
dent or Undergraduate Student, {advisor}〉. It partitions
the graduate and undergraduate students relative to their ad-
visor. If the advisor of a student is not known, than this stu-
dent could be placed in several hash buckets. For example,
if the advisor of a student that is in the Computer Science
Department is not known, but we know that students in the
Computer Science department are supervised by professor
from the Computer Science Department, then we only need
to store the student in the hash buckets for Computer Sci-
ence professors.

Searching in a description hash table is similar to search-
ing in a regular hash table in the sense that the clustering
allows us to prune out buckets that do not contribute the
query result. Since the same individual can appear in multi-
ple hash buckets, search efficiency will depend on the level
of descriptiveness of the concept descriptions that are asso-
ciated with the individuals in the hash table.

3.4 Description Index

The definition of a description index follows.

Definition 5 (description index) A description index can
be represented as a rooted tree, which we will call the def-
inition tree of the description index. The nodes in the tree
can be either hash nodes or tree nodes. The label of a hash
node is that of a description hash table, while the label of
a tree node is that of a description tree index. The edges in
the definition tree have labels that are object properties.

A description index represents a set of description hash
tables and description tree indices, where the connection
between the data structures and their content is determined
by the shape and labels of the definition tree.

Specifically, for a root node in the definition tree that is
a hash node or a tree node, the corresponding description
hash table or description tree index, respectively, is built. If

the node n1 is the child of the node n2 and the edge between
the two nodes has the label p, then a data structure is built
for each concept description D stored in the data structure
for n2. Specifically, if n1 is the tree node 〈{Ci}ci=1, C,O〉,
then the description tree index 〈{Ci}ci=1, C and (p some
D), O〉 is created. Alternatively, if n1 is the hash node
〈C, {pi}ki=1〉, then the description hash table 〈C and (p
some D), {pi}ki=1〉 is created.

The definition trees of the two example description in-
dices that were merged in Section 1 and the description tree
for the resulting description index are shown in Figure 1.

4 Description Index Merging

The algorithm for creating description indices is pre-
sented in [17]. Algorithm 1 shows our description index
merging algorithm.

Line 2 of the algorithm finds a clustering of the indices,
where the indices in every cluster have a common prefix.
Two description indices have a common prefix when their
root nodes share a common prefix. Two tree nodes share a
common prefix if their ordering descriptions start with the
same property. A hash node shares a common prefix with a
tree node if it contains the first property of the ordering de-
scription of the tree node in its set of properties. Two hash
nodes share a common prefix it they share a common prop-
erty in their set of properties. The reasoning behind this
definition is that the order of the properties is meaningful
for an ordering description, but not for the properties of a
description hash table. Description indices with root nodes
that are index nodes with empty ordering description and
description indices with root nodes that are description lists
can also be clustered together. In this case the common pre-
fix will be the empty set. Note that there are different ways
to do the partitioning and the chosen algorithm depends on
the optimization function. In our experimental evaluation
we chose the partitioning that minimizes the size of the pro-
duced description indices after the merging.

Next, Lines 3-31 of the pseudo-code process every clus-
ter of indices. The common prefix property is identified
in Line 6. Line 12 computes the concept description for the
root node of the description index that is constructed. It will
be the union of the concept descriptions of the root nodes
of the input concept descriptions. Lines 13-22 compute
whether the root node of the resulting index will be a hash
node or a tree node and calculate what marker bits should
be added. The method CREATEINDEX, which is called in
Lines 24 and 26, constructs a description index. The root
node of the description index is formed from all but the last
parameter. The last parameter describes the child nodes.
Line 24 creates a hash nodes, while Line 26 creates a tree
node.

<Secretary>

works for belongs to
+

works for works for belongs to
works for

<Organization,{name}>

=

<Department,<name>> <{Department},Organization,<name>>

<Professor,<Full Professor,

 Associate Professor,

Assistant Professor>>

<Professor,<Full Professor,

 Associate Professor,

Assistant Professor>>

<Course> <Secretary> <Course>

Figure 1. Merging Example.

Algorithm 1 MERGE(indices X̄)
1: result← ∅
2: {X̄i

′}ai=1 ← FINDCLUSTERING(X̄)
3: for i← 1 to a do
4: {X ′j}kj=1 ← X̄i

′

5: if k > 1 then
6: A← FINDPREFIX({X ′j}kj=1)
7: {nj}mj=1 ← root nodes of {X ′j}kj=1

8: {Cj}mj=1 ← concept descriptions in {nj}mj=1

9: isHash← true
10: C̄ ← ∅
11: X̄ ′ ← ∅
12: D← C1 or . . . or Cm

13: for j ← 1 to m do
14: if type(nj) 6= hash then
15: isHash← false
16: end if
17: if not (D SubClassOf Cj) then
18: C̄ ← C̄ ∪ {Cj}
19: isHash← false
20: end if
21: X̄ ′ ← X̄ ′∪ remove(X ′j ,A)
22: end for
23: if isHash then
24: result← result ∪

CREATEINDEX (D, {A},MERGE(X̄ ′))
25: else
26: result← result ∪

CREATEINDEX (C̄,D,{A}, MERGE(X̄ ′))
27: end if
28: else
29: result← result ∪ X̄i

′

30: end if
31: end for
32: return result

The presented description index merging algorithm is
correct in the sense that the created index has the same
query answering capabilities as the initial indices. The algo-
rithm is not complete and improving the quality of the result

it produces (e.g., exploring more description index merging
opportunities) is an area for future research.

5 Experimental Results

Our experimental results are based on the LUBM bench-
mark ([11]). We created a database that consists of twenty
universities. The benchmark contains a program that gener-
ated data about each university (e.g., departments, students,
professors, courses, etc.). The benchmark consists of four-
teen queries. We executed each of the queries in three dif-
ferent modes. One way is using the description index struc-
tures that are described in [17]. This approach creates de-
scription indices that do not support marker bits and no in-
dex merging is applied. The second way is using merged
indices, where indices were manually merged using the al-
gorithm that is described in this paper. The third way is by
rewriting the queries in SQARQL-DL and executing them
through the Jena interface using the Pellet reasoner. In all
cases, the heap was set to 1.5GB to avoid an out-of-space er-
ror. All tests were executed on Sony VGN-NW150J laptop
with 4GB of main memory and 2.10GHz CPU. The results
of the experiments, averaged over one thousand runs, are
shown in Table 2.

We measured the time to compute and print the result,
where the time to initially load the data was not measured.
For example, Query 6 runs slowly in all three scenarios be-
cause it asks for all the students and printing all students is
time consuming. Conversely, Query 2 asks for all graduate
students that are students in the university from which they
got their undergraduate degree. Our approach answers the
query by performing an index join, which is significantly
faster than the nested-loop join that is performed by Pellet.

Note that Query 14 asks for the undergraduate students,
while Query 6 asks for all students. The single descrip-
tion index 〈{Undergraduate Student}, Student,{}〉 will be
created to answer both queries. Since the index for all stu-
dents will be bigger than the index for undergraduate stu-
dents, it will take more time to use the new index to enu-
merate all undergraduate students, which is the reason for
the increased time for executing Query 14 when indices are

(query) (description index) (merging) (Pellet)
Q1 1 1 1076
Q2 47 47 3167
Q3 1 1 1263
Q4 1 1 1373
Q5 1 1 796
Q6 671 671 3619
Q7 1 1 1373
Q8 35 35 1966
Q9 51 51 4712
Q10 520 520 1404
Q11 31 31 1186
Q12 1 1 3213
Q13 35 35 858
Q14 468 482 2293

Table 2. Execution time for the LUBM queries
in milliseconds

merged.
We realize that there is a price to pay for creating in-

dices. The obvious cost is the cost of storage. The size of
the initial knowledgebase of twenty universities is 110MB.
The amount of storage needed to store the indices for each
query is shown in Table 3. As expected, indices bring slight
storage overhead. If index merging is used, then this to-
tal size of the description indices is reduced from 132MB
to 95MB. The reason is that we can eliminate storing re-
dundant copies of university concept descriptions, depart-
ment concept descriptions, professor concept descriptions,
and student concept descriptions as a result of the merge.

Another benefit of index merging is reduced update cost.
We introduced to the LUBM benchmark operations that add
a student, remove a student, move a professor between de-
partments, and change the professor that teaches a course.
The update to be performed was chosen randomly and two
thousand updates were performed. The results were aver-
aged over one thousand runs. When no merging was per-
formed on the indices that were created for the fourteen
queries, it took 63 milliseconds on average to perform the
2000 updates. However, when index merging was intro-
duced, the update time was reduced to 47 milliseconds.

6 Conclusion

Description indices are beneficial for efficient access to
knowledgebases. In the paper we presented a merging tech-
nique that reduces the storage and update cost of descrip-
tion indices. Although the presented merging technique is
not complete, our experimental results show that it can lead
to increased performance and reduced storage cost. An area

(query) (index size)
Q1 5
Q2 4
Q3 3
Q4 3
Q5 14
Q6 13
Q7 14
Q8 21
Q9 15
Q10 14
Q11 1
Q12 1
Q13 14
Q14 10

Table 3. Size of indices for each query in MBs

for future research is exploring more opportunities for de-
scription index merging.

References

[1] International Health Terminology Standards Development
Organization. http://www.ihtsdo.org/.

[2] OWL Web Ontology Language Guide.
http://www.w3.org/TR/owl-guide/.

[3] RDF-3X. http://www.w3.org/RDF.
[4] N. Bruno and S. Chaudhuri. Automatic Physical Database

Tuning: A Relaxation-based Approach. SIGMOD 2005,
pages 227–238, 2005.

[5] Chaudhuri and Narasayya. Index Merging. ICDE, pages
296–303, 1999.

[6] V. Haarslev and R. Möller. Racer: A Core Inference Engine
for the Semantic Web. Second International Workshop on
Evaluation of Ontology-based Tools, 2003.

[7] V. Haarslev and R. Möller. Optimization Techniques for
Retrieving Resources Described in OWL/RDF Documents:
First Results (2004). In Ninth International Conference on
the Principles of Knowledge Representation and Reasoning
(KR), 2004.

[8] V. Haarslev, R. Möller, and M. Wessel. Querying the seman-
tic web with Racer + nRQL. In Proceedings of the KI-2004
International Workshop on Applications of Description Log-
ics, 2004.

[9] M. Horridge, N. Drummond, J. Goodwin, A. Rector,
R. Stevens, and H. Wang. The Manchester OWL syntax.
OWL: Experiences and Directions, 2006.

[10] M. J. O’Connor and A. K. Das. Sqwrl: A query language
for owl. OWL: Experiences and Directions (OWLED), Fifth
International Workshop, 529, 2008.

[11] Z. Pan, Y. Guo, and J. Heflin. LUBM: A benchmark for
OWL knowledge base systems. Journal of Web Semantics,
3(2):158–182, 2005.

[12] J. Pound, L. Stanchev, D. Toman, and G. E. Weddell. On
ordering descriptions in a description logic. International
Workshop on Description Logics, 2007.

[13] J. Pound, L. Stanchev, D. Toman, and G. E. Weddell. On
Ordering and Indexing Metadata for the Semantic Web. In-
ternational Workshop on Description Logics, 2008.

[14] E. Sirin and B. Parsia. Optimizations for Answering Con-
junctive ABox Queries: First Results. In Proceeding of the
International Description Logics Workshop, 2006.

[15] E. Sirin and B. Parsia. SPARQL-DL: SPARQL Query for
OWL-DL. 3rd OWL: Experiences and Directions Workshop
(OWLED), 2007.

[16] E. Sirin, B. Parsia, B. C. Grau, A. Kalyanpur, and Y. Katz.
Pellet: A practical OWL-DL reasoner. Web Semantics: Sci-
ence, Services and Agents on the World Wide Web, 5(2),
2007.

[17] L. Stanchev and G. Weddell. On Building an Index Advisor
for Semantic Web Queries. Sixth International Conference
on Formal Ontology in Information Systems, 2010.

[18] D. Tsarkov and I. Horrocks. FaCT++ Description Logic
Reasoner: System Description. Lecture Notes in Computer
Science, 4130:292–297, 2006.

