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Abstract—In this paper we introduce bag relational algebra
with grouping and aggregation over a particular representation
of incomplete information called c-tables, which was first
introduced by Grahne in 1984. In order for this algebra
to be closed and “well-defined”, we adopt the closed world
assumption as described by Reiter in 1978 and extend the tuple
and table conditions to linear ones. It turns out that query
answering over the described extension remains polynomial
relative to the size of the certain information. Therefore, the
proposed algebra can be implemented as part of a SQL engine
that can query incomplete information. The execution time will
be acceptable as long as the size of the incomplete information
is small relative to the total size of the database.
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I. I NTRODUCTION

Many times, when information is entered into databases,
the values for some of the fields are left empty for various
reasons. In some cases, partial information about the blank
fields is available, but existing relational database technology
does not allow for such information to be processed. Imielin-
ski and Lipski in [1] were among the first to propose richer
semantics for null values that allows for incomplete informa-
tion to be processed. However, their model was based on set
semantics. Later on, Libkin and Wong published a paper on
querying incomplete information in databases with multisets
([2]), but included only a limited set of operations, which
excluded grouping and aggregation. Other papers that tackle
the problems of storing and querying incomplete information
include [3], [4], [5], [6], [7]. However, they all fail to explore
relational operations defined over bag semantics such as
grouping and aggregation.

In this paper we try to fill a gap left in published research
in the area of storing and querying incomplete information.
More precisely, we show how bag relational algebra with
grouping and aggregation can be applied over incomplete
information represented as a particular variation ofc-tables.
A c-table consists of a set ofc-tuplesand aglobal condition,
where every c-tuple is made up from a regular tuple that may
include variables for some of its fields plus a local condition
(See Table 1 for an example). The semantics of a c-table is
determined by the set of relations it represents, where each
representation corresponds to a possible valuation for the
incomplete information. In order for the relational algebra

to be closed andwell defined, we define the semantics of a
c-table to be over theclosed world assumption, as defined
in ([8]), and we extend local and global conditions to be
linear. We will refer to the described c-tables aslinear c-
tables, where their exact semantics is given in Section 2.1.

Originally, c-tables were introduced by Grahne in [9] to
have local and global conditions that didn’t contain the “+”
operator and the “>” relation. Later on, Grahne added the
“>” relation in [3]. However, we are not aware of any
published research that allows for the “+” operator to be part
of the local conditions or the global condition of a c-table.
However, introducing the “+” operator is required in order
for the relational algebra with aggregation that we introduce
to be closed.

The main contribution of the paper are the algorithms
for performing the different relational operations over linear
c-tables. While the implementation of the operations projec-
tion, selection and inner join are similar to the case of set
semantics (see [1]), the algorithms that perform the monus,
duplicate elimination, and grouping operations are novel.

A. Motivation

Real world requirements have shown the importance
of storing and querying incomplete information. However,
commercial database management systems (DBMSs) pro-
vide only limited support (e.g., only null values) for in-
complete information. Part of the reason, why this is the
case, is the lack of research in the area. Note that while
the problem of storing incomplete information is somewhat
solved, querying incomplete information remains an open
research problem. We believe that this paper makes a signif-
icant step towards solving the later problem. Another hurdle
towards the implementation of a DBMS that processes
incomplete information is the intrinsic high cost of managing
such information. However, note that the algorithms we
present for performing the various algebraic operations are
non-polynomial relative only to the size of the incomplete
information. Taking into account the ever increasing speedof
computational resources, we believe that incorporating tools
that store and query incomplete information in commercial
database engines is feasible. Moreover, we believe that the
presented work can play a key part in such an implementa-
tion. For example, since the code for executing bag relational



algebra operations is an important part of the kernel of a
SQL engine, we believe that the presented work can be used
to implement a full SQL engine that can query incomplete
information stored as linear c-tables.

In what follows, in Section 2 we define a representation
of incomplete information in terms of linear c-tables. We
explore the fundamental properties of linear conditions and
linear c-tables and present algorithms for their manipulation.
In Section 3 we define bag relational algebra operations over
linear c-tables and give algorithms for their implementation.
In Section 4 the problem of grouping and aggregation over
linear c-tables is explored and in Section 5 a summary or the
presented work and areas for future research are outlined.

II. C-TABLES WITH L INEAR

CONDITIONS

The problem of representing incomplete information in
the relational model is almost as old as the relational model
itself ([10], [11], [12], [13], [14]). When a null value appears
in a relational table, its value can be interpreted as no
information available, only partial information available,
value not applicable, and so on. Most of the research on null
values has concentrated on the first two meanings. Known
representations of relational tables adapting these meanings
for nulls include Codd tables, naive tables, Horn tables and
c-tables. Codd tables are relational tables, where the values
of some the fields can be null. Naive tables are an extension
of Codd tables, where each null is given a label and nulls
having the same label represent the same unknown value.
C-tables are naive tables with a local condition associated
which each tuple and a single global condition associated
with each table. Horn tables are a special kind of c-tables,
where the conditions that can appear are restricted to Horn
clauses.

Grahne in [3] considered conditions over the system
〈R, {>, =}〉 (i.e., Boolean expressions with variables and
constants defined over the setR extended with “>” and
“=”). To the best of our knowledge, this is the most expres-
sive system for expressing c-table conditions in published
research. In this paper we explore c-tables whose conditions
are over the system〈R, {>, =, +}〉 ∪ 〈S, {=, 6=}〉, where
R is used to denote the set of real numbers andS is the set
of strings over some finite alphabet. While the “+” operator
is introduced in order to make the algebra closed relative to
aggregation, the system over strings is introduced to extend
the expressive power of c-tables. Note that we don’t explore
conditions over〈Z, {>, =, +}〉, whereZ is the set of inte-
gers, or over〈R, {>, =, ∗, +}〉. The reason is that, although
those systems are more expressive, reasoning with them is
much harder. For example, Fischer and Rabin have shown in
[15] that the complexity of deciding whether a formula over
the first system is satisfiable is super exponential. As well,
the complexity of the fastest known algorithm for solving

name school condition
John y x = 1
Mark y x 6= 1
q z TRUE

g.c. (q 6=“Mark” ) ∧ (q 6=“John”) ∧ (z 6= y)

Table I
AN EXAMPLE C-TABLE

the same problem for the second system, which is presented
in [16], is higher than exponential.

A. Definitions

Formally, we introduce a linear c-tableTC as a finite,
unordered bag of linear c-tuples and a global condition. A
linear c-tuple with attributes{Ai}a

i=1 is the sequence of
mappings fromAi to D(Ai) ∪ Vi plus a local condition,
where i ranges from 1 toa, D(Ai) denote the domain of
Ai andVi is used to represent a possibly infinite, countable,
set of variables overD(Ai). The local and global conditions
can range over〈R, {>, =, +}〉∪〈S {=, 6=}〉. Table 1 shows
an example of a linear c-table.

We will refer to the part of a linear c-table where the
data is stored as themain part and to the remaining parts
as thelocal condition partand theglobal condition part,
respectively. In our example,x, y, z and q are used to
represent variables. Since our model is limited only to
the domains of real numbers and strings, the domain of a
variable that doesn’t appear in the main part of a linear c-
table can be inferred from the context in which it appears.
In our example, we can use the local conditionx = 1 to
deduce that the domain ofx is R.

The example linear c-table contains the information that
either there are no students or there are two students that
study in different schools and the name of one of them is
“John” or “Mark” and the name of the other one is neither
“John” nor “Mark”. Note that in this example and throughout
the paper we will be using the closed world assumption.
The assumption states that a database representation contains
only the things that are known to be true. In our example,
we have used this assumption to conclude that there are at
most two students.

In order to formally define the semantics of a c-table,
Imielinski and Lipski in [1] introduce a function calledRep

that maps a c-tableTC to a possibly infinite set of relational
tables. Intuitively, the meaning of theRep function is that
given a c-tableTC , the function returns all relational tables
thatTC could represent under different valuations. In [1] this
function is defined relative to theopen world assumption. We
define it relative to the closed world assumption as follows.

Rep(TC) = {T |∃v, s.t. v(TC) = T } (1)

In the definitionv is a mapping that maps the variables inTC

to constants in the corresponding domains and is generalized



to linear c-tuples as follows.

v(tC) =

{
v(main(tC)) : v(lc(tC)) ∧ v(gc(TC))

ε : otherwise
(2)

In the formula the functionsmain, lc and gc are used to
denote the main part and the local condition part of a linear
c-tuple and the global condition part of a linear c-table. The
symbolε is used to represent the empty set. The value of the
tuplev(main(tC)) is calculated by substituting the variables
in the main part oftC with the values to whichv maps them
to. The mappingv is further extended to linear c-tableTC

as shown in Equation 3, where{tiC}k
i=1 are the c-tuples in

TC .

v(TC) = {| v(tiC)|i ∈ [1, k] ∧ v(tiC) 6= ε |} (3)

Note that it is also possible to define ordering for linear
c-tables, but we leave this topic for future research. The
presented definition ofv applied to a linear c-table is novel
and differs from the definitions presented in [1] and [3].
Unlike the cited papers, we define duplicate semantics for
c-tables and use the closed world assumption. From now on,
we will refer to linear c-tuples just as c-tuples and to linear
c-tables just as c-tables.

B. Linear Condition Simplification

In the c-table normalization procedure that we will present
in Section 2.3 a way to simplify linear conditions and
check their satisfiability will be required. Note that a linear
condition is a Boolean expression and, as such, can be
expressed as a disjunction ofpositive conjunctions. A pos-
itive conjunction is a conjunction of positive atomic linear
conditions, where a positive atomic linear condition is of
the form ā · x̄ = b̄ or ā · x̄ < b̄, where x̄ is a variable
vector andā and b̄ are vector constants. An atomic linear
condition includes in addition negative conditions of the
form ā · x̄ 6= b̄. An intuitive representation of a positive
conjunction is a multi-dimensional polyhedra defining a
semi-linear set. Therefore, a linear condition can be thought
as a set of disjoint polyhedras. Note however that such a
representation is not unique and therefore a unique canonical
form for linear conditions could not exist.

Let us first consider the algorithm proposed in [17] for
normalizing conjunctions of linear equalities and inequali-
ties. More precisely, the paper represents a conjunction of
atomic linear conditions by the systemAx̄ ≤ b̄, Ex̄ = d̄,
¬(c̄ix̄ = f̄i), whereA and E are matrices,̄b, d̄, c̄i and f̄i

are vectors and̄x is a variable vector. The normalization
algorithm runs in polynomial time, can be implemented to
run on parallel machines and relies on calls to a module that
solves linear programs. As well, the algorithm recognizes
sets of unsatisfiable atomic conditions and reports them
as such. Part of the algorithm deals with elimination of
redundant conditions, which is an extension of the research
published in [18]. The pivot theorem from [17] follows.

Theorem 1:If two sets of atomic conditions over(R, +,
>, =) define the same point set, whereR is the set of
real numbers, their canonical forms will have identical set
of equality conditions, the same inequality conditions up
to multiplication by a positive scalar and the same set of
negative conditions.

INPUT : linear conditionC

ALGORITHM :
1. ConvertC into disjunctive normal form, i.e.C = c1∨
c2 ∨ ... ∨ cn, where each conjunctionci is positive.
2. Normalize each conjunctionci using the algorithm
from [17].
3. Scan the conjunctions{ci}n

i=1 in order. In the first
iteration mark the conjunctionc1. During thekth iteration
find the intersection ofck with each of the marked con-
junctions. More precisely, ifg1, . . . , gp are the marked
conjunctions so far, then calculate the normal forms of
gi ∧ ck, gi ∧ ¬ck and ¬gi ∧ ck (i = 1 to p) using
the algorithm from [17] to form the new set of marked
conjunctions. Note that the algorithm from [17] may
return that a conjunction is unsatisfiable, in which case
the conjunction should be dropped and not marked.
4. The simplified value forC will be g1∨· · ·∨gm, where
g1, . . . , gm are the marked conjunctions at the end of Step
3. If there are no marked conjunctions at the end of Step
3, then returnC = FALSE.

Figure 1. The linear condition normalization algorithm

The algorithm we present for simplifying a linear condi-
tion C is presented in Figure 1. The algorithm first breakC

into a set of positive conjunctions. Next, it divides those
conjunctions further so that they don’t overlap and the
algorithm returns their normalized form in its final step. The
algorithm runs inO(mc ·3n) time, wherem is the length of
C, n is the number of conjunctions in the disjunctive normal
form of C (i.e. n ≤ (

√
2)m) and c is a constant. In order

to verify this, note that Step 1 takesO(m · n) time. Step
2 makesn calls to the procedure from [17], which runs
in O(mc) time because the length of each conjunction is
smaller then the length ofC. Step 3 makes at most3n−1

2 −1
calls to the procedure from [17]. The reason is that in Step
3, during thekth iteration (k > 1), there can be as much
as 3(k−2) processed conjunctions and therefore as much
as 3(k−1) calls to the normalization procedure from [17].

Therefore, Step 3 can do as much as
n∑

k=2

3k−1 = 3n−1
2 − 1

calls to the normalization procedure and each call can take
at mostO(mc) time.

Note that the above algorithm can be used to test the
satisfiability of a linear condition. To do so, we only need
to execute the first two steps, which can be done inO(n ·
mc) time. The rest of the steps are only useful if we want
to eliminate duplicate information by breaking up the input



A B condition
1 2 x = 1
z 2 x = 2
p w x = t

g.c.: t 6= 1 ∧ t 6= 2

A B condition

a b
((a = 1) ∧ (b = 2) ∧ (x = 1))∨
((a = z) ∧ (b = 2) ∧ (x = 2))∨
((a = p) ∧ (b = w) ∧ (x = t))

g.c.: t 6= 1 ∧ t 6= 2

Table II
A C-TABLE AND THE RESULT OF APPLYING NORMALIZATION STEPS1, 2

AND 3 TO IT

linear condition into disjoint polyhedras.
The presented algorithm can be applied not only to

conditions over the system(R, >, =, +), but also to
conditions over the system(R, >, =, +) ∪ (S, =, 6=). To
do so, substitute each atomic conditions of the formx 6= c,
wherex is a string variable andc is a string constant with
x = c1 ∨ x = c2 ∨ · · · ∨ x = cr ∨ x = cr+1, wherecr+1 is a
newly introduced string constant and{ci}r

i=1 are the existing
string constants in the condition excludingc. As well, substi-
tute each atomic condition of the formx 6= y, wherex and

y are string variables with
i6=j∨

i,j=1,r+2

(x = ci∧y = cj), where

cr+1 and cr+2 are newly introduced constants and{ci}r
i=1

are the existing string constants. Alternatively, Step 1 of
the algorithm can be modified to require the breaking ofC

into not necessarily positive conjunctions. This modification
allows the direct application of the algorithm to a linear
condition containing strings because the algorithm from [17]
handles equality and week inequality conditions separately
from inequality conditions.

In the rest of the paper, unless we explicitly specify
otherwise, when we refer to the algorithm from Section
2.2, we will mean the algorithm which executes only the
first two steps, where the first step breaksC into not
necessarily positive conjunctions. The time complexity of
such an algorithm applied to a linear condition over(R, >,
=, +) ∪ (S, =, 6=) is O((

√
2)m ∗ mc).

C. C-Table Normalization

Note that there may be different c-tables representing the
same set of bag relational tables, i.e. it may be the case
that T ′

C 6= T ′′
C but Rep(T ′

C) ≡ Rep(T ′′
C). If Rep(T ′

C) ≡
Rep(T ′′

C), then we will say thatT ′
C andT ′′

C are equivalent
and writeT ′

C ≈ T ′′
C . In this section we present a method for

testing equivalence of c-tables by comparing their normal-
ized forms. In the presented algorithm we use the concept
of c-tuple unification.

Definition 1: The c-tuplest1C and t2C of the c-tableTC

are unifiable iff the formulalc(t1C)∧ lc(t2C)∧ gc(TC) is not
satisfiable.

INPUT : c-tableTC

ALGORITHM :
1. If for sometC ∈ TC , the expressionlc(tC) ∧ gc(TC)
is not satisfiable, then removetC from TC . Section 2.2
describes one way this can be done. Alternative methods
are described in [19], [20].
2. If for some c-tuplest′C , t′′C ∈ TC , t′C andt′′C areunifi-
able, then substitute them inTC with a c-tuple with main
part X̄ = x1, x2, ..., xn, wheren is the arity ofTC and
xi are newly introduced variables, and local condition
(X̄ = main(t′C) ∧ lc(t′C)) ∨ (X̄ = main(t′′C) ∧ lc(t′′C)).
Repeat this step as many times as possible.
3. Propagategc(TC) to all local conditions, i.e. for every
tC ∈ TC set the local condition oftC to lc(tC)∧gc(TC).
Next, simplify all local conditions using the algorithm
presented in Section 2.2. Remove all c-tuplestC for
which lc(tC) is not satisfiable. Put TRUE as the global
condition of the resulting c-table.
4. For every c-tupletC ∈ TC , if main(tC) contains the
variable x for the attributeAi of TC , and lc(tC) ⇒
(x = c) is a valid expression, wherec is a constant,
then replacex with c in main(tC).

Figure 2. The c-table normalization algorithm

The idea behind this definition is that if two c-tuples have
local conditions that can not both hold under any valuation,
then at most one of the c-tuples could be present in any
representation of the c-table and therefore the two c-tuples
can be merged into one. The algorithm we propose for
normalizing a c-tableTC is shown in Figure 2. Table 2
shows the result of applying the first three steps of the
presented normalization algorithm to an example c-table.
The properties of the algorithm can be summarized by the
following theorem.

Theorem 2:The presented normalization algorithm is
correct, i.e.Norm(TC) ≈ TC for any c-tableTC , where
Norm is the normalization function as described by the
algorithm. As well, the normalization procedure runs in

O(
√

2
(v+r)·m · ((v + r) · m)c · (2v+r + d) · (v + n)) time,

wherev is the number ofvariable c-tuplesin TC , m is the
greater of the size of the longest c-tuple and the size of the
global condition ofTC , d is the number of distinct local
conditions,n is the number of regular c-tuples with distinct
main parts,r is the highest count of regular c-tuples that
have the same main part, but distinct local conditions and
c is a constant. Note that we have used the term variable
c-tuple to denote a c-tuple that has at least one variable
appearing in its main part and regular c-tuple do denote a
c-tuple that has no variables appearing in its main part.

Proof(Sketch): In order to prove the first part of the
theorem, we need to show that each of the five steps are
equivalence preserving, i.e. that ifTC is a c-table and



Oi is used to denote the application of theith step, then
Oi(TC) ≈ TC , for i = 1 to 4. The proofs that the statement
is true for i = 1, 3 and 4 are trivial. Fori = 2, note that
the algorithm examines pair of c-tuples that can not appear
in the same representation, sincelc(t′C) ∧ lc(t′′C) ∧ gc(TC)
is not satisfiable for them. We can therefore combine them
and merge their conditions. In this way at most one of the
two original c-tuples will appear in any representation and
the set of representations of the c-table is not changed.

To prove the time bound, note that Step 1 of the algorithm
takesO((

√
2)m ·mc·d) time. The reason is that the algorithm

from Section 2.2, which takesO((
√

2)m ·mc) time, needs to
be applied to be applied tod distinct local conditions. Steps
2 will take O(v3 · (

√
2)m · mc) time. The reason is that it

takesO(v2) time to check for
To see, why this is the case, note that at mostn+v groups

of c-tuples are candidates to be merged in the algorithm.
The reason is that regular c-tuples that have different main
parts can not be united. Each group will contain at most
r + v c-tuples and therefore at most

(
v+r
2

)
+ · · ·+

(
v+r
v+r

)
=

2v+r−(v+r)−1 iterations of the algorithm can be performed
on it because we first explore pairs of c-tuples, then triplets
and s.o. Finally, not that each iteration can take as much as

O(
√

2
(v+r)·m · (m · (v + r))c) time because the algorithm

from Section 2.1 may need to be applied to an expression as
long as(v+r)·m. Step 4 does the simplification of the local
conditions and can be performed inO((

√
2)m·(v+r) · ((v +

r)·m)c ·2v+r ·(n+v)) time because as much as2v+r ·(n+v)
distinct local conditions of size at mostm · (v + r) need to
be simplified. Step 5 can be performed inO((

√
2)m·(v+r) ·

(m · (v + r))c · 2v+r · v) time because at most2v+r · v c-
tuples need to be checked. Therefore, the whole algorithm

will take O(
√

2
(v+r)·m · ((v + r) ·m)c · (2v+r + d) · (v +n))

time. �
Note that the above algorithm can be improved if we try

to avoid doing the same computation more than once. For
example, we can buffer existing results and use them in
performing new calculations. This is a reasonable thing to
do because most of the presented algorithms for performing
relational algebra operations produce c-tuples with local
conditions that have subexpressions in common. We believe
that optimizing the above algorithm and making it as fast as
possible is of crucial importance to the general problem of
working with c-tables and therefore more research needs to
be done in the area.

The algorithm we propose for checking the equivalence
of two c-tablesT ′

C and T ′′
C is presented in Figure 3. The

following theorem summarizes its properties.
Theorem 3:The proposed algorithm for checkingT ′

C ≈
T ′′

C is correct and works in timeO(((2v+r · (n + v))2 + d) ·√
2
(v+r)·2m · ((v + r) · 2m)c)), wheren,m,v,r and d are

equal to the maximum of the corresponding values for the
two c-tables as defined in Theorem 2.

INPUT : c-tablesT ′
C andT ′′

C

ALGORITHM :
1. NormalizeT ′

C andT ′′
C .

2. If the number of c-tuples in the two normalized c-
tables is equal try to match them. Two c-tuplest′C and
t′′C match iff (main(t′C) = main(t′′C))∧lc(t′C)∧lc(t′′C) is
satisfiable. An efficient way to check this satisfiability is
to first check thatmain(t′C) = main(t′′C) is satisfiable,
which can be done inO(r) time, wherer is the arity of
the c-tuples being compared.
3.T ′

C andT ′′
C are equivalent iff there exists a one-to-one

match between the c-tuples of the normalized c-tables.

Figure 3. The c-table comparison algorithm

Proof(Sketch): First, note that if two c-tables are equiv-
alent, their normalized forms will have the same number
of c-tuples. The reason is that the normalization procedure
unifies all c-tuples that can appear as one in a representation.
Second, note that if two c-tables are equivalent there must
exist a one-to-one mapping that matches the c-tuples in their
normal forms. To prove the time bound, note that Step 1

takesO(
√

2
(v+r)·m · ((v + r) · m)c · (2v+r + d) · (v + n)).

Step 2 takesO(x2 ·
√

2
y · yc) time wherex is the number

of c-tuples in the bigger c-table andy is the size of the
condition being compared. Sincex = 2v+r · (n + v) and
y = (v + r) ∗ m, the time bound follows.�

III. B AG RELATION ALGEBRA FOR

C-TABLES

So far we have defined the syntax and semantics of c-
tables and shown how c-tables can be normalized. Next,
we will describe how relational algebra1 can be extended
to handle c-tables. In particular, thanks to using the closed
world assumption, we are able to develop a sound and
complete extension of relational algebra that is closed. Bya
closed algebra we mean that for an arbitrary operatorq of
the algebra, and for an arbitrary c-tableTC , it is the case
thatq(TC) is a c-table. By sound we mean that only correct
answers will appear in the result ofq(TC) or formally that
Rep(q(TC)) ⊆ q(Rep(TC)) (q(Rep(TC)) denotes the result
of applyingq to each table inRep(TC)). Lastly, by complete
we mean that all correct answers will be in the result of
q(TC) or that q(Rep(TC)) ⊆ Rep(q(TC)). In this section
we define the semantics ofprojection, selection, inner join,
monusandduplicate eliminationover c-tables with duplicate
semantics. The grouping and aggregation operations are
discussed in the next section.

1Our choice of relational algebra is arbitrary, i.e. any language with the
expressive power of relational algebra, e.g. relational calculus, can be used
instead.



A B condition
2 x x 6= 3
2 4 TRUE

g.c. x 6= 2

B C condition
4 1 TRUE
2 z z > 3

g.c. TRUE

Table III
EXAMPLE R1 AND R2 C-TABLES

B condition
4 TRUE
2 z > 3

g.c. TRUE

B C condition
4 1 TRUE ∧ 1 > 2
2 z z > 3 ∧ z > 2

g.c. TRUE

Table IV
THE RESULT OFπB(R2) AND σC>2(R2)

A. Projection

If TC is a c-table with attributes̄A, then we denote the
projection of the attributes̄A′ over this c-table asπĀ′(TC).
The c-tableπĀ′(TC) is constructed from the c-tableTC by
removing all columns inĀ− Ā′ and leaving the same local
and global conditions. Note that this is duplicate preserving
projection. In order to prove that projection is well defined
we need to show thatRep(πĀ′(TC)) ≡ πĀ′(Rep(TC)) or
that the setsS1 = {T |∃v, v(πĀ′(TC)) = T } and S2 =
πĀ′({T |∃v, v(TC) = T }) are equivalent. LetT ∈ S1. Then
there exists a valuationv, s.t. v(πĀ′(TC)) = T . Let T ′ be
a table constructed fromT by adding the columns for the
attributesĀ− Ā′ and filling them with arbitrary values. By
the definition of duplicate preserving projection over bag
relational tables it follows thatπĀ′(T ′) = T = v(πĀ′(TC)).
As well, note thatT ′ is a representation ofTC for a valuation
v′ extending the valuationv for the attributesĀ − Ā′ and
thereforeπĀ′(v′(TC)) = T = v(πĀ′(TC)), i.e. there exists
a valuationv′ s.t. πĀ′(v′(TC)) = T , which implies that
T ∈ S2. Proving the reverse direction is similar.

Table 3 shows the two example c-tables that we will
use throughout this section. The left part of Table 4 shows
the result ofπB(R2). The projection, as we have defined
it, without normalizing the resulting c-table takesO(s)
time, wheres denotes the size of the c-table on which the
projection is applied.

B. Selection

We denote the selection over a c-tableTC as σγ(TC),
whereγ is a predicate formula over(R, >, =, +)∪(S, =, 6=),
which references the variables{Ai}n

i=1 that have the same
names as the attributes ofTC . We constructσγ(TC) from
TC by keeping the same global condition and adding by
conjunction the local conditionγθ(tC) to each c-tupletC
from TC , whereθ(tC) is a substitution that substitutes every
variableAi with tC [Ai] (the value for the attributeAi in tC ).
In order to prove that we have defined selection correctly, we
need to show thatRep(σγ(TC)) ≡ σγ(Rep(TC)). But this
is equivalent to proving that there exist valuationsv andv′

A B C condition
2 x 1 x 6= 3 ∧ x = 4 ∧ TRUE
2 x z x 6= 3 ∧ x = 2 ∧ z > 3
2 4 1 TRUE ∧ TRUE

g.c. x 6= 2 ∧ TRUE

Table V
THE RESULT OFR1 ⊲⊳ R2

s.t. v(σγ(TC)) = σγ(v′(TC)). However, we have defined
selection over c-tables in such a way thatv(σγ(TC)) =
σγ(v(TC)) for any valuationv, which proves that selection
is well defined. The right part of Table 4 shows the result
of σC>2(R2). The selection, as we have defined it, without
normalizing the resulting c-table takesO(s∗m) time, where
s is the size of the c-table being normalized andm is the
size of the selection condition.

C. Inner Join

Suppose we are given a c-tableT ′
C with attributes{Ā, B̄}

and a c-tableT ′′
C with attributes{B̄, C̄}. We denote the inner

join of T ′
C and T ′′

C on the set of attributes̄B as T ′
C ⊲⊳B̄

T ′′
C . We would like to define inner join in such a way that

Rep(T ′
C ⊲⊳B̄ T ′′

C) ≡ Rep(T ′
C) ⊲⊳B̄ Rep(T ′′

C). The algorithm
we propose for calculating inner join is shown in Figure 4.

INPUT : c-tablesT ′
C andT ′′

C with common attributes̄B.
ALGORITHM :
1. Rename all the variables that occur inT ′′

C in such a
way so thatT ′

C andT ′′
C share no variables in common.

2. For each c-tuplet′C in T ′
C find all c-tuplest′′C in T ′′

C

such thatπB̄(main(t′C)) = πB̄(main(t′′C)) is satisfiable.
For each found c-tuplet′′C insert a c-tuple in the resulting
c-table with main part(t′C , πC̄(t′′C)) and local condition
lc(t′C) ∧ lc(t′′C) ∧ (t′C [B̄] = t′′C [B̄]).
3 Add a global condition to the resulting c-table com-
prised of the conjunction of the global conditions ofT ′

C

andT ′′
C .

Figure 4. The algorithm for calculatingT ′

C
⊲⊳B̄ T ′′

C

Table 5 shows the result ofR1 ⊲⊳ R2. The proof that inner
join is well defined is trivial and is skipped in order to save
space. Inner join, as we have defined it, without normalizing
the resulting c-table takesO(n′ ·n′′ ·(

√
2)m ·mc) time, where

n′ andn′′ are the sizes of the c-tables being joined andm

is double the size of the longest local condition in them.

D. Monus

Monus is the difference operators for bags. In bag re-
lational algebra over bag relational tables it is defined
as: T ′−̇T ′′ = {t[k]|t ∈ T ′ ∧ k = max(count(t, T ′) −
count(t, T ′′), 0)}, wheret[k] is used to denote the tuplet
repeatedk times andcount is a function that returns the
number of occurrences of the tuple specified as the first



parameter in the table specified as the second parameter.
In order to extend this definition to c-tables, we propose the
algorithm shown in Figure 5.

INPUT : c-tablesT ′
C andT ′′

C .
ALGORITHM :
1. Rename all variables that occur inT ′′

C in such a way
so thatT ′

C andT ′′
C share no variables in common.

2. CopyT ′
C in the result c-tableV .

3. Construct a matrixX [i, j], where1 ≤ i ≤ n = |T ′
C |,

1 ≤ j ≤ m = |T ′′
C | and the operator|.| denotes

the number of c-tuples in the specified c-table. Set
X [i][j] = [main(t′i) = main(t′′j )] ∧ lc(t′i) ∧ gc(T ′

C) ∧
lc(t′′j ) ∧ gc(T ′′

C), where t′i and t′′j are theith and jth

c-tuples in T ′
C and T ′′

C respectively relative to some
ordering of the c-tuples.
4. Add, with conjunction, to the global condition ofV

the expression:
m∧

j=1

[
n∨

i=1

(Y [1, j] = · · · = Y [i − 1, j] =

Y [i + 1, j] = · · · = Y [n, j] = 0 ∧ Y [i, j] = 1)]∧
n∧

i=1

[
m∨

j=1

(Y [i, 1] = · · · = Y [i, j − 1] = Y [i, j + 1] =

· · · = Y [i, m] = 0 ∧ Y [i, j] = 1)], whereY is a newly
introduced matrix of variables that is of the same size as
X .
5. Add, with conjunction, to the local condition of theith

c-tuple ofV the condition¬[
m∨

j=1

(X [i, j]∧(Y [i, j] = 1))].

Figure 5. The algorithm for calculatingV = T ′

C
−̇T ′′

C

What the algorithm does is to first rename the variables
of T ′′

C so that they are distinct from those inT ′
C . Next, it

calculates the matrixX and sets a restriction on the possible
values for the matrixY . The value ofX [i, j] contains the
condition that must hold for the c-tuplet′i to be deleted from
T ′

C and the c-tuple that “deletes” it to bet′′j . The matrix
Y [i][j] has the restriction that for eachj, there exists exactly
onei, s.t. Y[i][j]=1, and that for eachi, there exists exactly
one j, s.t. Y [i][j] = 1. As well, the elements of the matrix
Y can only take the values 0 and 1. The matrixY is used
to enforce the condition that every c-tuplet′′j in T ′′

C can be
used to delete at most one c-tuple ofT ′

C and that every c-
tuple t′i in T ′

C can be deleted at most once. Lastly, the local
conditions that we add to the result c-table do the deletions.
They specify that if for some valuation bothX [i][j] and
Y [i][j] = 1 hold, i.e. if the c-tuplet′i in T ′

C matches with
the c-tuplet′′j in T ′′

C and the valuation is such thatti can
not be deleted by any tuple other thentj , and tj can only
delete ti, then ti should be deleted from the result. This
guarantees that, given a valuationv, each c-tuple inT ′

C may
disappear from the corresponding representation only if there
exists a matching c-tuple inT ′′

C that evaluates to TRUE.
Moreover, given a valuationv, every c-tuple inT ′′

C can delete

x 6= 3 ∧ x 6= 2 ∧
x = 4 ∧ TRUE ∧ TRUE

x 6= 3 ∧ x 6= 2 ∧
x = 2 ∧ z > 3 ∧ TRUE

TRUE ∧ x 6= 2 ∧ 4 = 4
TRUE ∧ TRUE FALSE

A B condition

2 x
x 6= 3 ∧ ¬((X[1, 1]∧
Y [1, 1] = 1) ∨ (X[1, 2] ∧ Y [1, 2] = 1))

2 4
TRUE ∧ ¬((X[2, 1]∧
Y [2, 1] = 1) ∨ (X[2, 2] ∧ Y [2, 2] = 1))

g.c. (x 6= 2) ∧ ((Y [1, 1] = Y [2, 2] = 1 ∧ Y [1, 2] = Y [2, 1] = 0) ∨
(Y [1, 2] = Y [2, 1] = 1 ∧ Y [1, 1] = Y [2, 2] = 0))

Table VI
SHOWS THE MATRIX X AND THE RESULT FORR1−̇R2

A B condition
2 x x 6= 3 ∧ (x 6= 4 ∨ FALSE)
2 4 TRUE ∧(x 6= 4 ∨ x = 3)

g.c. x 6= 2

Table VII
THE RESULT OFε(R1)

at most one c-tuple fromT ′
C , i.e. the algorithm is correct and

Rep(T ′
C−̇T ′′

C) ≡ [Rep(T ′
C)−̇Rep(T ′′

C)] ∪ {∅}. Here{∅} is
used to represent the empty c-table. We don’t have an exact
equality in the above formula since we constructed the global
condition ofT ′

C−̇T ′′
C in such a way that we allow for{∅}

to be a possible representation. It is our believe that this is
an intrinsic problem of monus when dealing with the closed
world assumption. A demonstration of how monus can be
applied over our example c-tables is shown in Table 6 for the
expressionR1−̇R2. Monus, as we have defined it, without
normalizing the resulting c-table takesO(s′ ·s′′) time, where
s′ ands′′ are the sizes of the c-tables on which the operation
is performed.

E. Duplicate Elimination

The last relational algebra operation that we will explore
is duplicate elimination and we denote it asε(TC). Note
that duplicate elimination can be defined as a grouping by
all the attributes in the relational case. In the case of c-
tables, we defineε(TC) = groupĀ(TC), whereĀ are the
attributes ofTC . Note that the result of the group operation
is a nested c-table(see Table 8). We define the semantics
of a nested c-table and of thegroup operation in Section
4.1. Also, note thatε(Rep(TC)) ≡ groupĀ(Rep(TC)) ≡
Rep(groupĀ(TC)) ≡ Rep(ε(TC)), which proves that du-
plicate elimination is well defined. The fact that the equa-
tion groupĀ(Rep(TC)) ≡ Rep(groupĀ(TC)) holds follows
from the fact that thegroup operation is well defined over
c-tables.

The result ofε(R1), whereR1 is the c-table defined in
Table 3, is shown in Table 7.

In this section we have presented algorithms for imple-
menting bag relational algebra operations over c-tables with



duplicates. The presented operators are complete in the sense
that all bag relational algebra operations can be expressed
in terms of the presented ones.

IV. A PPLYING AGGREGATION TO

C-TABLES

To the best of our knowledge, no research has been pub-
lished in the areas of applying grouping and aggregation to
c-tables. We are aware of research on applying aggregation
to fuzzy numbers [21] and to random variables [22], but
the query results in those methods are approximations. On
the other hand, the research done in constraint databases
[23] has explored the problem of aggregating over constraint
databases. Unfortunately, the operation of aggregation in
most constraint database systems is not closed [24]. We
are also aware of recent research in the area of auditing
confidential information ([25]), which however deals only
with aggregation over Boolean variable.

A. Basics of Grouping

In general, we would like to be able to evaluate a re-
lational query of the formĀFagg1(B1),...,aggn(Bn)TC , where
Ā∪{Bi}n

i=1 are the attributes ofTC , Ā = {Ai}k
i=1 and each

aggi is one of the operationsmin, max, sum, count and
avg. In the relational case the above expression is evaluated
by grouping the tuples that have the same values forĀ into
a single tuple that has this common value for its firstk

fields and the remaining fields are calculated by applying
the aggregations to thēB fields of the tuples in the group.
In order to extend this definition to c-tables, we will need
to be able to group c-tuples and perform aggregation on c-
tuples. In this subsection we will explore how the grouping
can be done and in the next subsection aggregation will be
presented.

Let us denote the result of grouping by the attributesĀ

of TC as groupĀ(TC). The result of this operation will
be a nested c-table, i.e. the value of a field in it may be
a bag of values. For example, in the result of the above
grouping operation, the values for the attributes inĀ will
be single values and for the attributesB1, .., Bn - bag of
values. The result ofgroupBR1 is shown in Table 8, where
R1 is shown in Table 4. We will refer to the c-tuples of
a nested c-table asnested c-tuples. Formally, a nested c-
tuple with single valued attributes{Ai}a

i=1 and multi-valued
attributes{Bi}b

i=a+1 is the sequence of mappings fromAi

to D(Ai) ∪ Vi for i ranging from 1 toa plus the sequence
of mapping fromBi to a bag of values overD(Bi)∪Vi for
i ranging froma + 1 to b plus a local condition over(R,

>, =, +) ∪ (S =, 6=). Note thatD(A) was used to denote
the domain ofA and Vi was used to represent a possibly
infinite, countable, set of variables overD(Ai) if i ≤ a and
overD(Bi) otherwise. The semantics of a nested c-table are
similar to the semantics of a regular c-table as described in
Section 2.1 (see Equations 1,2,3). The difference is that a

A B condition
2 x x 6= 3 ∧ (x 6= 4 ∨ FALSE)
2 4 TRUE ∧ (x 6= 4 ∨ x = 3)

2
2 4 x 6= 3 ∧ TRUE ∧ x = 4

g.c. x 6= 2

Table VIII
THE RESULT OFgroupBR1

nested c-table represents a set of nested bag relational tables
(see [26]) under different valuations and consists of a bag
of nested c-tuples.

The algorithm we propose for computingV =
groupĀTC , where Ā ∪ B̄ are the attributes ofTC and
Ā = {Ai}k

i=1 and B̄ = {Bi}n
i=1 is shown in Figure 6.

In it we have used the concepts of semi-unifiable c-tuples
and c-tuple comparison as presented in Definitions 2 and 3.

Definition 2: The c-tuples{tiC}n
i=1 of the c-tableTC are

semi-unifiable relative to the set of attributes̄A iff the
formula

n∧

i,j=1

πĀmain(tiC) = πĀmain(tjC) is satisfiable.

Definition 3: We will write t′ ≺A t′′, wheret′ andt′′ are
c-tuples andĀ is a set of attributes iffmain(πĀ(t′′C)) can
be constructed frommain(πĀ(t′C)) by substituting some of
the variables inmain(πĀ(t′C)) with constants.

A demonstration of how the algorithm can be applied to
an example c-table is shown in Appendix A. In order to show
why the proposed algorithm for calculatinggroupĀ(TC) is
correct, i.e. whygroupĀ(Rep(TC)) ≡ Rep(groupĀ(TC)),
let’s look at the algorithm’s steps. Step 1 initializes the
algorithm by copyingTC into the result c-table. Step 2
clusters the c-tuples into e-bags, relative to the attributes
of Ā. Note that step 2 is equivalence preserving and that
c-tuples from different e-bags cannot contribute to the same
resulting nested c-tuple under any valuation. That is why it
suffices to perform thegroup operation to the c-tuples in
each e-bag and then merge the results. Step 3 normalizes
the e-bags, where part of the normalization is the removal
of the global condition of the c-table. Step 4 partitions
each e-bag further into r-bags. What is done in this step
is to partition the space over which the local conditions of
the c-tuples in the e-bags is defined into non-overlapping
polyhedras. Each r-bag corresponds to a single polyhedra,
or to a set of disjoint polyhedras. Note that this operation
is equivalence preserving. The additional constraint thatall
the conjunctions that form theD[i] of a given r-bag appear
in the same set of c-tuples’ local conditions guarantees that
the r-bags partition the possible valuations, i.e. under every
valuation the local condition of at most one r-bag of every e-
bag will be true. In other words, given an arbitrary valuation
and an e-bag of r-bags, either non of the c-tuples’ local
conditions will be true or the local conditions of all the
c-tuples in exactly one r-bag will be true. What remains
is to determine which c-tuples can be grouped together in



INPUT : c-tablesTC with attributesĀ ∪ B̄, whereĀ = A1, . . . , Ak and B̄ = B1, . . . , Bn.
ALGORITHM :
1. CopyTC into VC .
2. Cluster the c-tuples ofVC into biggest bags of semi-unifiable tuples relative toĀ - we will call this e–bags. If a c-tuple
belongs to more than one e-bag, then make copies of the c-tuple and put a copy in each e-bag. To do so, add the local

conditionx = i to the ith copy of the c-tuple fori < u and the local condition
u−1∧

i=1

x 6= i to theuth copy, wherex is a

newly introduced variable andu is the number of times the c-tuple is copied.
3. Apply the c-table normalization procedure to the set of c-tuples in each e-bag.

4. Partition each e-bag further into r-bags. To do so, apply Step 3 from the algorithm in Figure 1 to
p∨

i=1

lc(ti), to get the

set of non-overlapping conjunctions{ci}w
i=1, where{ti}p

i=1 are the c-tuples in the e-bag. LetC = {ci}w
i=1. Rewrite the

local condition of eachti as a disjunction ofcis. Next, breakC into equivalence classes, relative to the operation∼. We
defineci ∼ cj iff the set of the rewritten local conditions in which the twoconjunctions appear is the same. Form the
arrayD in such a way thatD[i] is a disjunction of all the conjunctions in theith equivalence class. ReconstructVC by
substituting each e-bag with a bag ofr-bags, where the c-tuples inith r-bag of a given e-bag will have the same local
condition as the corresponding value ofD[i] and the main parts will correspond to the c-tuples that contained the local
conditions that formed the equivalence class corresponding to D[i].
5. From each r-bag form a set of vertices, where each vertex corresponds to a distinct c-tuple in the r-bag (i.e. for duplicate
c-tuples we will have a single vertex). Find all spanning undirected graphs for the built vertices that are transitive and have
the property that if there is an edge between the verticesn1 andn3 and there exists a third vertexn2 such thatt1 ≺Ā t2
andt2 ≺Ā t3, wheret1, t2 andt3 are the c-tuples corresponding to the vertices, then there are edges betweenn1 andn2

and betweenn2 andn3. Next, the set of nested c-tuples that correspond to each graph are created. They union yields the
result of doing the grouping. More precisely, suppose we areexamining a r-bagr and a graphG associated with it. Since
G is transitive, it will contain a set of disjoint complete sub-graphs, where each such sub-graph will correspond to a
resulting nested c-tuples. Let the vertices in the completesub-graph belong to the c-tuples{ti}p

i=1, then the corresponding
nested c-tuple, will have the single value(x1, . . . , xk) for the attributesĀ, the bag of values{| πB̄main(ti)|}p

i=1, for

the attributesB̄ and local conditionLr ∧RG

p∧

i=1

[(πĀmain(ti)) = (x1, . . . , xk)]. The conditionLr is the local condition

of the r-bagr. The conditionRG is the condition that projection on thēA attributes of the main parts of the c-tuples
that correspond to nodes inG that are connected should be equal, while the projection on the Ā attributes of the main
parts of the c-tuples that correspond to nodes inG that are not connected should be different.

Figure 6. The algorithm for calculatingVC = groupĀTC

each r-bag and this is done in Step 5. The step constructs a
set of graphs for each r-bag, where each graph corresponds
to a valuation. In a graph, there is an edge between two
vertices if under the corresponding valuation it is true that
πĀ(main(t′C)) = πĀ(main(t′′C)), wheret′C and t′′C are the
c-tuples corresponding to the vertices. It can be easily shown
that a graph is valid, i.e. a corresponding valuation existsiff
(1) the graph is transitive (2) if there is an edge between the
verticesn1 and n3 and there exists a third vertexn2 such
thatn1 ≺Ā n2 andn2 ≺Ā n3, then there are edges between
n1 andn2 and betweenn2 andn3. This is why all the graphs
having these two properties are constructed and these graphs
show which c-tuples in the r-bag will be grouped relative to
the attributesĀ under different valuations.

To calculate the time bound for applying the presented
grouping algorithm, we will adopt the parameter names used
in Theorem 2. More precisely,v is the number ofvariable
c-tuplesin TC , m is the greater of the size of the longest
c-tuple and the size of the global condition ofTC , n is

the number of regular c-tuples with distinct main parts,r

is the highest count of regular c-tuples that have the same
main part, but distinct local conditions,s is the number of
attributes inTC and c is a constant. Then Step 2 of the
grouping will takeO(2v +n) ·s time because it may take as
much asO(2v · s) time to partition the variable c-tuples and
then O(n · s) time to determine the groups for the regular
c-tuples. Note that we get this low time bound thanks to
the fact that regular c-tuples with distinct main parts can
not appear in the same e-bag. Step 3 takesO((2v + n) ·
(
√

2
(v+r)·m · ((v + r) ·m)c · 2v+r · v) because we may have

as much as2v +n e-bags to normalize and each e-bag may
contain as much asv + r c-tuples. Step 4 will takeO((2v +

n) · 3
√

2
m·(v+r) · (m · (v + r))c) time because the size of a c-

tuple’s local condition may grow to a size ofO(m · (v + r))
after the normalization procedure is applied. Step 5 takes
O((2v +n) ·2v+r ·2v+n) time because there maybe as much
as2v+r r-bags in each e-bag and each r-bag may contain as



Ā B̄ condition
a1 . . . ak b11 . . . b1n c

. . .

b
p
1 . . . b

p
n

Table IX
A COMPLEX C-TUPLE tC

Ā B̄ condition

a1 . . . ak x1 . . . xn
c ∧ con(x1, agg1, b11, . . . , b

p
1)∧

· · · ∧ con(xn, aggn, b1n, . . . , b
p
n)

Table X
THE RESULT OFĀFagg1(B1),...,aggn(Bn)(tC)

much asn+v distinct c-tuples and therefore there are2v+n

possible graphs for each r-bag.

B. Performing the Aggregation

Now that we have defined how grouping over c-tables
can be done, performing aggregation is straightforward.
Consider the expressionA1,...,Ak

Fagg1(B1),...,aggn(Bn)TC ,
where the setsĀ = A1, . . . , Ak and B̄ = B1, ..., Bn are
disjoint and their union yields all the attributes inTC .
We can calculate the result of performing the aggrega-
tion by first computing the value of the nested c-table
groupĀTC and then aggregating over thēB attributes by
introducing new variables in the main parts of the result
and moving the aggregations to the local conditions. More
precisely, suppose the nested c-tuple shown in Table 9 is
in the result ofgroupĀTC . Then this c-tuple will appear in

ĀFagg1(B1),...,aggn(Bn)TC as shown in Table 10. The way
the operatorcon is calculated, relative to the value ofarg,
is shown in Table 11. The fact that aggregation, as we have
defined it, is well-defined follows from the correctness of the
grouping algorithm and the correctness of thecon operator
as defined in Table 11.

V. CONCLUSION AND FUTURE

(agg) con(x, agg, b1, . . . , bn)

min
n∧

i=1

(x ≤ bi)

max
n∧

i=1

(x ≥ bi)

count n

sum x =
n∑

i=1

bi

avg x + · · · + x
︸ ︷︷ ︸

n times

=
n∑

i=1

bi

Table XI
EXPLAINS THE OPERATORcon

RESEARCH

In this paper we have presented algorithms for querying
c-tables extended with linear conditions and over the closed
world assumption. We have chosen this representation be-
cause it is the least expressive extension of c-tables over
which bag relational algebra with grouping and aggregation
is closed and can be well defined. As expected, the running
time of the presented algorithms is polynomial relative to the
size of the certain information and non-polynomial relative
to the size of the incomplete information.

A major topic for future research is optimizing the pre-
sented algorithms for performing the relational operations.
For example, in the relational case, the join between two
tables can be performed in different ways and depending on
the method we choose the time for performing the join will
vary. The same applies for joining c-tables. In general, there
are many ways of doing the presented relational algebra
operations over c-tables. The purpose of this paper was
to define their semantics by presenting example algorithms
for doing the operations. Other possible extensions of the
presented work follow.

• Speed up the presented algorithms by sacrificing their
accuracy, i.e. explore approximate query answering for in-
complete information.
• Explore integrity constraints for incomplete information
and how they can be used for semantic query optimization.
• Extend research done in relational databases, such as
research on view maintenance and transaction control man-
agement, to databases containing incomplete information.
• Explore querying c-tables with order.

VI. EXAMPLE OF DOING GROUPING

Here we show an example of performing the grouping.
Suppose we have the c-tableR shown in Table 12 and
we want to calculategroupA,B(R). Table 13 shows the
two e-bags that will be constructed after applying Step 2
of the algorithm presented in Figure 6. Tables 14 and 15
show respectively the value of theC and D array that
are constructed in Step 4. Table 16 shows the r-bags for
the first and second e-bag that are constructing by Step 4.
When processing the first r-bag of the first e-bag Step 5 of
the algorithm will consider four possible graphs, which are
shown in Figure 7, where nodes 1, 2 and 3 correspond to the
first, second and third c-tuple of the first r-bag of the first e-
bag. The corresponding resulting nested c-tuples constructed
by Step 5 of the algorithm for the examined r-bag are shown
in Table 17.
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A B C condition
x y 1 (x + y = 3) ∨ (x > 4) ∨ (x < 0)
x 3 2 (x + y = 3 ∧ x < 2) ∨ (x < 0)
2 3 3 x > 5
2 3 4 TRUE
3 4 5 TRUE

Table XII
EXAMPLE C-TABLE R

A B C condition
x y 1 (x + y = 3) ∨ (x > 4) ∨ (x < 0)
x 3 2 (x + y = 3 ∧ x < 2) ∨ (x < 0)
2 3 3 x > 5
2 3 4 TRUE

A B C condition
x y 1 (x + y = 3) ∨ (x > 4) ∨ (x < 0)
3 4 5 TRUE

Table XIII
E-BAGS IN groupA,B(R)

C[1, . . . , 6] C[7, . . . , 11]
x < 0 ∧ t = 1 x < 0 ∧ t 6= 1
0 ≤ x < 2 ∧ x + y = 3 ∧ t = 1 0 ≤ x < 2 ∧ x + y = 3 ∧ t 6= 1
2 ≤ x ≤ 4 ∧ x + y = 3 ∧ t = 1 2 ≤ x ≤ 4 ∧ x + y = 3 ∧ t 6= 1
4 < x ≤ 5 ∧ t = 1 4 < x ≤ 5 ∧ t 6= 1
x > 5 ∧ t > 1 x > 5 ∧ t 6= 1
x + y 6= 3 ∧ 0 ≤ x ≤ 4

C[1, 2] C[3, 4]
x < 0 ∧ t 6= 1 x > 4 ∧ t 6= 1

0 ≤ x ≤ 4 ∧ x + y = 3∧
t 6= 1

(0 ≤ x ≤ 4 ∧ x + y 6= 3∧
t 6= 1) ∨ (t = 1)

Table XIV
THE ARRAY C FOR THE TWO E-BAGS

i D[i] c-tuples corresponding toD[i]
1 C[1] ∨ C[2] {1, 2, 4}
2 C[3] ∨ C[4] {1, 4}
3 C[5] {1, 3, 4}
4 C[7] ∨ C[8] {2, 4}
5 C[11] {3, 4}
6 C[6] ∨ C[9] ∨ C[10] {4}

i D[i] c-tuples corresponding toD[i]
1 C[1] ∨ C[2] ∨ C[3] {1, 2}
2 C[4] {2}

Table XV
THE ARRAY D FOR THE TWO E-BAGS

3

1

2

Graph 1

3

1

2

3

3

1

2

1

2

Graph 2

Graph 3 Graph 4

Figure 7. The four possible graphs

A B C condition
x y 1 (x < 0 ∧ t = 1)∨
x 3 2 (0 ≤ x < 2 ∧ x + y = 3 ∧ t = 1)
2 3 4
x y 1 ((2 ≤ x ≤ 4) ∧ (x + y = 3) ∧ t = 1)∨
2 3 4 ((4 ≤ x ≤ 5) ∧ (t = 1))
x 3 1 x > 5 ∧ t = 1
2 3 3
2 3 4
x 3 2 (x < 0 ∧ t 6= 1)∨
2 3 4 (0 ≤ x < 2 ∧ x + y = 3 ∧ t 6= 1)
2 3 3 x > 5 ∧ t 6= 1
2 3 4

2 3 4
(x + y 6= 3 ∧ 0 ≤ x ≤ 4)∨
(2 ≤ x ≤ 4 ∧ x + y = 3 ∧ t 6= 1)∨
(4 < x ≤ 5 ∧ t 6= 1)

A B C condition
x y 1 (x < 0 ∧ t 6= 1) ∨ (0 ≤ x ≤ 4∧
3 4 5 x + y = 3 ∧ t 6= 1) ∨ (x < 4 ∧ t 6= 1))

3 4 5
(0 ≤ x ≤ 4 ∧ x + y 6= 3∧
t 6= 1) ∨ (t = 1)

Table XVI
THE R-BAGS FOR THE TWO E-BAGS

A B C condition
x y 1 y 6= 3 ∧ x 6= 2 ∧ R

x 3 2 y 6= 3 ∧ x 6= 2 ∧ R

2 3 4 y 6= 3 ∧ x 6= 2 ∧ R

x y
1
2 x 6= 2 ∧ y = 3 ∧ R

2 3 4 x 6= 2 ∧ y = 3 ∧ R

x y 1 x = 2 ∧ y 6= 3 ∧ R

2 3
2
4 x = 2 ∧ y 6= 3 ∧ R

x y

1
2
4

x = 2 ∧ y = 3 ∧ R

R = ((x < 0 ∧ t = 1) ∨ (0 ≤ x < 2 ∧ x + y = 2 ∧ t = 1))

Table XVII
THE CONTRIBUTION OF THE FIRST R-BAG OF THE FIRST E-BAG TO THE

RESULT OFgroupA,B(R)
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