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Abstract—In this paper we introduce bag relational algebra  to be closed anavell definegd we define the semantics of a
with grouping and aggregation over a particular representdion  c-table to be over thelosed world assumptigras defined
of incomplete information called c-tables, which was first in ([8]), and we extend local and global conditions to be

introduced by Grahne in 1984. In order for this algebra . . - .
to be closed and “well-defined”, we adopt the closed world linear. We will refer to the described c-tables lasar c-

assumption as described by Reiter in 1978 and extend the tupl ~ tables where their exact semantics is given in Section 2.1.
and table conditions to linear ones. It turns out that query Originally, c-tables were introduced by Grahne in [9] to

answering over the described extension remains polynomial have local and global conditions that didn’t contain the'*

relative to the size of thg certain information. Therefore,thg operator and the¥” relation. Later on, Grahne added the

proposed algebra can be implemented as part of a SQL engine ., lati in 131 H i f

that can query incomplete information. The execution time will >" relation in [3]. However, we are not aware of any
™operator to be part

be acceptable as long as the size of the incomplete informati ~ Published research that allows for the

is small relative to the total size of the database. of the local conditions or the global condition of a c-table.
Keywords-incomplete information; c-tables; relational model; ~ HOwever, introducing the" operator is required in order
null values for the relational algebra with aggregation that we intraelu
to be closed.
. INTRODUCTION The main contribution of the paper are the algorithms

Many times, when information is entered into databasesfor performing the different relational operations overelar
the values for some of the fields are left empty for variousc-tables. While the implementation of the operations proje
reasons. In some cases, partial information about the blartion, selection and inner join are similar to the case of set
fields is available, but existing relational database tetdgy =~ semantics (see [1]), the algorithms that perform the monus,
does not allow for such information to be processed. Imielin duplicate elimination, and grouping operations are novel.
ski and Lipski in [1] were among the first to propose richer
semantics for null values that allows for incomplete infarm
tion to be processed. However, their model was based on set Real world requirements have shown the importance
semantics. Later on, Libkin and Wong published a paper omf storing and querying incomplete information. However,
guerying incomplete information in databases with mulsise commercial database management systems (DBMSs) pro-
([2]), but included only a limited set of operations, which vide only limited support (e.g., only null values) for in-
excluded grouping and aggregation. Other papers thategackcomplete information. Part of the reason, why this is the
the problems of storing and querying incomplete infornmatio case, is the lack of research in the area. Note that while
include [3], [4], [5], [6], [7]. However, they all fail to edpre  the problem of storing incomplete information is somewhat
relational operations defined over bag semantics such a®lved, querying incomplete information remains an open
grouping and aggregation. research problem. We believe that this paper makes a signif-

In this paper we try to fill a gap left in published researchicant step towards solving the later problem. Another haurdl
in the area of storing and querying incomplete informationtowards the implementation of a DBMS that processes
More precisely, we show how bag relational algebra withincomplete information is the intrinsic high cost of manayi
grouping and aggregation can be applied over incompleteuch information. However, note that the algorithms we
information represented as a particular variatiort-@fbles  present for performing the various algebraic operatioms ar
A c-table consists of a set oftuplesand aglobal condition ~ non-polynomial relative only to the size of the incomplete
where every c-tuple is made up from a regular tuple that maynformation. Taking into account the ever increasing speed
include variables for some of its fields plus a local conditio computational resources, we believe that incorporatingsto
(See Table 1 for an example). The semantics of a c-table ihat store and query incomplete information in commercial
determined by the set of relations it represents, where eadtatabase engines is feasible. Moreover, we believe that the
representation corresponds to a possible valuation for thpresented work can play a key part in such an implementa-
incomplete information. In order for the relational algebr tion. For example, since the code for executing bag relation

A. Motivation



algebra operations is an important part of the kernel of a ggm]e ZChOOI zoid{t'on

SQL engine, we believe that the presented work can be used Mark | y T Z1

to implement a full SQL engine that can query incomplete q E TRUE

information stored as linear c-tables. g.c. (¢ Z'Mark™) A (¢ #"John") A (2 # y)
In what follows, in Section 2 we define a representation Table |

of incomplete information in terms of linear c-tables. We AN EXAMPLE C-TABLE

explore the fundamental properties of linear conditiond an

linear c-tables and present algorithms for their manipartat

In Section 3 we define bag relational algebra operations OV&fe same problem for the second system, which is presented
linear c-tables and give algorithms for their implememtati in [16], is higher than exponential.

In Section 4 the problem of grouping and aggregation over

linear c-tables is explored and in Section 5 a summary or th@. Definitions

presented work and areas for future research are outlined. . . -
Formally, we introduce a linear c-tablE, as a finite,

unordered bag of linear c-tuples and a global condition. A
linear c-tuple with attributegA;}% , is the sequence of
mappings fromA; to D(A;) UV; plus a local condition,

The problem of representing incomplete information inWhere: ranges from 1 tas, D(4;) de_note_ the_ domain of
the relational model is almost as old as the relational modeft @ndV; is used to represent a possibly infinite, countable,
itself ([10], [11], [12], [13], [14]). When a null value appes set of variables oveD(A;). The local and global conditions
in a relational table, its value can be interpreted as n&an range ovefR, {>, =, +})U(S{=, #}). Table 1 shows
information available, only partial information availapl 2" €xample of a linear c-table.
value not applicable, and so on. Most of the research on null W& Will refer to the part of a linear c-table where the
values has concentrated on the first two meanings. Knowfat@ is stored as theain partand to the remaining parts
representations of relational tables adapting these mgani @S thelocal condition partand theglobal condition part
for nulls include Codd tables, naive tables, Horn tables and€SPECtIVely. In our exampley, y, = and  are used to
c-tables. Codd tables are relational tables, where theegaly '€Present variables. Since our model is limited only to

of some the fields can be null. Naive tables are an extensioit® domains of real numbers and strings, the domain of a

of Codd tables, where each null is given a label and nulid/ariable that doesn't appear in the main part of a linear c-
having the same label represent the same unknown valu@ble can be inferred from the context in wh_|(_:h it appears.
C-tables are naive tables with a local condition associated]! OUr €xample, we can use the local condition= 1 to
which each tuple and a single global condition associated€duce that the domain ofis R. _ _

with each table. Horn tables are a special kind of c-tables, 1h€ €xample linear c-table contains the information that

where the conditions that can appear are restricted to HorRither there are no students or there are two students that
clauses. study in different schools and the name of one of them is

Grahne in [3] considered conditions over the system John” or “Mark” and the name of the other one is neither

(R,{>,=}) (i.e., Boolean expressions with variables and“John" nor “Mark”. Note that in this example and throughout

constants defined over the s&t extended with “” and the paper we will be using the closed world assumption.
“_"). To the best of our knowledge, this is the most expres-The assumption states that a database representatiomsonta

sive system for expressing c-table conditions in published®" the things that are known to be true. In our example,
research. In this paper we explore c-tables whose conditionV¢ have used this assumption to conclude that there are at
are over the systen®, {>, =, +}) U (S, {=, #}), where ~MOSt two students. , ,
R is used to denote the set of real numbers &risl the set In order to formally define the semantics of a c-table,
of strings over some finite alphabet. While the™operator Imielinski and Lipski in [1] intro_ducg a f_unction caIIeH_ep
is introduced in order to make the algebra closed relative t§hat maps a c-tabléc to a possibly infinite set of relational
aggregation, the system over strings is introduced to extent@Ples. Intuitively, the meaning of thBep function is that

the function returns all relational tables

the expressive power of c-tables. Note that we don't exploré"Ven a c-tablelc, . ¢ -
conditions over Z, {>, =, +1), whereZ is the set of inte- thatT could represent under different valuations. In [1] this

gers, or overR, {>, =, % +1). The reason is that, although function is defined relative to thegppen world assumptioiwe

those systems are more expressive, reasoning with them define it relative to the closed world assumption as follows.

much harder. For exa_mple, Fis_cher and Rabin have shown in Rep(Tc) = {T|3v, s.t. v(Tc) =T} 1)

[15] that the complexity of deciding whether a formula over

the first system is satisfiable is super exponential. As well]n the definitionv is a mapping that maps the variabledin

the complexity of the fastest known algorithm for solving to constants in the corresponding domains and is genedalize

II. C-TABLES WITH LINEAR
CONDITIONS



to linear c-tuples as follows. Theorem 1:If two sets of atomic conditions ovéR, +,
>, =) define the same point set, wheRe is the set of

vle(to)) Av(ge(To)) real numbers, their canonical forms will have identical set
) of equality conditions, the same inequality conditions up
In the formula the functionsnain, lc and gc are used to O mu_ltiplicatio_n by a positive scalar and the same set of
denote the main part and the local condition part of a lineaf€gative conditions.

c-tuple and the global condition part of a linear c-tablee Th
symbole is used to represent the empty set. The value of th
tuplev(main(tc)) is calculated by substituting the variables
in the main part ot with the values to whiclv maps them : A Y -
to. The mapping is further extended to linear c-tabl- ¢2 V...V ¢n, Where each conjunction is positive.

as shown in Equation 3, whefe, }x_, are the c-tuples in 2. Normalize each conjunction; using the algorithm
= from [17].
Tc.

‘ , 3. Scan the conjunction$c;}?, in order. In the firs
v(Te) = { v(te)li € [1, k] Av(te) # e [} 3) iteration mark the conjunction . During thek®® iteration
find the intersection o€, with each of the marked con-
, junctions. More precisely, if,. .., g, are the marked
[ conjunctions so far, then calculate the normal forms of
gi N\ ¢k, gi N —c and —g; A e (1 = 1 to p) using
r the algorithm from [17] to form the new set of marked
conjunctions. Note that the algorithm from [17] may
'return that a conjunction is unsatisfiable, in which dase
the conjunction should be dropped and not marked.
4. The simplified value fo” will be g, V- - -V g,,, Wwhere
B. Linear Condition Simplification g1, ..., gm are the marked conjunctions at the end of $tep
In the c-table normalization procedure that we will present 3. If there are no marked conjunctions at the end of Step
in Section 2.3 a way to simplify linear conditions and| 3, then returnC’ = FALSE.
check their satisfiability will be required. Note that a kme
condition is a Boolean expression and, as such, can be

expressed as a disjunction positive conjunctionsA pos- The algorithm we present for simplifying a linear condi-
itive conjunction is a conjunction of positive atomic limea ion ¢ is presented in Figure 1. The algorithm first brezk
conditions, where a positive atomic linear condition is ofjhg 5 set of positive conjunctions. Next, it divides those
the forma -z = bora-x < b, wherez is a variable  cqpjunctions further so that they don't overlap and the
vector anda and b are vector constants. An atomic linear 4qorithm returns their normalized form in its final step&Th
condition includes in addition negative conditions of thealgorithm runs inO(m¢ - 3") time, wherem is the length of

form a -z # b. An intuitive representation of a positive ¢ ", is the number of conjunctions in the disjunctive normal
conjunction is a multi-dimensional polyhedra defining a¢yrm of ¢ (.e.n < (v2)™) andc is a constant. In order
semi-linear set. Therefore, a linear condition can be thoug ;4 verify this, note that Step 1 take3(m - n) time. Step
as a set of disjoint polyhedras. Note however that such 8 makesn calls to the procedure from [17], which runs
represent_ation is not_ l_mique and therefpreaunique caalonicjp, O(m®) time because the length of each conjunction is
form for linear conditions could not exist. _ smaller then the length @F. Step 3 makes at most— —1

Let us first consider the algorithm proposed in [17] for c4jis 1o the procedure from [17]. The reason is that in Step
normalizing conjunctions of linear equalities and inequal 3, during thek®™ iteration ¢ > 1), there can be as much
ties. More precisely, the paper represents a conjunction ofg 3(:-2) processed conjunctions and therefore as much
atomic linear conditions by the systefz < b, Ex = d,  453(k-1) calls to the normalization procedure from [17].
-(¢;z = f;), whereA and E' are matrices), d, ¢; and f; L T
are vectors and: is a variable vector. The normalization Therefore, Step 3 can do as mUCth_%:g =7 -1
algorithm runs in polynomial time, can be implemented tocalls to the normalization procedure and each call can take
run on parallel machines and relies on calls to a module thaat mostO(m¢) time.
solves linear programs. As well, the algorithm recognizes Note that the above algorithm can be used to test the
sets of unsatisfiable atomic conditions and reports thensatisfiability of a linear condition. To do so, we only need
as such. Part of the algorithm deals with elimination ofto execute the first two steps, which can be don®{m -
redundant conditions, which is an extension of the researchi©) time. The rest of the steps are only useful if we want
published in [18]. The pivot theorem from [17] follows. to eliminate duplicate information by breaking up the input

e : otherwise

o(te) = { v(main(tc))

L INPUT: linear conditionC
ALGORITHM :
1. ConvertC' into disjunctive normal form, i.eC' = ¢; vV

Note that it is also possible to define ordering for linear
c-tables, but we leave this topic for future research. Thg
presented definition of applied to a linear c-table is novel
and differs from the definitions presented in [1] and [3].
Unlike the cited papers, we define duplicate semantics fg
c-tables and use the closed world assumption. From now o
we will refer to linear c-tuples just as c-tuples and to linea
c-tables just as c-tables.

—

Figure 1. The linear condition normalization algorithm



A | B | condition
1|2 r=1
z 2 r =2
p|lw|x=t
gCitA#FINtF#2
A | B | condition
((a=1)AB=2)A(z
a|b (a=2)Ab=2)A(z
((a=pnb=w)A (=

INPUT: c-tableT¢

ALGORITHM

1. If for somete € T, the expressiofc(te) A ge(Te)
is not satisfiable, then remove: from T. Section 2.2

describes one way this can be done. Alternative methods

are described in [19], [20].
2. If for some c-tuples., t¢, € T¢, ti; andt{, areunifi-
able then substitute them i with a c-tuple with mair,

part X = z1, 9, ..., x,, Wheren is the arity of T and

Table Il : i o8
A C-TABLE AND THE RESULT OF APPLYING NORMALIZATION STEPSL, 2 T; are newly introduced Varlab|eS. and local condition
AND 3TOIT (X = main(ty) Ale(ty)) V(X = main(th) Ale(ty)).

Repeat this step as many times as possible.
3. Propagatec(T¢) to all local conditions, i.e. for eveny
) o o tc € Te set the local condition of to lc(to) Age(Te).
linear condition into disjoint polyhedras. Next, simplify all local conditions using the algoritqm

The presented algorithm can be applied not only tg presented in Section 2.2. Remove all c-tuples for

conditions over the systeniR, >, =, +), but also 10 | which c(¢c) is not satisfiable. Put TRUE as the global
conditions over the systerfR, >, =, +) U (S, =, #). To condition of the resulting c-table.

do so, substitute each atomic conditions of the farg c, 4. For every c-tuplec € Tc, if main(tc) contains the
wherez is a string variable and is a string constant with | | 4riaple « for the attribute A; of T, and lc(tc) =
r=cVr=cV--Vr=cVe=cyr, Wheree. isa (x = ¢) is a valid expression, where is a constant,

newly introduced string constant afid; }7_, are the existing then replacer with c in main(tc).
string constants in the condition excludiagAs well, substi-
tute each atomic condition of the form y, wherex and

Figure 2. The c-table normalization algorithm

3
y are string variables with <é/'7 (x = ¢; ANy = ¢;), where
i,j=1,r+2

¢r4+1 @ande,4o are newly i?ltrodtced constants afid }7_, The idea behind this definition is that if two c-tuples have
are the existing string constants. Alternatively, Step 1 oflocal conditions that can not both hold under any valuation,
the algorithm can be modified to require the breaking”of then at most one of the c-tuples could be present in any
into not necessarily positive conjunctions. This modifimat representation of the c-table and therefore the two c-tuple
allows the direct application of the algorithm to a linearcan be merged into one. The algorithm we propose for
condition containing strings because the algorithm froif] [L normalizing a c-tablel'= is shown in Figure 2. Table 2
handles equality and week inequality conditions separatelshows the result of applying the first three steps of the
from inequality conditions. presented normalization algorithm to an example c-table.

In the rest of the paper, unless we explicitly specify The properties of the algorithm can be summarized by the
otherwise, when we refer to the algorithm from Sectionfollowing theorem.
2.2, we will mean the algorithm which executes only the Theorem 2:The presented normalization algorithm is
first two steps, where the first step breaksinto not correct, i.e. Norm(T¢) ~ T¢ for any c-tableT:, where
necessarily positive conjunctions. The time complexity ofNorm is the normalization function as described by the
such an algorithm applied to a linear condition oy®; >,  algorithm. As well, the normalization procedure runs in
= +H)U(S, = #) is O((vV2)™ +m°). O(\/i(vw)'m ((w+71)-m)- (27" +d) - (v+n)) time,
wherev is the number ofvariable c-tuplesn T¢, m is the
greater of the size of the longest c-tuple and the size of the

Note that there may be different c-tables representing thglobal condition of7¢, d is the number of distinct local
same set of bag relational tables, i.e. it may be the caseonditionsn is the number of regular c-tuples with distinct
that T/, # T¢ but Rep(T}) = Rep(T{). If Rep(T)) =  main parts,r is the highest count of regular c-tuples that
Rep(T/), then we will say thatl, and T/, are equivalent have the same main part, but distinct local conditions and
and writeT/, ~ T/. In this section we present a method for c is a constant. Note that we have used the term variable
testing equivalence of c-tables by comparing their normalc-tuple to denote a c-tuple that has at least one variable
ized forms. In the presented algorithm we use the concepppearing in its main part and regular c-tuple do denote a
of c-tuple unification. c-tuple that has no variables appearing in its main part.

Definition 1: The c-tuplest, andtZ of the c-tableT: Proof(Sketch): In order to prove the first part of the
are unifiable iff the formuldc(t) Alc(t2) A ge(Tc) is not  theorem, we need to show that each of the five steps are
satisfiable. equivalence preserving, i.e. that - is a c-table and

C. C-Table Normalization



O; is used to denote the application of ti& step, then | INPUT: c-tablesT, andT¢
O,(Tc) ~ Tc, for i = 1 to 4. The proofs that the statement | ALGORITHM :
is true fori = 1, 3 and 4 are trivial. Foi = 2, note that | 1. NormalizeT, and7¢.
the algorithm examines pair of c-tuples that can not appear 2. If the number of c-tuples in the two normalizedc-
in the same representation, sinkegt,) A le(td) A ge(Te) tables is equal try to match them. Two c-tuptes and
is not satisfiable for them. We can therefore combine them t¢: match iff (main(t) = main(t¢,)) Alc(ty ) Ale(ts) is
and merge their conditions. In this way at most one of the satisfiable. An efficient way to check this satisfiability
two original c-tuples will appear in any representation and to first check thatnain(t;,) = main(tf,) is satisfiable
the set of representations of the c-table is not changed. | which can be done i@ (r) time, wherer is the arity of
To prove the time bound, note that Step 1 of the algorithm the c-tuples being compared.
takesO((v/2)™-me-d) time. The reason is that the algorithm | 3.7 andT¢, are equivalent iff there exists a one-to-gne
from Section 2.2, which take8((v/2)™ -m¢) time, needs to | match between the c-tuples of the normalized c-tables.
be applied to be applied i@ distinct local conditions. Steps
2 will take O(v® - (v/2)™ - m®) time. The reason is that it
takesO(v?) time to check for
To see, why this is the case, note that at mosty groups

f | did b 4 in the alqorith Proof(Sketch): First, note that if two c-tables are equiv-
of c-tuples are candidates to be merged in the algorit rT]alent, their normalized forms will have the same number

Thi reason '? Lhat rg?u(;arEc-tl;ples that r:;s\ve dt|ff_erer:t malilys c-tuples. The reason is that the normalization procedure
parts c?n Ino ed Ltjr:" € f' act grmie will-con z%J'Erajnoshnifies all c-tuples that can appear as one in a represemtatio
r+ v c-tuples and therefore at mogt,”) + - + (717) = Second, note that if two c-tables are equivalent there must

. . : vt
2"+ —(v+r)—1 iterations of the algorithm can be performed exist a one-to-one mapping that matches the c-tuples in thei
normal forms. To prove the time bound, note that Step 1

on it because we first explore pairs of c-tuples, then triplet

and s.((u).+f)!glally, not that eachllteratlon can take as much a[sakesO(\/ﬁ(wr)'m St r) - m)E - (2 4 d) - (04 n)).
O(v2 (m - (v +7))°) time because the algorithm g, 5 takes)(z2 - /2" - y©) time wherez is the number
from Section 2.1 may need to be applied to an expression a5t c-tuples in the biggef c-table ang is the size of the
long as(v+r)-m. Step 4 does the simplification of the local condition being compared. Since — 2°* - (n + v) and
conditions and can be performed @((v2)™ "7} - (v + y = (v +7) *m, the time bound followsHl

r)-m)¢-2°*". (n+v)) time because as much 25" - (n+v) '
distinct local conditions of size at most - (v + r) need to

S

Figure 3. The c-table comparison algorithm

be simplified. Step 5 can be performed@{(+/2)™ (V+7) . [1l. BAG RELATION ALGEBRA FOR

(m - (v+7))°- 2" . v) time because at mo&*" - v c- C-TABLES

tuples need to be checked. Therefore, the whole algorithm

will take 0(\/5(””)"” ((+7r)-m)e U +d) - (v+n)) So far we have defined the syntax and semantics of c-
time. & tables and shown how c-tables can be normalized. Next,

Note that the above algorithm can be improved if we tryWe will describe how rela.tional algedraan bg extended
to avoid doing the same computation more than once. Foi® handle c—tab_les. In particular, thanks to using the dose
example, we can buffer existing results and use them iyvorld assumption, we are able to develop a sound and
performing new calculations. This is a reasonable thing t&"0mMPplete extension of relational algebra that is closedaBy
do because most of the presented algorithms for performingloséd algebra we mean that for an arbitrary operatof
relational algebra operations produce c-tuples with locafne @lgebra, and for an arbitrary c-talife;, it is the case
conditions that have subexpressions in common. We believ#at¢(Zc) is a c-table. By sound we mean that only correct
that optimizing the above algorithm and making it as fast a@hswers will appear in the result gfT¢) or formally that
possible is of crucial importance to the general problem of?er(¢(Tc)) < a(Rep(Tc)) (a(Rep(Tc)) denotes the result
working with c-tables and therefore more research needs t8f @PPlyingg to each table inkep(T¢)). Lastly, by complete
be done in the area. we mean that all correct answers will be in the result of

The algorithm we propose for checking the equivalencél(TC) or thatq(Rep(T,C)) < ,Rep,(q(TC))' In this se.ct_ion
of two c-tablesT’. and T is presented in Figure 3. The we define the semantics pfojection selection inner join,
following theorerﬁ summgrizes its properties. monusandduplicate eliminatiorover c-tables with duplicate

Theorem 3:The proposed algorithm for checkirff, ~ semantics. The grouping and aggregation operations are
o o ot 9 discussed in the next section.
T/ is correct and works in tim&(((2°7" - (n+v))? +d) -

(v+7)-2m
2 - ((v +7)-2m)°)), wheren,m,v,r andd are
\/_ (( - ) ) )) 10our choice of relational algebra is arbitrary, i.e. any laage with the

equal to the maxmum (_’f the correspondlng values for thE‘expressive power of relational algebra, e.g. relationidubas, can be used
two c-tables as defined in Theorem 2. instead.



A | B | condition B | C | condition A | B | C | condition
2 [z | c#3 4 [ 1 | TRUE 2 x| 1] c#£3Az=4ATRUE
2 | 4 | TRUE 2|z | 2>3 2|z |z | z2#3ANz=2A2>3
g.C.x # 2 g.c. TRU 2|4 |1 | TRUEA TRUE
Table Il gc.z#2ATRUE
EXAMPLE R1 AND R2 C-TABLES Table V
THE RESULT OFR; > Ra
B | condition B | C | condition
4 | TRUE 41| TRUEATL>?
2| z2>3 21z | z2>3N2>2 .
gc TRUE gt TRU s.t. v(oy(Tc)) = o,(v'(Tc)). However, we have defined
selection over c-tables in such a way thdv, (T¢)) =
Table IV o,(v(T¢)) for any valuationv, which proves that selection

THE RESULT OFmg(R2) AND oc>2(R2)

A. Projection

If T is a c-table with attributes!, then we denote the
projection of the attributesl’ over this c-table as 4, (7¢).
The c-tabler 5, (T¢) is constructed from the c-tablg- by
removing all columns iMd — A’ and leaving the same local

is well defined. The right part of Table 4 shows the result
of oc~2(R2). The selection, as we have defined it, without
normalizing the resulting c-table takégs*m) time, where

s is the size of the c-table being normalized andis the
size of the selection condition.

C. Inner Join

Suppose we are given a c-talile with attributes{ A, B}
and a c-tablg} with attributes{ B, C'}. We denote the inner

and global conditions. Note that this is duplicate presgvi join of T¢, and T/ on the set of attribute®3 as T}, >3

projection. In order to prove that projection is well defined
we need to show thaRep(w 5. (T¢)) = 71 (Rep(T¢)) or
that the setsS; = {T|3v,v(rz(Te¢)) = T} and Sy =
71z ({T|3v,v(Tc) = T}) are equivalent. LeT” € S;. Then
there exists a valuation, s.t. v(w ;7 (T¢)) = T. Let T’ be
a table constructed fror’ by adding the columns for the
attributesA — A’ and filling them with arbitrary values. By
the definition of duplicate preserving projection over bag
relational tables it follows that 5, (T7) = T = v(7 1. (T¢)).
As well, note thafl” is a representation & for a valuation
v" extending the valuatiom for the attributesd — A’ and
thereforen 1, (v (Te)) = T = v(w 5, (T¢)), i.e. there exists
a valuationv’ s.t. 7z (v'(T¢)) = T, which implies that
T € S,. Proving the reverse direction is similar.

Table 3 shows the two example c-tables that we will

use throughout this section. The left part of Table 4 shows

the result ofrg(R2). The projection, as we have defined
it, without normalizing the resulting c-table take3(s)
time, wheres denotes the size of the c-table on which the
projection is applied.

B. Selection

We denote the selection over a c-talifle as o, (T¢),
wherey is a predicate formula ovéR, >, =, +)U(S, =, #),
which references the variabldsi;}? that have the same
names as the attributes @¢. We construcio, (T¢) from

T¢. We would like to define inner join in such a way that
Rep(T(, g T{) = Rep(T(.) <5 Rep(T{"). The algorithm
we propose for calculating inner join is shown in Figure 4.

INPUT: c-tablesT/, and T/, with common attributes3.
ALGORITHM :

1. Rename all the variables that occur{f in such g
way so that7/, andT/. share no variables in commo
2. For each c-tuplée, in T/, find all c-tuplesty, in T/
such thatr 3 (main(ty)) = mg(main(ty)) is satisfiable
For each found c-tupl¢’, insert a c-tuple in the resulting
c-table with main partt.. 7~(t{~)) and local condition
le(t) Ale(ty) A (t:[B) = 2] B]).
3 Add a global condition to the resulting c-table co
prised of the conjunction of the global conditions,

andT/.

n.

m_

Figure 4. The algorithm for calculating/, 0p T/

Table 5 shows the result @t; < Ry. The proof that inner
join is well defined is trivial and is skipped in order to save
space. Inner join, as we have defined it, without normalizing
the resulting c-table take3(n’-n" - (1/2)™-m®) time, where
n’ andn’ are the sizes of the c-tables being joined amd
is double the size of the longest local condition in them.

Tc by keeping the same global condition and adding byP- Monus

conjunction the local conditiony .y to each c-tupleic
from T, whered(t¢) is a substitution that substitutes every
variableA; with t-[A;] (the value for the attributd; in t¢).

In order to prove that we have defined selection correctly, weount (¢, T"),

need to show thaRep(o~(T¢)) = o (Rep(T¢)). But this
is equivalent to proving that there exist valuatianand v’

Monus is the difference operators for bags. In bag re-
lational algebra over bag relational tables it is defined
as: T'=T" = {tylt € T' Ak = maz(count(t,T") —

0)}, wheret, is used to denote the tupte
repeatedk tlmes andcount is a function that returns the
number of occurrences of the tuple specified as the first
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parameter in the ta_ble spep_ified as the second parameter.  ~ '\ TRUE A TRUE 2 Z=92A2%3 A TRUE
In order to extend this definition to c-tables, we propose th¢ TRUEAz Z2 A 4 =4 FALSE
algorithm shown in Figure 5. TRUE A TRUE
A | B | condition
_ z # 3 A (XL A
INPUT: c-tablesT/, andT¢.. 2 1= | YA = D VX1, 2AY,Y = 1)
ALGORITHM : > | 4 TRUE A =((X[2, 1]A
1. Rename all variables that occur Ti: in such a way # 2)”%{11/}[1:11}) v (;C[[22,22}] /\11[2@][1: 21})) Y1) - 0)
/ " H i g.C. (z A , 1 = ,2) = 1A ,2] = 1) = Vv
so that7/, andT/ share no variables in common. VL2 = V21 = 1A YL 1] = Y[2,2] = 0))

2. Copy T¢, in the result c-tablé’.

3. Construct a matrixX [z, j|, wherel < i < n = |T(],
1 < j < m = |Tf] and the operatoff.| denotes
the number of c-tuples in the specified c-table. |Set

Table VI
SHOWS THE MATRIX X AND THE RESULT FORR;1 — R2

X[il[j] = [main(t}) = main(t])] Alet]) A ge(TE) A A T B | condition
le(t?) A ge(TY), wheret] andt/ are thei*™® and j™ 2 [« [z #3A(z #4 VFALSE)
c-tuples in T/, and T/ respectively relative to some gi 1 i JRUEAzZ4Ve =3)
ordering of the c-tuples. o
4. Add, with conjunction, to the global condition of The Rzgg'fT\é”Fa(Rl)
the expression:A [V (Y[1,5] = --- =Y[i—1,j] =
j=1i=1
ALV Y1) = =Y[i,j—1] = Y[i,j + 1] =|  atmostone c-tuple frorfi,, i.e. the algorithm is correct and
i=1 j=1 oy — I\ " i
T Y[im] = 0AY[i,j] = 1)), whereY is anewly]  FePlTe—Tc) = [Rep(Tg)—Rep(Te)] U {0}. Here {0} is

used to represent the empty c-table. We don’t have an exact
equality in the above formula since we constructed the dloba
condition of T/,—T/ in such a way that we allow fof}

to be a possible representation. It is our believe that this i

introduced matrix of variables that is of the same size as

X.

5. Add, with conjunction, to the local condition of th#&
m

c-tuple of V' the condition| ‘\_/1(X[i,j]/\(Y[z',j] = 1)l. an intrinsic problem of monus when dealing with the closed
- world assumption. A demonstration of how monus can be
Figure 5. The algorithm for calculating” = T, ~T/ applied over our example c-tables is shown in Table 6 for the

expressionk; —R,. Monus, as we have defined it, without

What the algorithm does is to first rename the variabled'ormalizing the resulting c-table takegs’-s") time, where
of T/ so that they are distinct from those #.. Next, it :9' ands” are the sizes of the c-tables on which the operation
calculates the matriX and sets a restriction on the possible 1S Performed.
values for the matrixy”. The value ofX|¢, j|] contains the
condition that must hold for the c-tuptéto be deleted from
T¢ and the c-tuple that “deletes” it to b&. The matrix The last relational algebra operation that we will explore
Y'[i][j] has the restriction that for eaghthere exists exactly is duplicate elimination and we denote it a§l). Note
onei, s.t. Y[iJ[j]=1, and that for each, there exists exactly that duplicate elimination can be defined as a grouping by
onej, s.t. Y[i][j] = 1. As well, the elements of the matrix all the attributes in the relational case. In the case of c-
Y can only take the values 0 and 1. The matfrixs used tables, we define(T¢) = group;(Tc), where A are the
to enforce the condition that every c-tuplgin T can be attributes of7T-. Note that the result of the group operation
used to delete at most one c-tuple @ and that every c- is anested c-tablgsee Table 8). We define the semantics
tuplet] in T, can be deleted at most once. Lastly, the localof a nested c-table and of thgroup operation in Section
conditions that we add to the result c-table do the deletionst.1. Also, note that(Rep(Tc)) = groupz(Rep(Tc)) =
They specify that if for some valuation botk[i][j] and  Rep(groups(Tc)) = Rep(e(Tc)), which proves that du-
Y[i][j] = 1 hold, i.e. if the c-tuplet; in T/, matches with plicate elimination is well defined. The fact that the equa-
the c-tuplet in T/ and the valuation is such that can  tion group 1(Rep(T¢)) = Rep(group 5(T¢)) holds follows
not be deleted by any tuple other then and¢; can only  from the fact that theyroup operation is well defined over
deletet;, thent; should be deleted from the result. This c-tables.

E. Duplicate Elimination

guarantees that, given a valuationpeach c-tuple irf, may The result ofe(R;), where R, is the c-table defined in
disappear from the corresponding representation onlgith Table 3, is shown in Table 7.
exists a matching c-tuple il that evaluates to TRUE. In this section we have presented algorithms for imple-

Moreover, given a valuation, every c-tuple irf’ s can delete  menting bag relational algebra operations over c-tablés wi



. . A B | condition
duplicates. The p_resented operators are complete in tise ser] 2 = = Z3A (= Z1VFALSE)
that all bag relational algebra operations can be express¢t 4 | TRUEA (z Z4Vz = 3)
in terms of the presented ones. g 4| 2 £3ATRUEA © =4
IV. APPLYING AGGREGATION TO gcz#2
C-TABLES Table VIII

THE RESULT OFgroupp R1
To the best of our knowledge, no research has been pub-

lished in the areas of applying grouping and aggregation to
c-tables. We are aware of research on applying aggregation

to fuzzy numbers [21] and to random variables [22], buthested c-table represents a set of nested bag relatiotes tab
the query results in those methods are approximations. Ofsee [26]) under different valuations and consists of a bag
the other hand, the research done in constraint databasggnested c-tuples.

[23] has explored the problem of aggregating over condtrain  The galgorithm we propose for computing =

databases. Unfortunately, the operation of aggregation i, . T, where A U B are the attributes off= and
most constraint database systems is not closed [24]. Wg — (4,}k  and B = {B;}, is shown in Figure 6.

are also aware of recent research in the area of auditing, it we have used the concelgtls of semi-unifiable c-tuples
confidential information ([25]), which however deals only gnq c-tuple comparison as presented in Definitions 2 and 3.
with aggregation over Boolean variable. Definition 2: The c-tuples{ti,}7, of the c-tableT are
semi-unifiable relative to the set of attributes iff the
_ ; T\ — ; J N i icfi

In general, we would like to be able to evaluate a re-formUIam/ilﬁAmam(tC) = mamain(te) is satsfiable.
lational query of the formy 7, .., (B,).....agg. (B,) TC:» Where Definition 3: We will write ¢ <4 t”, wheret’ andt” are
AU{B;}1, are the attributes df, A = {4;}%_, and each c-tuples andA is a set of attributes iffnain(m4(t%)) can
agg; is one of the operationsvin, max, sum, count and  be constructed frommain(r 4(t)) by substituting some of
avg. In the relational case the above expression is evaluatetthe variables innain(r 4(t;)) with constants.
by grouping the tuples that have the same valuesifamto A demonstration of how the algorithm can be applied to
a single tuple that has this common value for its fiksst an example c-table is shown in Appendix A. In order to show
fields and the remaining fields are calculated by applyingvhy the proposed algorithm for calculatingoup ; (T¢) is
the aggregations to thB fields of the tuples in the group. correct, i.e. whygroup 5(Rep(Tc)) = Rep(groupz(Tc)),
In order to extend this definition to c-tables, we will needlet’s look at the algorithm’s steps. Step 1 initializes the
to be able to group c-tuples and perform aggregation on calgorithm by copyingT¢ into the result c-table. Step 2
tuples. In this subsection we will explore how the groupingclusters the c-tuples into e-bags, relative to the atteibut
can be done and in the next subsection aggregation will bef A. Note that step 2 is equivalence preserving and that
presented. c-tuples from different e-bags cannot contribute to theesam

Let us denote the result of grouping by the attributes resulting nested c-tuple under any valuation. That is why it
of Tc as group;(T¢). The result of this operation will suffices to perform theroup operation to the c-tuples in
be anested c-tablei.e. the value of a field in it may be each e-bag and then merge the results. Step 3 normalizes
a bag of values. For example, in the result of the aboveéhe e-bags, where part of the normalization is the removal
grouping operation, the values for the attributesArwill of the global condition of the c-table. Step 4 partitions
be single values and for the attributés, .., B,, - bag of each e-bag further into r-bags. What is done in this step
values. The result ofroupg R; is shown in Table 8, where is to partition the space over which the local conditions of
R, is shown in Table 4. We will refer to the c-tuples of the c-tuples in the e-bags is defined into non-overlapping
a nested c-table agested c-tuplesFormally, a nested c- polyhedras. Each r-bag corresponds to a single polyhedra,
tuple with single valued attributefs4; }¢_; and multi-valued or to a set of disjoint polyhedras. Note that this operation
attributes{Bi}ﬁ?:a+1 is the sequence of mappings fram is equivalence preserving. The additional constraint &lat
to D(A;) UV, for i ranging from 1 toa plus the sequence the conjunctions that form th®[i] of a given r-bag appear
of mapping fromB; to a bag of values oveb(B;)UV; for  in the same set of c-tuples’ local conditions guaranteets tha
1 ranging froma + 1 to b plus a local condition ove(R, the r-bags partition the possible valuations, i.e. underyev
>, =, +)U (S =, #). Note thatD(A) was used to denote valuation the local condition of at most one r-bag of every e-
the domain ofA andV; was used to represent a possibly bag will be true. In other words, given an arbitrary valuatio
infinite, countable, set of variables ovBX(4;) if i <a and and an e-bag of r-bags, either non of the c-tuples’ local
over D(B;) otherwise. The semantics of a nested c-table areonditions will be true or the local conditions of all the
similar to the semantics of a regular c-table as described in-tuples in exactly one r-bag will be true. What remains
Section 2.1 (see Equations 1,2,3). The difference is that & to determine which c-tuples can be grouped together in

A. Basics of Grouping



INPUT: c-tablesT¢ with attributesA U B, whereA = A;,..., A, andB = By, ..., B,,.

ALGORITHM

1. CopyT¢ into Ve.

2. Cluster the c-tuples df into biggest bags of semi-unifiable tuples relativedte we will call this e-bags|f a c-tuple
belongs to more than one e-bag, then make copies of the e-tuql put a copy |n each e-bag. To do so, add the Jocal

conditionz = i to thei™ copy of the c-tuple foi < « and the local condmon/\ r # i to theu™ copy, wherex is a

newly introduced variable and is the number of times the c-tuple is copled.
3. Apply the c-table normalization procedure to the set ofilds in each e-bag.

4, Partition each e-bag further into r-bags. To do so, appip St from the algorithm in Figure 1 tQ/ le(t;), to get the

set of non-overlapping conjunctios; }**,, where{¢;}?_, are the c-tuples in the e-bag. Lét= {cz}w 1- Rewrite the
local condition of eachi; as a disjunction o€;s. Next, brealC into equivalence classes, relative to the operatioiwe
definec; ~ ¢; iff the set of the rewritten local conditions in which the twonjunctions appear is the same. Form|the
array D in such a way thaD[i] is a disjunction of all the conjunctions in th® equivalence class. ReconstriGi by
substituting each e-bag with a bag mbags where the c-tuples i r-bag of a given e-bag will have the same Igcal
condition as the corresponding value Bfi] and the main parts will correspond to the c-tuples that doneththe loca
conditions that formed the equivalence class correspgnairD|i].

5. From each r-bag form a set of vertices, where each vertergponds to a distinct c-tuple in the r-bag (i.e. for dupé¢a
c-tuples we will have a single vertex). Find all spanningiteated graphs for the built vertices that are transitive have|
the property that if there is an edge between the vertigeandng and there exists a third vertex such that; < t2
andt, < j ts, wherety, to andts are the c-tuples corresponding to the vertices, then theredges betweem andn.
and betweems andns. Next, the set of nested c-tuples that correspond to eagihgne created. They union yields the
result of doing the grouping. More precisely, suppose weeaemining a r-bag and a graphz associated with it. Sinde
G is transitive, it will contain a set of disjoint complete sgkaphs, where each such sub-graph will correspond|to a
resulting nested c-tuples. Let the vertices in the comsletegraph belong to the c-tuplés }?_,, then the corresponding
nested c-tuple, will have the single valie, ..., z;) for the attributesA, the bag of valueg| mzmain(t;)|}?_,, for

_ p
the attributesB and local condition,. A Rg A [(7 smain(t;)) = (z1,...,2)]. The conditionL,. is the local condition
=1

1= —
of the r-bagr. The conditionR is the condition that projection on thé attributes of the main parts of the c-tuples
that correspond to nodes i that are connected should be equal, while the projectiorhemtattributes of the maip
parts of the c-tuples that correspond to node§&ithat are not connected should be different.

Figure 6. The algorithm for calculatinic: = group s7¢

each r-bag and this is done in Step 5. The step constructsthe number of regular c-tuples with distinct main parts,
set of graphs for each r-bag, where each graph correspondsthe highest count of regular c-tuples that have the same
to a valuation. In a graph, there is an edge between twonain part, but distinct local conditions,is the number of
vertices if under the corresponding valuation it is truet tha attributes in7T and ¢ is a constant. Then Step 2 of the
mi(main(ty)) = 7 1(main(ty)), wheret,, andt/, are the  grouping will takeO(2" +n) - s time because it may take as
c-tuples corresponding to the vertices. It can be easilwsho much asO(2? - s) time to partition the variable c-tuples and
that a graph is valid, i.e. a corresponding valuation exfsts then O(n - s) time to determine the groups for the regular
(1) the graph is transitive (2) if there is an edge between the-tuples. Note that we get this low time bound thanks to
verticesn; andns and there exists a third vertex, such  the fact that regular c-tuples with distinct main parts can
thatn; <z ne andng < 3 ns3, then there are edges betweennot appear in the same e-bag. Step 3 tak¢®” + n) -
ny andn, and betweem, andn;. This is why all the graphs (/3™ (4 4 1) . m)° - 2°+7 . ) because we may have
having these two properties are constructed and thesegrapis much ag’ + n e-bags to normalize and each e-bag may
show which c-tuples in the r-bag will be grouped relative tocontain as much as+ r c-tuples. Step 4 will tak€((2? +
the attributes4d under different valuations. gva™ (vt -(m- (v+7))°) time because the size of a c-
To calculate the time bound for applying the presentec{umes local condition may grow to a size 6f(m - (v +1))
grouping algorithm, we will adopt the parameter names usedfter the normalization procedure is applied. Step 5 takes
in Theorem 2. More precisely, is the number olvariable O((2”+n) 2v+r 2u+n) time because there maybe as much

c- tuple and the size of the global condition @f, n is
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In this paper we have presented algorithms for querying
c-tables extended with linear conditions and over the dose
world assumption. We have chosen this representation be-
cause it is the least expressive extension of c-tables over
which bag relational algebra with grouping and aggregation

Table IX
A COMPLEX C-TUPLEt¢

a B condition is closed and can be well defined. As expected, the running
¢ Acon(z1,agg1, b1, ..., bB0)A time of the presented algorithms is polynomial relativehie t
oSk | Tt | A con(@n, aggn, b, -, bh) size of the certain information and non-polynomial relativ
Table X to the size of the incomplete information.
THE RESULT OF 1 Fa g, (B,),....aggn (Bn) (tC) A major topic for future research is optimizing the pre-

sented algorithms for performing the relational operation

For example, in the relational case, the join between two

tables can be performed in different ways and depending on
much asn + v distinct c-tuples and therefore there ateg™ the method we choose the time for performing the join will

possible graphs for each r-bag. vary. The same applies for joining c-tables. In generakehe
are many ways of doing the presented relational algebra
B. Performing the Aggregation operations over c-tables. The purpose of this paper was

to define their semantics by presenting example algorithms

Now that we have defined how grouping over c-tablesfor doing the operations. Other possible extensions of the
can be done, performing aggregation is straightforwardpresented work follow.

Consider the expression, .. a, Fagg,(B1),....ag9n(Bn)1C>

where the setsd = A;,..., A, and B = B, ..., B, are e Speed up the presented algorithms by sacrificing their
disjoint and their union yields all the attributes ifi;. ~ accuracy, i.e. explore approximate query answering for in-
We can calculate the result of performing the aggregacomplete information.

tion by first computing the value of the nested c-table® Explore integrity constraints for incomplete information

group 1Tc and then aggregating over the attributes by and how they can be used.for semantic query optimization.
introducing new variables in the main parts of the result® EXtend researCh done n relatlonal databases, SUCh as

and moving the aggregations to the local conditions. Morg€search on view maintenance and transaction control man-

precisely, suppose the nested c-tuple shown in Table 9 iggement, to databases containing incomplete information.
in the result ofgroup sTc. Then this c-tuple will appear in ® Explore querying c-tables with order.

AFaggi (B1),....agen (B,) Tc @s shown in Table 10. The way

the operatoron is calculated, relative to the value ofg, VI. EXAMPLE OF DOING GROUPING

is s_howr_1 in Table 11_. The fact that aggregation, as we have are we show an example of performing the grouping.
defme_d it, is We_ll-deflned follows from the correctness @& th Suppose we have the c-tabl shown in Table 12 and
grouping algorithm and the correctness of tla@ operator

we want to calculat R). Table 13 shows the
as defined in Table 11. &roupa.p(R)

two e-bags that will be constructed after applying Step 2

of the algorithm presented in Figure 6. Tables 14 and 15
V. CONCLUSION AND FUTURE show respectively the value of th€ and D array that

are constructed in Step 4. Table 16 shows the r-bags for
the first and second e-bag that are constructing by Step 4.
When processing the first r-bag of the first e-bag Step 5 of
min 71(5” < bi) the algorithm will consider four possible graphs, which are

shown in Figure 7, where nodes 1, 2 and 3 correspond to the
first, second and third c-tuple of the first r-bag of the first e-

((lgg) Con(%‘lggy b17"'7bn)
n

1=

max N (> b;)
i=1

count | n bag. The corresponding resulting nested c-tuples constiuc
sum | 2= b _by Step 5 of the algorithm for the examined r-bag are shown
i=1 in Table 17.
avg x+--~+x:2bi
— O REFERENCES
n times
Table XI [1] T. Imielinski and W. Lipski, “Incomplete information in
EXPLAINS THE OPERATORcon relational databasesJournal of Association of Computing

vol. 31, no. 4, pp. 761-791, October 1984.



AT B | C | condition
z [y |1 | Gty=3)Vv@>av@z<0)
z [3 |2 | @ty=3A2<2)V(z<0)
2 3 3 r>5
2 |3 | 4 | TRUE
3[4 |5 | TRUE
Table XIl
EXAMPLE C-TABLE R
AT B | C | condition
Ty [1 [@+ty=3VE>)V@<0)
z |3 |2 | @+y=3~Az<2)V(z<0)
2 3 3 r>5
2 |3 | 4 | TRUE
A | B | C ] condition
z [y |1 | @Gty=3)Vve>DHVvz<0)
3 |4 |5 | TRUE
Table XIII
E-BAGS IN groupa g(R)
ClL,--,6] o7, ., 1]
e <OAL=1 RN ES!

0<z<2ANz+y=3At=1

0<ao<2AT+y=3AtZI1

2<zx<4Nz+y=3Nt=1

2<c<AAz+ty=3ALZI1

I<z<b5At=1 I<z<B5At#1
z>HAL>1 T >H6ALF1
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t#1 t#1)V(t=1)

Table XIV

THE ARRAY C FOR THE TWO EBAGS

i | DI c-tuples corresponding t®[i]
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2| CBVC/A 1,4}
31 C) 1,3,4}
4| Cl7] vV C[8] 2,4}
5 | C[11] {3,4}
6 | Cl6]v 9V Cl0] | {4}
i | DI c-tuples corresponding t®[:]
1] CJvC2lvC[3] 1,2}
2| Cla 2}

Table XV

THE ARRAY D FOR THE TWO EBAGS

©) @
€]
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Graph 3 Graph 4

Figure 7. The four possible graphs

A | B | C | condition
z |y [ 1 [ (@<O0At=1)V
z |3 |2 | (0<z<2Ahz+y=3At=1)
2 3 14
z |y |1 [ (<z<4HA(z+y=3)At=1)V
2 [ 314 ((A<z<5)A(t=1))
X 3 1 z>5At=1
2 313
2 3 14
z |3 [ 2 [ (@<O0At#1)V
213 [4 | (0<az<2Az+y=3At#1)
2 |3 |3 |2>5AtZAT
2 3 14
@ty Z3A0<z <AV
2 13 |4 2<z<4Az+y=3At#£1)V
A<z <5At£1)
A | B | C | condition
z |y [1 [ (@<0At#1)V(0<ax<4A
314 5 | a+y=3At#1)V(c<4At#1))
0<z<dAz+yZ3A
34 |5 | txnyve=1
Table XVI
THE R-BAGS FOR THE TWO EBAGS
A| B | C condition
z |y |1 y#3Nx#2AR
z |3 |2 y#3Nx#2AR
2 |3 |4 y#3Nx#2AR
z |y % r#2ANy=3AR
2 3 4 r#2Ny=3AR
z |y 1 z=2ANy#3AR
2 |3 i t=2Ay#3AR
1
z |y 2 r=2Ay=3AR
4
A

t=1)vV(0<z<2Az+y=2At=1))
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