
Managing Worldwide Operations & Communications with Information Technology 1

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written permission of Idea Group Inc. is prohibited.

Reducing the Size of Auxiliary Data
Needed to Support Materialized View

Maintenance in a Data Warehouse
Environment

Lubomir Stanchev, Indiana University – Purdue University Fort Wayne, 2101 E. Coliseum Blvd., Fort Wayne, IN 46805, USA; E-mail: stanchel@ipfw.edu

ABSTRACT
A data warehouse consists of a set of materialized views that contain derived
data from several data sources. Materialized views are beneficial because they
allow efficient retrieval of summary data. However, materialized views need to
be refreshed periodically in order to avoid staleness. During a materialized view
refresh only changes to the base tables are transmitted from the data sources to
the data warehouse, where the data warehouse should contain the data from the
base tables that is relevant to the refresh. In this paper we explore how this ad-
ditional data, which is commonly referred to as auxiliary views, can be reduced
in size. Novel algorithms that exploit non-trivial integrity constraints and that
can handle materialized views defined over queries with grouping and aggrega-
tion are presented.

1. INTRODUCTION
A data warehouse contains aggregated data derived from a number of data sources
and is usually used by OnLine Analytical Processing (OLAP) tools and data mining
tools for the purpose of decision making (see Figure 1 and [GM95]).

The data sources consist of several databases, which usually contain huge amounts
of data (e.g., the day-to-day transactions of a store chain). Conversely, material-
ized views (MVs) contain summary data compiled from several data sources. The
main challenge in implementing the data warehouse architecture is keeping the
materialized views up-to-date.

We will refer to the one time synchronization of a MV with the content of its
underlying tables as a view refresh and to the continuous process of synchroniza-
tion as view maintenance. In order to demonstrate how a MV can be refreshed,
consider a MV V that is defined as the inner join of the base tables T1 and T2. If
the changes ΔT1 are applied to the table T1, then the changes that need to be ap-

plied to V can be expressed as ΔT1⋈T2
1. However, in general it is impossible

to calculate the value of T2 knowing only the old value of V. Therefore, all the
tuples in T2 that can potentially join with ΔT1 need to be stored in an auxiliary
view on the data warehouse site.

In this paper we extend previous research on the subject (e.g., [QGMW96]) and
explain how integrity constraints can be exploited to reduce the size of the cre-
ated auxiliary views. In particular, our contributions include considering novel
types of integrity constraints that can further reduce the size of the auxiliary
views and algorithms for handling MVs defined over queries with grouping and
aggregation.

2. RELATED RESEARCH
The problem of MV maintenance has been studied for over twenty years (see
[BLT86]). The papers [GJM96] and [H96a] are excellent references on the prob-
lem of making MVs self-maintainable. MV maintenance over object-relational
database schemas, similar to the one used in this paper, is presented in [ZM98],
while [AHRVW98] describes how to maintain MVs over semi-structured data.

The paper [QGMW96] is an excellent source on exploiting integrity constraints to
reduce the size of auxiliary views. However, it covers only candidate and foreign
key integrity constraints and considers only conjunctive queries without grouping
and aggregation. The paper [H96b] presents an algorithm for testing the self-main-
tainability of a MV in the presence of arbitrary functional dependencies.

3. PROBLEM DESCRIPTION
Our database schema consists of base tables and MVs, where only base tables can
be updated by the users of the system. Each base table has the system attribute ID,
which is a unique tuple identifier (and therefore a key for each table). The other
attributes of a table are either standard, that is, from one of the predefined types
(e.g., integer, string, etc.), or reference and contain the ID value of a tuple that
is in the database (In other words, we require that all reference attribute define a
referential non-null foreign key constraint). In addition, we impose the acyclic-
ity requirement that there cannot exist reference attributes A1, ..., An on tables T1,
..., Tn, respectively, such that attribute Ai references table Ti+1 for i = 1 to n-1 and
attribute An references table T1.

Given a MV V stored on the data warehouse, a database schema, and the type of
changes that are allowed to the view’s underlying tables, our goal is to find the
smallest set of auxiliary views for V, where the precise definition of an auxiliary
view follows. Note that we require that both the old and new values of updated
tuples to be sent to the data warehouse.

Definition 1 (self-maintainable set of materialized views) The set of MVs
is self-maintainable iff every MV in the set can be refreshed using only the
old values of and the changes to the underlying base tables.

Figure 1. The data warehouse model

2 2007 IRMA International Conference

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written permission of Idea Group Inc. is prohibited.

Definition 2 (auxiliary materialized views) The set of MVs is an auxiliary
set of MVs for the MV V iff is a self-maintainable set of material-
ized views.

We will refer to the query that defines a MV as the underlying query for the view.
In this paper we only consider MVs with underlying queries that are select-project-
join queries (no self-joins allowed) with possible grouping and aggregation. We
require that the selection condition of the underlying query is a conjunction of
atomic predicates of the form “T1.Pf1?P1” or “T1.Pf1?T2.Pf2”, where Pf is used to
denote a path function (precise definition follows), T - a base table, P - an atomic
value, and “?” - an element of the set {>,≥,=,<,≤}.

Definition 3 (path function) A path function Pf has the general syntax
, where are derived attributes and are

elements of the set {1,-1}. Given a tuple t, we define t.Pf to be equal to
. Note that is used to denote the set

of tuples with ID t.A for . Similarly, .A-1 is used to denote all tuples
t’ for which t’ A is in the set . (We have used as a shorthand for

 and A as a shorthand for A1.) The expression t.Pf is well defined
when it represents a set that contains a single value, where we will use t.Pf
to denote this value.

In addition to the key constraints defined by the ID attributes and the referential
constraints defined by the reference attributes, our algorithms can take advantage
of the following two integrity constraints:

(def T.Pf) ⇔ (∀t ∈ T) (t.Pf is well defined) and

(T.Pf1=T.Pf2) ⇔ (def T.Pf1) ∧ (def T.Pf2) ∧ (∀t ∈ T)(t.Pf1 = t.Pf2).

The first constraint denotes that a path function is well defined and the second
constraint states that we will reach the same value if we follow either of the two
paths.

Our running example is based on the database schema shown in Figure 2. We
have used ellipses around base table names and round rectangles around primitive
types. Also, we have used dashed lines to denote standard attributes, solid lines to
denote reference attributes, and the ID attributes of the tables are not shown. We
assume that the following integrity constraints hold for the schema (in addition
to the described key and foreign key constraints): (SECT.dep = SECT.class.dep)
and (def PROF.prof--1.dep.group).

Example 1 Suppose that only additions and deletions that are consistent (i.e., do not
violate the integrity constraints) and primitive (i.e., single tuple) are allowed
to the base tables of our example schema and consider a MV V defined using
the following underlying query: �d

S.number, C.code, P.name, D.name σD.group=’ARTS’ and C.number>300

and P.age>30(S⋈C⋈D⋈P), where �d is used to denote duplicate preserving pro-
jection, the first letters are used to denote the corresponding base tables, and
the join conditions are on the respective reference attributes. The auxiliary
views that are created by our algorithm are shown in Table 1.

In the paper we will show that V can be incrementally refreshed using the fol-
lowing formula:

Vnew=Vold+ �d
S.number, C.code, P.name, D.name (⋈ ⋈ ⋈∆S),

where “+” is used to denote the application of changes (bag version) and the
superscripts old and new are used to denote the content of the table before and
after an update, respectively.

We next demonstrate the potential benefit of our algorithm. Consider the four
example base tables and suppose they contain the number of tuples shown in Table
2. Suppose that 2 of the departments are in the ‘ARTS’ group, 10% of the classes
pass the predicate “number>300”, and 80% of the professors pass the predicate
“age>30”. Also, suppose that 5% of the classes for which “number>300” are in
a department that is part of the ‘ARTS’ group and 2% of the profs teach classes
in a departments that is part of the ‘ARTS’ group.

The third column in Table 2 shows the sizes of the auxiliary views if only predi-
cates from the underlying query of the MV are applied to the auxiliary views (i.e.,
the algorithm from [HZ96] is applied). The forth column shows the sizes of the
auxiliary views if the algorithm from [QGMW96] is applied. It extends [HZ96]
by removing the auxiliary view for the SECT table and storing only classes that
are in a department that belongs to the ‘ARTS’ group. The last column shows the
sizes of the auxiliary views when our algorithm is applied. It improves on the
previous algorithm by storing only professors who teach courses in a department
from the ‘ARTS’ group.

4. PROPOSED SOLUTION
Consider a MV V with the following underlying query: x ...x
Tt)) (x is used to denote a cross product), a database schema Σ, and suppose that
only consistent primitive insertions and deletions to the tables are allowed.
Then the following algorithm produces a set of auxiliary views for V.

Algorithm 1
Step 1. Create an undirected graph with vertices corresponding to the elements of

the set . For each condition in the set , draw an edge between
the tables involved in the condition. (In particular, if only a single table is
involved in the condition, then draw a loop edge around it.) Next, delete

Figure 2. The example database schema

auxiliary view underlying query

VP �d ID, name (σage>30 ∧ prof-1 .dep.group_'ARTS' (P))
VD �d

ID, name (σgroup=’ARTS’(D))
VC �d ID, code, dep (σdep.group=’ARTS’ ∧ number>300 (C))

Table 1. Auxiliary views for motivating example

Base Relation Tuples in
Base Relation

Tuples in
Auxiliary views
 ([HZ96])

Tuples in
Auxiliary Views
([QGMW96])

Tuples in
Auxiliary Views
(our algorithm)

SECT 100 000 100 000 0 0
CLASS 50 000 5 000 250 250
DEP 30 2 2 2
PROF 2 000 1600 1600 32

152 030 61 602 1852 284

Table 2. Comparison on the number of tuples for our example

Managing Worldwide Operations & Communications with Information Technology 3

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written permission of Idea Group Inc. is prohibited.

all vertices that have no edges connected to them and no attributes in the
set . Then examine the subgraph induced by the edges labeled with
equality predicates. If there is a vertex in this subgraph with the properties:
(1) all its edges are in the subgraph, (2) removing the vertex will not change
the number of connected components in the subgraph, and (3) the vertex’s
table does not contain attributes in the set , then remove the vertex and
repeat the procedure until possible. Finally, rewrite the underlying query Q
of the MV V by deleting the tables that correspond to deleted vertices. (This
also involves deleting from Q any predicates on the deleted tables.)

Step 2. For each table Ti in Q (i=1 to t), create an auxiliary view Vi that contains all
the tuples of Ti. We will use Qi to refer to the underlying query for Vi.

Step 3. Consider a table Ti in Q and the corresponds auxiliary view Vi created in
the previous step. If the selection condition of Q contains one or more atomic
predicates on the table Ti, then add these predicates to the selection condition
of Qi via conjunction. Similarly, add to Qi a duplicate preserving projection
on the attributes of Ti that are projected out in Q union the attributes of Ti
that appear in an atomic selection predicate of Q that involves attributes from
other tables. The described procedure is applied for i=1 to t.

Step 4. If there is a table Ti in Q that has the property that every table in Q can
be reached starting from the table Ti and following reference attributes, then
remove Vi from the set of auxiliary views.

Step 5. If there exist a table Ti and a path function Pf = such that:
(1) Step 4 was not applied to Ti, (2) (def Ti.Pf) and (3) The table reached by
following the path from the table Ti contains an atomic predicate
p(An+1) in Q, then add p(Pf), via conjunction, to the selection condition of
Qi.

Going back to Example 1, Step 1 was not applied. Step 2 was applied to create
the auxiliary views: VP, VD, VC, and VS, which initially contain the respective
base tables. Step 3 was applied to add the predicate “age>30” to VP, the predicate
“group=’ARTS’ “ to VD, and the predicate “number>300” to VC. The step also ap-
plies the projections shown in Table 1. For example, the ID attributes are projected
for all four tables because they appear in the join conditions. Step 4 was applied
to remove the auxiliary view VS. Finally, Step 5 added the predicate “prof--1.dep.
group=’ARTS’” and “dep.group=’ARTS’ “ to VP and VC, respectively.

The following theorem addresses the correctness of Algorithm 1.

Theorem 1: Algorithm 1 produces a set of auxiliary views that make V self-
maintainable relative to the defined assumptions.

Proof: Step 1 uses the available integrity constraints to rewrite Q into an equivalent
query that references fewer tables and therefore does not affect the correct-
ness of the algorithm.

The created auxiliary views in Step 2 make V self-maintainable. In particular,
since , the changes to
each auxiliary view can be calculated by applying the selection condition of its
underlying query followed by the duplicate preserving projection operation of
its underlying query to the changes of its underlying table. Then the new value
of V can be calculated as Q(V1,...,Vt) (we use Q(R1,..., Rt) to denote the result of
Q when the table Ti is substituted with table Ri for i=1 to t).
We will next examine two cases: when Step 4 was not applied and when it was
applied.

Case 1 (Step 4 was not applied) We will use to denote the auxiliary view
for Vi after Step r. Note that Vnew=Q(,...,)=(⋈...⋈

). We will show that(⋈...⋈)=(⋈...⋈
) for j={2,3,5}, which proves that Vnew=(⋈...⋈

)=Q(and therefore the selected auxiliary views make V self-
maintainable.

First, note that(⋈...⋈)=(⋈...⋈). The reason
is that(⋈...⋈)=(⋈...⋈) (direct consequence
of Step 2) and applying Step 3 to Vi,2 for i = 1 to t does not change the value of

the expression(⋈...⋈). In particular, Step 3 first applies to
Vi,2 the single table predicates of Q. This will not change the above expression
because (R1⋈R2)= ((R1)⋈R2) if E is a predicate only on the attributes
of R1. Next, Step 3 removes from Vi,2 attributes that do not participate in the join
condition and that are not projected in Q. This rule will not affect the expression
because (R1⋈R2) = ((R1)⋈R2) when and are attributes of
R1 that do not participate in the join condition.

Next, consider what happens when step 5 is applied to the auxiliary views of the
expression:(⋈...⋈). In particular, this step substitutes auxiliary
views with more restrictive auxiliary views that contain only tuples that can join
with the other auxiliary views. Therefore, since R1⋈R2= (R1)⋈R2 when E
is a predicate that selects tuples of R1 that join with R2, our expression will not
change after the application of Step 5 to its auxiliary views.

Case 2 (Step 4 was applied to table T1). Note that
 Vnew = Q(,...,)
 =(()⋈ ⋈...⋈)
 =(⋈()⋈...⋈())+(⋈

⋈...⋈)
 =Vold+(⋈...⋈ ⋈ΔTn+...+ ⋈ ⋈...⋈ΔTt)+Q(,

,...,)

We will next show that the second expression in the above formula empty and
therefore Vnew = Vold + Q(, ,...,). Indeed, consider the join of with
an insertion or deletion to the table T2. The fact that T2 can be reached from T1 fol-
lowing reference attributes guarantees that the result of this join will be empty.

It remains to show that(, ,...,)=(, ,...,
), which will prove the theorem. However, this can be proven the same way

we proved that applying Steps 2, 3, and 5 to the auxiliary views in Case 1 do not
change the value of the expression.

Note that the above theorem only shows that the selected by Algorithm 1 auxiliary
views make the input MV V self maintainable, but does not explain how V can be
incrementally refreshed. However, when Step 4 was applied, Vnew=Vold+ Q(ΔT1,

) and therefore ΔV = Q(ΔT1,). Of course, before ΔV
can be calculated, the auxiliary views need to be refreshed.

When Step 4 was not applied, the formula for calculating ΔV is:

Vnew=Q(,)=Vold+(⋈...⋈ ⋈ΔVt+...+
⋈...⋈ΔVt),

where the brackets contain 2n-1 expressions covering the cases where Vi is rep-
resented as and as ΔVi.

Before describing our algorithm for selecting auxiliary views for a MV with ag-
gregation, we present an example.

Example 2 Consider the MV V with the underlying query:
 D.name ℱ count(S.ID) as sect_count (D ⋈ C ⋈ S)
 and suppose that only consistent insertions and deletions are allowed to the

underlying tables. We will first rewrite the query as the equivalent query:
 D.name ℱ count(S.ID) as sect_count (D ⋈ S).

Then we will create the auxiliary view VD= . If a section is inserted/
deleted, then we will use VD to find the department’s section and then add/subtract
1 to the value of the attribute sect_count of the corresponding tuple in V. If such
a tuple does not exist in V, then one should be created with sect_count=1 (a tuple
should exist when deletion is performed). Of course, if the sect_count of a tuple
in V becomes 0, then the tuple should be deleted from the MV. If a department
is inserted or deleted, then only VD needs to be updated because a new or deleted
department can not join with an existing section.

Next, consider a MV V defined with the following underlying query:

4 2007 IRMA International Conference

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written permission of Idea Group Inc. is prohibited.

ℱ x ... x Tt)),

where . Suppose the MV is defined over
a schema allowing only consistent insertions and deletions to the tables
, where we add the requirement that at most one operation can be performed on
each tuple to disallow tuple updates. Then the following algorithm can be used
to create the set of auxiliary views for V.

Algorithm 2
Step 1. Suppose that the MV V is defined using the query Q(T1,...,Tt) and let QC

by the conjunctive query formed from Q by stripping its grouping and ag-
gregation. Apply Step 1 from Algorithm 1 to rewrite QC and then rewrite Q
accordingly.

Step 2. Modify Q and add a count(A) aggregation (if one does not already exists)
if there exists the aggregation sum(A) or avg(A) for some attribute A and Q
does not contain a min or max aggregation. (This step adopts the mechanism
of managing views with aggregation from [MQM97].)

Step 3. If Q contains a min or max aggregation, then apply Steps 2, 3, and 5 from
Algorithm 1 to QC to create the set of auxiliary views for V. Otherwise, ap-
ply to QC Steps 2, 3, 4, and 5 from Algorithm 1 to create the set of auxiliary
views for V.

Going back to Example 2, Step 1 was applied to rewrite the query and Step 4
from Algorithm 1 was applied to remove the auxiliary view for the SECT table.
Step 2 of Algorithm 2 was not applied.

Theorem 2. Algorithm 2 produces a set of auxiliary views that make V self
maintainable relative to the defined assumptions.

Proof(Sketch): Note that Step 1 rewrites the original query. Step 2 just adds ad-
ditional attributes to V. Therefore, we only need to show that the created in
Step 3 auxiliary views make V self-maintainable.

First, consider the case when Step 4 from Algorithm 1 was not applied and let
us use VC to denote the MV with underlying query QC(T1,...,Tt). Then Theorem 1
implies that =QC(,...,). The new value for V can be computed by
applying the grouping and aggregation from Q to QC(,...,) and therefore
the selected set of auxiliary views makes V self-maintainable.

Next, consider the case when Step 4 from Algorithm 1 was applied. Then

Vnew=Vold⊕Q (ΔT1,),

where ⊕ is a new operation that calculates the correct value for the count, sum, and
avg attributes. In particular, an addition/deletion of a tuple from Q(ΔT1,
) causes the value of the count attribute in the matching tuple in Vold to be incre-
mented/decremented by 1. Similarly, it causes the sum attribute in this tuple to be
incremented/decremented by the value of the attribute on which the summation
is performed in the tuple that is added/deleted from Q (ΔT1,). Note
that tuples that have a 0 for the count attribute should be removed from the query

result for Vnew. Finally, the value of an avg attribute is calculated as the result of
dividing the value of the sum attribute by the value of the count attribute.

Note that Algorithms 1 and 2 will have to be modified if updates are allowed. In
particular, attributes can be classified as protected and exposed (see [QGMW96]).
Protected attributes are projected in the underlying query of the MV, but no
predicates are defined on them. Conversely, exposed attributes are the ones on
which selection or join predicates are defined. Updating a protected attribute will
not affect the two algorithms. However, in the presence of updates on exposed
updates Step 4 of Algorithm 1 can not be applied. Similarly, Step 3 of Algorithm
1 cannot be applied to add predicates on exposed attributes. Finally, Steps 5 of
Algorithm 1 cannot be applied if the path function Pf passes through tables that
contain exposed attributes.

5. CONCLUSION
The paper presents novel algorithms for creating auxiliary views in the context
of a data warehouse environment. The algorithm for MVs defined over queries
without grouping and aggregation creates smaller auxiliary views than existing
algorithms by exploring a richer set of integrity constraints. The algorithm for
minimizing the size of auxiliary views for MVs defined over queries with ag-
gregation solves a novel problem.

One topic for future research is focusing on the problem of completeness, that is,
showing that the two algorithms produce a minimal set of auxiliary views relative
to the explored types of integrity constraints.

REFERENCES
[AHRVW98] S. Abiteboul, J. McHugh, M. Rys, V. Vassalos, J. Wiener, Incre-

mental Maintenance for Materialized Views over Semi structured Data,
VLDB, 1998

[BLT86] J. Blakely, P. Larson, and F. Tompa, Efficiently Updating Materialized
Views, SIGMOD, 1986

[GJM96] A. Gupta, H. Jagadish, I. Mumick, Data Integragtion using Self-Main-
tainable Views, ICDT, pp. 140-144, 1996

[GM95] A. Gupta and I. Mumick, Maintenance of Materialized Views: Problems,
Techniques, and Applications, IEEE Data Engineering Bulletin, Special Issue
on Materialized Views and Data Warehousing, June, 1995

[H96a] N. Huyn, Efficient View Self-Maintenance, Stanford University technical
report, http://www-db.stanford.edu/pub/papers/fdvsm.ps, 1996

[H96b] N. Huyn, Efficient View Self-Maintenance, Proceedings of ACM Workshop
on Materialized Views: Techniques and Applications, 1996

[HZ96] R. Hull and G. Zhou, A Framework for Supporting Data Integration using
the Materialized and Virtual Approaches, SIGMOD, 1996

[MQM97] I. Mumick, D. Quass, B.Mumick, Maintenance of Data Cubes and
Summary Tables in a Data Warehouse, SIGMOD, 1997

[QGMW96] D. Quass, A. Gupta, I. Mumick, and J. Widom, Making Views Self-
Maintainable for Data Warehousing, PDIS, pp. 158-169, 1996

[ZM98] Y. Zhuge, H. Garcia-Molina, Graph Structures Views and their Incremental
Maintenance, ICDE, 1998

ENDNOTE
1 Note that in order for ΔT1 to be a relational table, each tuple in it needs to

be tagged as “to be inserted” or “to be deleted” and the relational algebra
operations need to be redefined to handle marked tuples - for details see
[BLT86].

