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Abstract—Semantic document clustering is a type of unsu-
pervised learning in which documents are grouped together
based on their meaning. Unlike traditional approaches that
cluster documents based on common keywords, this technique
can group documents that share no words in common as long
as they are on the same subject. We compute the similarity
between two documents as a function of the semantic similarity
between the words and phrases in the documents. We model
information from WordNet and DBPedia as a probabilistic graph
that can be used to compute the similarity between two terms.
We experimentally validate our algorithm on the Reuters-21578
benchmark, which contains 11, 362 newswire stories that are
grouped in 82 categories using human judgment. We apply the
k-means clustering algorithm to group the documents using a
similarity metric that is based on keyword matching and one that
uses the probabilistic graph. We show that the second approach
produces higher precision and recall, which corresponds to better
alignment with the classification that was done by human experts.

I. INTRODUCTION

Consider an RSS feed of news stories. Organizing them
in categories will make search easier. For example, a smart
classifier will put a story about “Tardar Sauce” (better known
as Grumpy Cat) and a story about “Henri, le Chat Noir”
(Henry, the black cat) in the same category because both
stories are about famous cats from the Internet. Our approach
uses information from WordNet [25] and DBPedia [20] to
construct a probabilistic graph that can be used to compute
the semantic similarity between the two documents.

The problem of semantic document clustering is interesting
because it can improve the quality of the clustering results as
compared to keyword matching algorithms. For example, the
later algorithms will likely put documents that use different
terminology to describe the same concept in separate cate-
gories. Consider a document that contains the term “ascorbic
acid” multiple times and a document that contains the term
“vitamin C” multiple times. The documents are semantically
similar because “ascorbic acid” and “vitamin C” refer to the
same organic compound and therefore a clustering algorithm
should take this fact into account. However, this will only
happen when the close relationship between the two terms is
stored in the system and applied during document clustering.
The need for a semantic document clustering system becomes
even more apparent when the number of documents is small
or when they are very short. In this case, it is likely that the
documents will not share many words and a keyword matching

strategy will struggle to find evidence for grouping any two
documents together.

The problem of semantic document clustering is difficult
because it involves some understanding of the English lan-
guage and our world. For example, our system can use infor-
mation from DBPedia to determine that “Henri, le Chat Noir”
and “Tardar Sauce” are both famous Internet cats. Although
significant effort has been put forward in automated natural
language processing [9], [10], [23], current approaches fall
short of understanding the precise meaning of human text.
In our approach, we make limited use of natural language
processing techniques (for example, we use the Standford
CoreNLP tool [22]) and we rely on high-quality information
about the words in English language (WordNet) and our world
(DBPedia) to process the input documents.

A traditional approach uses k-means clustering [21] to clus-
ter documents. The algorithm is based on a vector representa-
tion of the documents (based on term frequencies) and a dis-
tance metric (e.g., the cosine similarity between two document
vectors). Unfortunately, this approach will incorrectly compute
the similarity distance between two documents that describe
the same concept using different words. It will only consider
the common words and their frequencies and it will ignore the
meaning of the words. In [41], we explore how information
from WordNet can be used to create a probabilistic graph that
is used to cluster the documents. However, this approach does
not take into account information from DBPedia and will not
be able to determine that “Tardar Sauce” and “Henri, le Chat
Noir” are both famous Internet cats.

In this paper, we extend the approach from [41] in two ways.
First, we apply the Standford CoreNLP tool to lemmatize
the words in the documents and assign them to the correct
part of speech (i.e., noun, verb, adjective, or adverb). Second,
we add information from DBPedia to the probabilistic graph.
DBPedia contains knowledge from Wikipedia. This includes
the title of each Wikipedia page, the short abstract for the
page, the length of the Wikipedia page, the category of each
Wikipedia page (e.g., “Anarchism” belongs to the category
“Political Cultures”), information that an object belongs to a
class (e.g., “Azerbaijan” is a type of a country), RDF triplets
between objects (e.g., “Algeria” has official language that is
“Arabic”), and about disambiguation (e.g., “Alien” can refer to
“Alien(law)”, that is, the legal meaning of the word.) All this



information allows us to extend the probabilistic graph and
find new evidence about the semantic similarities between the
phrases in the documents that are to be clustered.

In what follows, in Section II we present an overview
of related research. Our main contribution is in Section III,
where we present a modified algorithm for creating the
probabilistic graph that stores the part of speech for each
word. The algorithm is then extended with information from
DBPedia. Section IV describes our algorithms for measuring
the semantic similarity between documents and clustering the
documents. Our other contribution is in Section V, where
we describe our implementation of the algorithm using a
distributed Hadoop environment and validate our approach
by showing how it can produce data of better quality than
the algorithm that is based on simple keywords matching
and our previous algorithm that relies exclusively on data
from WordNet. Lastly, Section VI summarizes the paper and
outlines areas for future research.

II. RELATED RESEARCH

The probabilistic graph that is presented in this paper is
based on the research from [37], which shows how to measure
the semantic similarity between words based on information
from WordNet. Later on, in [38] we explain how the graph can
be extended with information from Wikipedia. After that, in
[40] we show how the Markov Logic Network model [29] can
use the probabilistic graph to compute the probability that a
word is relevant to a user given that a different word from the
user’s input query is relevant. Lastly, in [36] we show how
a random walk in a bounded box in the graph can be used
to make the computation of the semantic similarity between
two words more precise and more efficient. In this paper, we
extend this existing research in two ways: (1) we store the
part of speech together with each word in the graph and (2)
we incorporate knowledge from DBPedia in the probabilistic
graph.

Note that a plethora of research papers have been published
on the subject of using supervised learning models with train-
ing sets for document classification [5], [42]. Our approach
differs because it is unsupervised, it does not use a training
set, and it can cluster documents in any number of classes
rather than just classify the documents in preexisting topics.

One alternative to supervised learning is using a knowledge-
base that contains information about the relationship between
the words and phrases that can be found in the documents
to be clustered. For example, in 1986, W. B. Croft proposed
the use of a thesaurus that contains semantic information,
such as what words are synonyms [7]. Sequentially, there
have been multiple papers on the use of a thesaurus to
represent the semantic relationship between words and phrases
[14], [30]. This approach, although very progressive for the
times, differs from our approach because we consider indirect
relationships between words (i.e., relationships along paths of
several words). We also do not apply document expansion
(e.g., adding the synonyms of the words in a document to the
document) when comparing two documents. Instead, we use

the probabilistic graph to compute the distance between two
documents. Some limited user interaction is possible when
classifying documents – see for example the research on
folksonomies [11]. Our system currently does not allow for
user interaction when creating the document clusters.

In later years, the research of Croft was extended by creating
a graph in the form of a semantic network [4], [28], [31] and
graphs that contain the semantic relationships between words
[2], [1], [6]. Later on, Simone Ponzetto and Michael Strube
showed how to create a graph that only represents inheritance
of words in WordNet [18], [32], while Glen Jeh and Jennifer
Widom showed how to approximate the similarity between
phrases based on information about the structure of the graph
in which they appear [15]. All these approaches differ from
our approach because they do not consider the strength of the
relationship between the nodes in the graph. In other words,
weights are not assigned to the edges of the graph.

Natural language techniques can be used to analyze the
text in a document [13], [26], [35]. For example, a natural
language analyzer may determine that a document talks about
animals and words or concepts that can represent an animal
can be identified in other documents. As a result, documents
that are identified to refer to the same or similar concepts can
be classified together. One problem with this approach is that
it is computationally expensive. A second problem is that it
is not a probabilistic model and therefore it is difficult to be
applied towards generating a document similarity metric.

Note our limited use of ontologies to cluster the documents.
Unlike existing approaches that annotate each document with
a description in a formal language [17], [27], [12], we use
ontological information from DBPedia to calculate the weights
of the edges in the probabilistic graph. The problem with
the traditional approach is that: (1) manual annotation is time
consuming and automatic annotation is not very reliable and
(2) a query language, such as SPARQL [33], can tell us which
documents are similar, but it will not give us a similarity
metric.

Since the early 1990s, research on LSA (stands for latent
semantic analysis [8]) has been carried out. The approach has
the advantage of not relying on external information. Instead, it
considers the adjacency of words in text documents as proof
of their semantic similarity. For example, LSA can be used
to detect words that are synonyms [19]. This differs from our
approach because we do not consider the location of the words
in the documents for the most part. The only exceptions are
when we extract the part of the speech for each word and
when we compute the conditional probability between a sense
and the words in the sense and give higher weight to do first
words because they are more relevant.

Lastly, not that our approach is different from that of
Word2Vec ([24]). Word2Vec explores existing documents to
find which words go together. Instead, we use high quality
knowledge from WordNet and DBPedia to find the degree of
semantic similarity between phrases.



III. BUILDING THE PROBABILISTIC GRAPH

In this section, we extend on previous approaches to build-
ing the probabilistic graph [38], [41] by considering the part
of speech for each word and using information from DBPedia.

A. Modeling WordNet

WordNet gives us information about the words in the
English language. We use WordNet 3.0, which contains about
150, 000 different terms. Both words and phrases can be found
in WordNet. For example, “sports utility vehicle” is a term
from WordNet. WordNet uses the terminology word form to
refer to both words and phrases. Note that the meaning of
a word form is not precise. For example, the word “spring”
can mean the season after winter, a metal elastic device, or
natural flow of ground water, among other meanings. This is
the reason why WordNet uses the concept of a sense. For
example, earlier in this paragraph we cited three different
senses of the word “spring”. Every word form has one or
more senses and every sense is represented by one or more
word forms. A human can usually determine which of the
many senses a word form represents by the context in which
the word form appears. Each word form is classified in one
of four categories: noun, verb, adjective, or adverb.

WordNet contains a plethora of information about word
forms and senses. For example, it contains the definition and
example use of each sense. Consider the word “chair”. One
of its senses has the definition: “a seat for one person, with a
support for the back” and the example use: “he put his coat
over the back of the chair and sat down”. Two other senses of
the word have the definitions: “the position of a professor” and
“the officer who presides at the meetings of an organization”.
We process these textual descriptions to extract evidence about
the strength of the relationship between a word form and the
word forms that appear in the definition and example use of the
word’s senses. Note that WordNet also provides information
about the frequency of use of each sense. This represents
the popularity of the sense in the English language relative
to the popularity of the other senses of the word form. For
example, in WordNet the first sense of the word “chair” (a
seat for one person, with a support for the back) is given a
frequency of 35, the second sense (the position of a professor)
is given frequency of just two, while the third sense (the officer
who presides at the meetings of an organization) is given a
frequency of one.

WordNet also contains information about the relationship
between senses. The senses in WordNet are divided into four
categories: nouns, verbs, adjectives, and adverbs. For example,
WordNet stores information about the hypernym and hyponym
relationships between nouns. The hypernym relationship corre-
sponds to the “kind-of” relationship. For example, “canine” in
a hypernym of “dog”. The hyponym relationship is the reverse.
For example, “dog” is a hyponym of “canine”. WordNet
also provides information about the meronym and holonym
relationship between noun senses. The meronym relationship
corresponds to the “part-of” relationship. The holonym re-
lationship is the reverse of the meronym relationship. For

example, “building” is a holonym of “window”. For verbs,
WordNet defines the hypernym and troponym relationships. X
is a hypernym of Y if performing X is one way of performing
Y. For example, “to perceive” is a hypernym of “to listen”.
The verb Y is a troponym of the verb X if the activity Y
is doing X in some manner. For example, “to lisp” is a
troponym of “to talk”. Lastly, WordNet defines the related
to and similar to relationship between adjective senses, which
are self explanatory.

We create a node in the probabilistic graph for each word
form and part of speech pair. For example, we create a node
for [spring, wf noun] and a node for [spring, wf verb], where
wf stands for word form. The first node represents the word
form noun “spring”, while the second node represents the word
form verb “spring”. In this paper, we consider the two word
forms to be distinct entities and we do not explicitly create an
edge between them just because they share the same syntax.
We also create a node for each sense. For example, we create a
node with label [natural flow of ground water, s noun], where
s stands for sense. Instead of revisiting our previous algorithm
from [40], we summarize how the probabilities are computed
in Table I, where these probabilities are used to create the
weighted edges between the nodes. The different constants that
appear in the formulas were determined using experimental
evaluation [39]. The formulas are slightly modified and we
do some extra processing to process the part of speech for
each word form node and for each sense node. Next, we show
few examples that demonstrate the algorithm for creating the
probabilities.

Consider the noun chair and its most popular meanings:
“a seat for one person”. In total, the noun has four meaning,
where WordNet defines their frequencies to be 35, 2, 1, and
1. Accordingly, we create the following formula.

[chair ,wf noun]⇒ [a seat for one person, s noun], 35/39

The keyword s noun stands for noun sense. The formula
shows that there is 35/39 probability that if we are interested
in the noun chair, then we are also interested in its most
popular sense. Note that we store the type of speech for both
word forms and senses. All the senses of a word form must
have the same type of speech as the word form. The number
35/39 is computed by dividing the frequency of the sense by
the sum of the frequencies of all the senses of the word form.
We also create the reverse relationship.

[a seat for one person, s noun]⇒ [chair ,wf noun], 1

This formula means that if we are interested in a sense,
then we must be also interested in each of the word forms
that represent the sense with probability 100%.

Next, let us consider the relationships between the most
popular sense of the word chair and the words in the definition.
We create the following formulas.

[a seat for one person, s noun]⇒ [seat ,wf noun], 0.6

[a seat for one person, s noun]⇒ [person,wf noun], 0.4



TABLE I
THE DIFFERENT FORMULAS FOR MODELING WORDNET

part of speech from to probability

general

word form w sense s of w frequency[1](w,s)∑
si∈sense(w)

frequency(w,si)

sense s word form w of s 1

sense s word form w in the definition d of s c[2] ∗ norm [3](
count[4](w,d)∑

wi∈d
count(wi,d)

)

word form w sense s that has w in its definition d 0.3
sdf [5](w)

sense s word form w in the example use e of s 0.3 ∗ norm(
count(w,e)∑

wi∈e
count(wi,e)

)

word form w a sense s that has w in its example use e 0.15
sef [6](w)

noun

noun sense s1 noun hypernym sense s2 of s1 0.9 ∗ |s2|∑
s is a hypernym of s1

|s|

noun sense s1 noun hyponym sense s2 of s1 0.3

noun sense s1 noun meronym sense s2 of s1 0.6 ∗ |s2|∑
s is ameronym of s1

|s|

noun sense s1 noun holonym sense s2 of s1 0.15

verb

verb sense s1 verb troponym sense s2 of s1 0.9 ∗ |s2|∑
s is a troponym of s1

|s|

verb sense s1 verb sense s2, where s1 is a verb troponym of s2 0.3

verb sense s1 verb hyponym sense s2 of s1 0.9 ∗ |s2|∑
s is a hyponym of s1

|s|

verb sense s1 verb sense s2, where s1 is a verb hypernym of s2 0.3

adjective adjective sense s1 adjective sense s2 that is related to s1 0.6
adjective sense s1 adjective sense s2 that is similar to s1 0.8

.[1] frequency(w, s) is the popularity of the sense s for the word form w as determined by WordNet.

.[2] c = 0.6 for the first word, c = 0.4 for the second word, c = 0.2 for the rest of the words.

.[3] norm(x) =

{
−1

log2(x)
, x ≤ 0.5

1.2 x > 0.5

.[4] count(w, str) is the number of times the word form w appears in the string str.

.[5] sdf stands for sense definition frequency. sdf (w) returns the number of senses that contain the word form w in their definition.

.[6] sef stands for sense example use frequency. sef (w) returns the number of senses that contain the word form w in their example use.

We use the Standford CoreNLP tool [22] to parse the
definition of a sense. The tool returns back the main part of
each word (e.g., “ing”, “s”, and “ed” endings are striped) and
the part of speech for the word. The tool also removes the
noise word. Note that, following the formula from Table I,
c = 0.6 for the first word and c = 0.4 for the second.
The reason is that first words in the definition of a sense are
more important. The norm function is an inverse logarithmic
function that smoothens the difference between a word that
appears in the definition of a sense that has five words and a
word that appears in the definition of a sense that has 20 words.
The special case of the function applies when we have a single
non-noise word in the definition of a sense. In this case, we set
the probability to be 1.2 because we have stronger evidence
about the relationship between the sense and the word.

Next, we will show an example of creating an edge based on
the structured information in WordNet. Note that the formulas
in Table I use the notion of a size of sense, or |s| for the sense
s. We use information from Oxford’s British National Corpus
(BNC) [3], which contains information about the frequency
of use of word forms. Let |w| be the popularity of the word
form w that is shown in BNC. Let senses(w) be the set of
senses of the word form w and wordforms(s) be the set of
all word forms that represent the sense s. Then we define |s|
as follows.

|s| =
∑

w∈wordforms(s)

|w| ∗ frequency(w, s)∑
si∈senses(w)

frequency(w, si)

The above formula approximates the size of a sense by
looking at all the word forms that represent the sense and
figuring out how much each word form contributes to the size
of the sense. The formula is used to approximate the popularity
of a sense.

WordNet defines the hyponym (a.k.a. kind-of) relationship
between senses that represent nouns. For example, the most
popular sense of the word “dog” is a hyponym of the most
popular sense of the word “canine”. Consider the first sense
of the word “chair”: “a seat for one person ...”. WordNet
defines 15 hyponyms for this sense, including senses for the
words “armchair” and “wheelchair”. We add formulas that
show the probability between this first sense of the word
“chair” and each of the hyponyms. In the British National
Corpus, the frequency of “armchair” is 657 and the frequency
of “wheelchair” is 551. Since both senses are associated with
a single word form, we do not need to consider the frequency
of use of each sense. If “armchair” and “wheelchair” were the
only hyponyms of the sense “a seat for one person ...”, then
we will add the following formula.

[a seat for , s noun]⇒ [chair with support , s noun], 0.49



The formula shows the probability for the sense “chair with
a support on each side for arms” of the word “armchair”. The
probability is computed as 0.9 ∗ 657/(657 + 551) = 0.49.

B. Modeling DBPedia

Wikipedia contains information about our world. This in-
cludes information about people, organizations, movies, songs,
and places, where most of this information is not part of
WordNet. DBPedia [20] contains structured information that
is extracted from Wikipedia. Specifically, we incorporate in-
formation from the six files that are shown in Table II. The
information in the files uses the Turtle (Terse RDF Triple
Language) syntax.

Our algorithm first creates a node for every Wikipedia
article and category. The label of the node will be the title of
the Wikipedia article or Wikipedia category (i.e., either wt for
Wikipedia title, wc for Wikipedia category). The information
about the Wikipedia titles and categories can be extracted
from the article categories en.tql file. This differs from our
approach in [38] where we store no meta information.

Table III shows the formulas for computing the probabilities
based on information from DBPedia. The coefficients for DB-
Pedia are in general smaller than those for WordNet because
the later contains information of higher quality. Fine-tuning
these coefficients remains an area for future research.

Consider the Wikipedia page with title “National Hockey
League”. We will create the following formula.

[National Hockey League, wt]⇒ [national ,wf adj ], 0.25

The number 0.25 is computed as 0.4 ∗ norm(1/3) be-
cause there are three words in the Wikipedia title. We will
create similar formulas between “National Hockey League”
and “hockey” and “league”. Note that if “National Hockey
League” was a word form in WordNet, then we create a
single formulas as follows: [national hockey league, wt] ⇒
[national hockey league,wf noun], 0.4 ∗ norm(1) = 0.48.
The idea of the formula is to connect the nodes from WordNet
and DBPedia. Note that the formula applies to both Wikipedia
titles and Wikipedia categories.

Next, consider the information that the Wikipedia article
“Algeria” corresponds to the Wikipedia category “Countries
in Africa”. We create the following formula.

[Algeria, wt]⇒ [Countries in Africa,wc], 0.6 ∗ 400

10, 000

The example assumes that the Wikipedia page for Algeria
has 400 lines and the total number of lines of all Wikipedia
pages in the category “Countries in Africa” is 10,000. The idea
of the formula is that if there were only few Wikipedia pages
in a category, then the relationship between the Wikipedia page
and category would be stronger.

Next, consider the information that the capital of Alabama
is Montgomery. We create the following formula.

[Alabama, wt]⇒ [Montgomery Alabama,wt ],
0.2

20

The example assumes that there are 20 different RDF triplets
where Alabama is the subject. The idea is that the if Alabama
has only few RDFs where it is the subject, then we give higher
importance to these relations.

Next, consider the DBPedia information that “chair” is a
type of “furniture”. We will create the following formula.

[furniture, wt]⇒ [chair ,wt ], 0.8 ∗ 100

1000

The formula assumes that the Wikipedia page for “chair”
has 100 lines, while the number of lines of all Wikipedia things
that are of type furniture is 1000. The formulas tries to estimate
what percent of furniture refers to chairs, that is, what is the
probability that someone who is interested in furniture is also
interested to know more about chairs.

Next, consider the example that one disambiguation of
“ADA” is “Ada Programming Language”. We create the fol-
lowing formula.

[ADA, wt]⇒ [ADAProgramming Language,wt ],
0.8

40

The formula assumes that there are a total of 40 different
disambiguations of ADA. The idea of the formula is that
if there are only few disambiguations, then the strength of
the relationship between the disambiguation page concept and
each of the disambiguation artifacts is stronger.

In order to save space, we do not show examples of the
reverse relationships from Table III.

C. Computing the Edge Weights

So far, we have created the nodes of the graph and shown
formulas that contain conditional probabilities between nodes.
For example, the formula

[X]⇒ [Y ], p

means that if we are interested in X , then we are also
interested in Y with probability p. We will adopt the Markov
Logic Network [29] model and rewrite the formula as a first
order formula with probability, where the predicate rel tells us
whether or not the concept is relevant to the user.

rel(X)⇒ rel(Y ), p

Next, suppose that the formulas from Tables I and III
generate one ore more formulas between the nodes X and
Y . We first convert each probability to a MLN weight using
the formula.

weight(rel(X)⇒ rel(Y )) =

{
ln( 1+p

1−p ), p < 0.9999

ln( 1+0.9999
1−0.9999 ) p ≥ 0.9999

Note that we first transform the probability in the range
[0.5,1] because we want each formula to contribute positively
to the weight. In other words, p′ = 0.5 + p

2 . We then apply
the MLN model that computes the weight of a formula as the
natural logarithm of the odds, or w = ln( p′

1−p′ ) = ln( 1+p
1−p ).

An extreme case is when p = 1 and the weight will be equal
to infinity. We address this case by setting the weight equal to
9.9034 when the probability is too high.



TABLE II
FILES FROM WIKIPEDIA

file content example

short abstracts en.tql Wikipedia page title and short abstract

title = “American Football Conference”
abstract = “The American Football Conference (AFC) is one
of the two conferences of the National Football Leagues (NFL) . . .”

page length en.tql
The title of a Wikipedia page
and the number of lines title = “American Football Conference” number of lines = 120

mappingbased objects en.tql RDF triplets
subject =“Alabama”, predicate =“capital”,
object = “Montgomery, Alabama”

article categories en.tql
Wikipedia page title and the corresponding
Wikipedia category tile = “Algeria” category = “Countries in Africa”

instance types en.tql Wikipedia object and its type “American Film Institute” is a type of “organization”

disambiguations en.tql
A term and the different Wikipedia
webpages that it can refer to term=“ADA” disambiguation = “Ada Programming Language”

TABLE III
THE DIFFERENT FORMULAS FOR MODELING DBPEDIA

type from to probability

title
Wikipedia title t word w in Wikipedia title 0.4 ∗ norm(

count(w,t)∑
wi∈t

count(wi,t)
)

word w Wikipedia title t that contains w 0.2
dtf [1](w)

abstract
Wikipedia page t word w that appears in the abstract a of t three or more times 0.2 ∗ norm(

count(w,a)∑
wi∈frequent

[2]
3 (a)

count(wi,a)
)

word w Wikipedia page t that contains w 3 or more times in the abstract 0.1
daf [3](w)

category
Wikipedia category c Wikipedia article t that belongs to the category 0.6∗|t|[4]∑

ti∈c
|ti|

Wikipedia article t Wikipedia category c, where t belongs to c 0.1
cf [5](t)

RDF triplet
subject s of RDF triplet object o of RDF triplet 0.2

sf [6](s)

object o of RDF triplet subject s of RDF triplet 0.2
of [7](s)

instance
type t object o that belongs to t

0.8∗|o|∑
oi∈t

|oi|

object o type t, where o belongs to t 0.1
tf [8](o)

disambiguation
disambiguation page d article t that is one of the disambiguations 0.8

df [9](d)

Wikipedia article t disambiguation page d that points to t 0.1

.[1] dtf stands for document title frequency. dtf (w) returns the number of documents that contain the word w in their title.

.[2] frequent3(s) returns the number of words that occur three or more times in the string s.

.[3] daf stands for document abstract frequency. daf (w) returns the number of documents that contain the word w in their abstract three or more times.

.[4] |t| returns the number of lines in the Wikipedia article t.

.[5] cf stands for category frequency. cf (t) returns the number of categories that t belongs to.

.[6] sf stands for subject frequency. sf (s) returns the number of RDF triplets that have subject s.

.[7] of stands for object frequency. of (o) returns the number of RDF triplets that have object o.

.[8] tf stands for type frequency. tf (t) returns the number of types that t belongs to.

.[9] df stands for disambiguation frequency. df (d) returns the number of disambiguations for the disambiguation page d.

Next, if there are multiple formulas between two nodes, we
follow the MLN model and just add the weights. Finally, we
convert the total weight back to probability using the reverse
formula.

p =
ew − 1

ew + 1

We create an edge between every two nodes that participate
in a formula, where the weight of the edge will be computed
using the above formula. As a last step, we normalize the
weights of the edges so that the sum of the weights of the
outgoing edges from every node is equal to 1.

IV. CLUSTERING THE DOCUMENTS

We add each document as a node in the graph. Consider a
document d and a word form w in the document. We create
the following formula.

[d]⇒ [w], norm(
count(w, d)

|d|
)

In the formula, count(w, d) denotes the number of times the
word form appears in the document and |d| denotes the total
number of words in the document.

We also create a formula for the reverse relationship.

[w]⇒ [d], log2(
m

docFr(w)
)



The function docFr(w) returns the number of documents
that contain the word w and m is the total number of
documents. Both formulas are similar to the abstract formula
from Table III. The reason is that we can think of the abstract
of a Wikipedia article as the text of a document. As explained
in [39], this formula allows us to compute the distance between
two documents in a way that is similar to normalizing the
document vectors using the TF-IDF function [16] and then
using the cosine distance formula.

Next, we create an edge in the graph for each formula,
where we will normalize the weights again to make sure
that the sum of the weights of the outgoing edges for every
node is equal to 1. Note that we did not have to convert the
probabilities to MLN weights in this step because we do not
create duplicate edges.

Given two nodes X and Y in the graph, we define Pr(X|Y )
as the conditional probability that X is relevant given that Y
is relevant. This number can be estimated, for example, by
doing multiple random walks starting at Y and calculating the
percent that reach X [36]. Since the sum of the weights of
the outgoing edges is always 1, at each node we can randomly
decide where to hop next. For example, if we are at a node
n and there is an outgoing edge to n1 with weight w1, to
n2 with weight w2 and to n3 with weight w3, then we can
generate a random number between 0 and 1. If the number is
smaller or equal to w1, then we will hop to n1. If the number
is between w1 and w1+w2, then we will hop to n2. Otherwise,
we will hop to n3. When conducting random walks, we only
have to be careful not to revisit the same node multiple times.
In particular, our algorithm keeps a hash table of visited nodes
and always looks for a path that does not involve nodes that
are already visited. We also apply the bounded box techniques
from [36] to make the calculations efficient.

Given two documents d1 and d2, we compute the distance
between them using the formula.

distance(d1, d2) =
Pr(d1|d2) + Pr(d2|d1)

2

We use the k-means clustering algorithm [21] to classify
the documents. The algorithm starts with k document seeds. It
then finds the documents that are closest to each seed using the
distance metric. Next, the centroid (i.e., mean) of each cluster
is found and then new clusters are created using the centroids
as the seeds. The process repeats and it is guaranteed to
converge. Computing the mean of a set of documents amounts
to adding the document vectors and dividing by the number
of documents. The document vector for a document contains
the frequency of each word in the document.

V. EXPERIMENTAL VALIDATION

We used a Hadoop cluster of seven computers running
Intel(R) Xeon(R) CPU E5-2695 v3 @ 2.30GH 14 cores and 32
GB RAM to run the experiments. All code was written in Scala
and used Spark. Information from WordNet using the Java API
for WordNet Searching (JAWS) [34] was first extracted and
saved to files. We did not use any search structures, such as

TABLE IV
RESULTS ON THE REUTERS-21578 BENCHMARK

cosine logarithmic this paper
# of rounds 30 45 49
precision 0.57 0.66 0.71
recall 0.05 0.07 0.14
F1-measure 0.09 0.13 0.23

hash tables and trees. Instead, we used Spark’s join operation
when we wanted to join the result of two Resilient Distributed
Datasets (RDDs). It took less than one hour to create the
probabilistic graph using the files for WordNet and DBPedia.

We next read all the documents from the Reuters-21578
benchmark. The benchmark contains 21, 578 documents that
are stored in 22 text files. Our program read the files and
we extracted information about the 11, 362 documents that
were classified in one of 82 categories using human judgment
(the other documents do not have human judgment associated
with them). For every document, we stored its title, its text,
the category it belongs to, and a document vector. The later
contains the non-noise words in the document and their
frequencies. Since the words in the title are more important,
we counted these words twice. We next added the documents
to the probabilistic graph.

We next clustered the documents using the k-means clus-
tering algorithm. We chose the value k = 82 because this
is the number of categories as determined by the human
judgment. The first 82 documents were put in 82 distinct
clusters. At this point, the lonely document in each category
was designed as the centroid. We next processed the rest of the
documents. Every document was compared to the 82 centroids
and assigned to the cluster with the closest centroid. Next, a
new centroid was chosen for each cluster. This was done by
adding the document vectors in each cluster and dividing the
result by the number of vectors. Next, the documents were
reclustered around the new centroids and the process was
repeated until it converged.

The k-means clustering algorithm is based on two document
functions: finding the distance between two documents and
computing the average of several documents. We have three
choices for the distance metric: the standard cosine function,
the logarithmic function from [41] that uses only information
from WordNet, and the random walk function on the full
probabilistic graph that stores information from WordNet and
DBPedia.

Table IV shows the F1-measure when using the three
different distance metrics. The measure gives a single number
based on the precision and recall of the result of the clustering
algorithm. We computed the precision as TP

TP+FP and the
recall as TP

TP+FN . In the formula, TP is the number of
true positives, that is, the number of documents that were
classified in the same category by both the program and human
judgment. FP is the number of false positives, that is, the
number of documents that were classified in the same category
by the program, but were classified in different categories by



human judgment. Lastly, FN is the number of false negatives,
that is, the number of documents that were classified in the
same category by human judgment but were classified in
different categories by the program.

As the table suggests, using the full probabilistic graph with
information from WordNet and DBPedia can lead to both
higher precision and recall. The reason is that now we are
not just comparing the semantic similarity between words, but
also the semantic similarity between phrases.

VI. CONCLUSION AND FUTURE RESEARCH

In this paper, we reviewed how information from WordNet
can be used to build a probabilistic graph. We extended
existing algorithms by adding part of speech tag to each
word and sense. We then showed how the graph can be
extended with information from DBPedia. We validated the
algorithm experimentally by comparing it to an algorithm that
uses the cosine similarity metric and an algorithm that uses
only information from WordNet. The results show that adding
information from DBPedia increases both the precision and
the recall of the algorithm on the Reuters-21578 benchmark.

One area for future research is moving beyond the bag of
words model and considering the ordering of the words in the
documents.
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