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Abstract—Given a set of documents and an input query that
is expressed in a natural language, the problem of document
search is retrieving the most relevant documents. Unlike most
existing systems that perform document search based on key-
words matching, we propose a search method that considers
the meaning of the words in the query and the document.
As a result, our algorithm can return documents that have
no words in common with the input query as long as the
documents are relevant. For example, a document that contains
the words “Ford”, “Chrysler” and “General Motors” multiple
times is surely relevant for the query “car” even if the word
“car” does not appear in the document. Our semantic search
algorithm is based on a similarity graph that contains the degree
of semantic similarity between terms, where a term can be a
word or a phrase. We experimentally validate our algorithm
on the Cranfield benchmark that contains 1400 documents and
225 natural language queries. The benchmark also contains the
relevant documents for every query as determined by human
judgment. We show that our semantic search algorithm produces
a higher value for the mean average precision (MAP) score than
a keywords matching algorithm. This shows that our approach
can improve the quality of the result because the meaning of the
words and phrases in the documents and the queries is taken
into account.

I. INTRODUCTION

Consider an information retrieval system that consists of a
list of restaurants and a short description for every restaurant.
Next, suppose that someone is driving and searching for a
“Mexican restaurant” in a five miles radius. If there are no
Mexican restaurants near by, then a simple keywords matching
system will not return any results. However, a better option
will be to consider all restaurants that are close by and return
them ranked based on the semantic similarity to the phrase
“Mexican restaurant”. For example, the system may contain
the knowledge that “Puerto Rican restaurant” is semantically
closer to “Mexican restaurant” than “Greek restaurant” and
therefore return Puerto Rican restaurants before Greek restau-
rants. In this paper, we address the problem of building such
an information retrieval system that returns ranked documents
based on their semantic similarity to the input query.

The problem of finding results based on the semantic sim-
ilarity between the words and phrases in the input query and
the documents in the information retrieval system is interesting
because it can lead to increased recall. For example, documents
that will not be returned using a simple keywords matching
system will now be returned. Consider a scientific document
about “ascorbic acid”. The query “vitamin C” should definitely
return this document because the terms “ascorbic acid” and

“vitamin C” refer to the same organic compound. However,
this document will be part of the query result only if the close
relationship between the two terms is stored in the system and
used during query answering. The need for an information
retrieval system that returns results based on the semantics
of words and phrases becomes even more apparent when the
number of documents in the information retrieval system is
relatively small. In this case, a keywords matching system will
return the empty set in most cases. However, a system that
considers the semantic similarity of the words and phrases in
the query and each of the documents can return result even
in the case when all the documents do not contain any of the
words in the input query. This was the case in the Mexican
restaurant example from the previous paragraph.

The problem of creating a semantic search engine for
information retrieval is difficult because it involves some
understanding of the meaning of words and phrases and how
they interact. Although significant effort has been put forward
in automated natural language processing ([12], [13], [30]),
current approaches fall short of understanding the precise
meaning of human text. In fact, the question of whether
computers will ever become as fluent as humans in under-
standing natural language text is an open problem. In this
paper we do not analyze natural language text and break it
down into the parts of speech. Instead, we only consider the
words and phrases in the documents and query and use the
similarity graph that we previously developed and that is based
on a probabilistic model to compute the semantic similarity
between the query and each of the documents.

Note that a traditional keywords matching algorithm, such
as TF-IDF (stands for term frequency – inverse document
frequency – see [22]), will fall short because it only considers
the frequency of the query words in each document. It will
not return relevant documents if they do not contain the query
words. In recent years, researchers have explored how to
represent knowledge using a knowledgebase that is written in
OWL (OWL stands for web ontology language – see [46]) and
how to pose queries using a knowledgebase query language,
such as SPARQL (a recursive acronym that stands for SPARQL
Protocol and RDF Query Language – see [41]). However,
this approach poses two challenges. First, every document
must have an OWL description. Annotating the documents
manually is time consuming and systems that automatically
annotate documents (e.g., [27]) are still in their early stages of
development. However, the main contrast with our approach is



that a SPARQL query returns all resources that are subsumed
by the input query and there is no notion of ranking the result
based on the degree of semantic similarity with the input query.

Our approach of finding semantically similar documents is
based on a similarity graph that was developed in two previous
papers ([44], [43]). The graph uses mainly information from
WordNet and Wikipedia to find the degree of semantic similar-
ity between 150,000 of the most common words in the English
language and about 4,000,000 titles of Wikipedia articles. The
edges in the graph are asymmetric, where an edge between two
nodes represents the probability that someone is interested in
the concept that is described by the destination node given
that they are interested in the concept that is described by the
source node. Our approach adds the queries and documents in
the information retrieval system as nodes in the graph. Then
the new nodes are connected to the graph based on the words
and phrases that appear in them. For example, the query “cat”
will be connected to the word “cat”, which is connected to the
word “feline”, which in tern can be connected to a document
that contains the word “feline” multiple times. In this way,
we can retrieve a semantically relevant document that does
not need to include any of the words in the initial query.
We consider all paths in the graph between the input query
and the documents, where every path provides additional data
about the probability that a user is interested in the destination
document. Note that the weight of a path decreases as the
length of the path increases because longer paths provide
weaker evidence. Given an input query, our system returns
the documents in ranked order, where the ordering is based
on the probability that a user is interested in each document.
One shortcoming of our system is that it does not return a
subset of the documents. However, this shortcoming can be
addressed by returning only documents with high probability
of relevance (e.g., relevance score of above 90%).

We experimentally validate our semantic search algorithm
on the Cranfield benchmark that contains 1400 documents and
225 queries. Human subjects have determined the documents
that are relevant for every query. We compare our algorithm
with the TF-IDF algorithms that is implemented in Apache
Lucene. The experimental section shows that our semantic
search algorithm produces higher value for the mean average
precision (MAP) over all queries than the Lucene algorithm,
where MAP has been shown to have especially good dis-
crimination and stability for information retrieval systems that
produce ranked retrieval results (see [4]). The reason why our
system has higher value for the MAP measure than the Apache
Lucene system is because we consider not only the words and
phrases in the queries and the documents, but also the strength
of their semantic relationship.

In what follows, in Section II we present a brief overview
of related research. Section III describes the similarity graph
and contains example scenarios for creating the graph. The
main contribution of the paper is Section IV, which explains
how queries and documents can be added to the similarity
graph. Section V describes the scoring function that is used
for ranking the documents. Section VI validates our semantic

search algorithm by showing how it can produce data of
better quality than an algorithm that is based on simple
keywords matching. Lastly, Section VII summarizes the paper
and outlines areas for future research.

II. RELATED RESEARCH

In this section, we present a chronological overview of the
major breakthroughs in semantic search research. In 1986,
W. B. Croft proposed the use of a thesaurus of concepts for
implementing semantic search ([9]). The words in both the
user query and the documents can be expanded using infor-
mation from the thesaurus, such as the synonym relationship.
Sequentially, there have been multiple papers on the use of
a thesaurus to implement semantic search (e.g., [16], [17],
[18], [20], [23], [33], [38], [47]). This approach, although
very progressive for the times, differs from our approach
because we consider indirect relationships between words (i.e.,
relationships along paths of several words). We also do not
apply query and document expansion. Instead, we use the
similarity graph to find the documents that are semantically
related to the input query. Similarly to the approach in [9],
we use a probabilistic model to rank the documents in the
result. Croft also proposed retrieving documents based on user
interaction, where this direction has been further extended in
the area of folksonomies ([14]). Our system currently does not
allow for user interaction when computing the list of relevant
documents. However, we believe that allowing interactive
mode during query answering and implementing user profiling
can improve our system and we identify this topic as an area
for future research.

In later years, the research of Croft was extended by creating
a graph that contains a semantic network ([7], [35], [39]) and
graphs that contain the semantic relationships between words
([3], [2], [8]). Later on, Simone Ponzetto and Michael Strube
showed how to create a graph that only represents inheritance
of words in WordNet ([25], [40]), while Glen Jeh and Jennifer
Widom showed how to approximate the similarity between
phrases based on information about the structure of the graph
in which they appear ([21]). All these approaches differ from
our approach because they do not consider the strength of the
relationship between the nodes in the graph. In other words,
there are no weights that are associated with the edges in the
graph.

The problem of semantic search is somewhat related to
the problem of question answering. Instead of returning a
set of documents, question answering deals with the problem
of finding the answer to a question inside the available
documents. Natural language techniques are used to determine
the type of expected answer ([19], [32], [42]). For example,
if the natural language analyzer determines that the answer
to a question must be an animal, than words or concepts in
the documents that can represent an animal are identified as
potential query answers.

Since the early 1990s, research on LSA (stands for latent se-
mantic analysis – see [11]) has been carried out. The approach
has the advantage of not relying on external information.



Instead, it considers the closeness of words in text documents
as proof of their semantic similarity. For example, LSA can
be used to detect words that are synonym (see [26]). This
differs from our approach because we do not consider the
closeness of the words in a document. We only consider the
order of the words in the definition of a WordNet sense when
we build the similarity graph, where we assume that the first
words are more important. Although the LSA approach has its
applications, we believe that our sources of knowledge, such
as WordNet and Wikipedia, provide higher quality of data.

Since the late 1990s, ontologies have been examined as
tools to improve the quality of the data that is returned by
information retrieval systems (see [37]). However, ontologies
use the boolean search model. An ontology language, such as
OWL, can be used to precisely annotate the input documents.
Queries are expressed in a language that is based on mathe-
matical logics, such as SPARQL, and a document is either part
of the query result or it is not. Unlike the probabilistic model
that is used in this paper, there is no notion of approximate
query answering or ranking the output documents based on
their relevance with the input query. Therefore, this approach
is better suited towards query answering problems than to
document searches (see [28], [29], [1], [5]). Research on
automatic annotation of documents with OWL descriptions is
also relevant (see [24], [34], [15]).

Lastly, there are papers that consider a hybrid approach of
information retrieval using both an ontology and keywords
matching. For example, [36] examines how queries can be
expanded based on the information from an OWL knowl-
edgebase. Alternatively, [45] proposes a ranking function that
depends on the length of the logical derivation of the result,
where the assumption is that shorter derivations will produce
more relevant documents. Unfortunately, these approaches are
only useful in the presence of an ontology and, as mentioned
earlier, research on automatic annotation of documents with
OWL descriptions is still in its early stages of development.

III. CREATING THE SIMILARITY GRAPH

In this section, we review how the similarity graph can be
created using information from WordNet ([31]) and Wikpedia,
where we encourage the reader to refer to [44] and [43],
respectively, for a more detailed description. WordNet gives
us information about the words in the English language. The
similarity graph is initially constructed using WordNet 3.0,
which contains about 150,000 different words. WordNet also
contains phrases, such as “sports utility vehicle”. WordNet
uses the term word form to refer to both the words and the
phrases in the corpus. Note that the meaning of a word form
is not precise. For example, the word “spring” can mean the
season after winter, a metal elastic device, or natural flow of
ground water, among others. This is the reason why WordNet
uses the concept of a sense. For example, earlier in this
paragraph we cited three different senses of the word “spring”.
Every word form has one or more senses and every sense is
represented by one or more word forms. A human can usually

determine which of the many senses a word form represents
by the context in which the word form is used.

The initial goal of the similarity graph is to model the
relationship between the word forms in WordNet using a
probabilistic model. The weight of an edge between two nodes
describes the probability that a user is interested in documents
that contain the label of the destination node given that they
are interested in the label of the source node. For every word
form, a node that has the word form as a label is created.
Similarly, for every sense we create a node with a label that
is the description of the sense. In the graph, we join a sense
node with the nodes for the non-noise words in the description
of the sense using edges, where higher weights are given to
the first words. The reason is that we believe that there is a
greater chance that a user will be interested in one of the first
words in the definition of a sense given that they are interested
in the sense. For example, the most popular sense of the word
“chair” is a “a seat for one person”. There is obviously a strong
relationship between the words “chair” and “seat”, which
is extracted by the algorithm. Similarly, WordNet contains
example use for each sense and the similarity graph contains
an edge between each sense and each non-noise word in its
example use. As expected, the weights of these edges are
smaller than the weights for the definition edges because
the definition of a sense provides stronger evidence than the
example use of a sense about the degree of semantic relevance.

WordNet also contains a plethora of information about
the relationship between senses. The senses in WordNet are
divided into four categories: nouns, verbs, adjectives, and
adverbs. For example, WordNet stores information about the
hyponym and meronym relationship for nouns. The hyponym
relationship corresponds to the “kind-of” relationship (for
example, “dog” is a hyponym of “canine”). The meronym
relationship corresponds to the “part-of” relationship (for
example, “window” is a meronym of “building”). Similar re-
lationships are also defined for verbs, adjectives, and adverbs.
For each such relationship, the similarity graph contains an
edge between the sense nodes, where the weight of the edge
depends on the likelihood that a user will be interested in the
destination sense given that they are interested in the source
sense.

Instead of presenting a detailed description of how the
weights of the edges are extracted from WordNet (this infor-
mation can be found in [44]), we show some previously un-
published examples. First, consider Fig. 1. The edge between
the word “cat” and its main sense has weight 18/25 because
WordNet defines eight senses of the word “cat”. The main
sense is shown in the figure and WordNet gives it a frequency
value of 18, where all the other senses of the word have a
frequency of 1. In other words, the sum of the frequencies of
all senses, according to WordNet, is 25 and therefore there
is an 18/25 chance that someone who is interested in the
word “cat” is also interested in the most popular sense of the
word. The edge between the two senses represents a hypernym
relationship. This is the opposite of the hyponym relationship.
For example, the main sense of the word “cat” is a hypernym



of the main sense of the word “feline” because a cat is-a
feline. The algorithm weights all such relationships with value
0.3. Lastly, the weight of the edge between the main sense
of the word “feline” and the word “feline” is 1 because the
sense represents the word. In other words, there is a 100%
probability that someone who is interested in a sense will also
be interested in one of the word forms that represents it. In
order to compute the relevance score between the words “cat”
and “feline”, we need to multiply the weights of all the edges
in the path. In other words, the graph so far tells us that there
is a (18/25) ∗ 0.3 = 21.6% probability that a user who is
interested in cats will also be interested in felines.

any of various lithe−bodied roundheaded

cat
feline mammal usually having 

thick soft fur and ability to roar 

18/25

feline
1

0.3

fissiped mammals with retractile claws 

Fig. 1. Example relationship between the words “cat” and “feline” along
hypernym relationship.

There is a second path in the graph between the words “cat”
and “feline”. As shown in Fig. 2, the word “feline” appears in
the definition of the main sense of the word “cat”. The weight
of the second edge uses the computeMinMax function. It
returns a number that is almost always between the first two
arguments, where the magnitude of the number is determined
by the third argument. In our case, this magnitude is equal
to 1/7 because “feline” is one of the seven non-noise words
in the definition of the sense. The computeMinMax function
smoothens the value of the third parameter. For example, a
word that appears as one of 20 words in the definition of a
sense is not 10 times less important than a word that appears
as one of two words in the definition. The function makes
the difference between the two cases less extreme. Using this
function, the weight of the edge in the second case will be
only roughly four times smaller than the weight of the edge
in the first case. This is a common approach when processing
text. The importance of a word in a text decreases as the
size of the text increases, but the importance of the word
decreases at a slower rate than the rate of growth of the text.
Formally, the function computeMinMax is defined as follows.

computeMinMax (minV alue,maxV alue, ratio) =
minV alue+ (maxV alue−minV alue) ∗ −1

log2(ratio)

Note that when raio = 0.5, then the function returns max-
Value. An unusual case is when the value of the variable ratio
is bigger than 0.5. For example, if ratio = 1, then we have
division by zero and the value for the function is undefined.
We handle this case separately and assign value to the function
equal to 1.2 ∗maxValue . This is an extraordinary case when
there is a single non-noise word in the text description and we

need to assign higher weight to the edge.

computeMinMax(0,0.6,1/7)

feline

cat
feline mammal usually having 

thick soft fur and ability to roar 

18/25

Fig. 2. Example relationship between the words “cat” and “feline” alone the
words-in-sense-definition relationship.

Note that the weights of the edges to sequential words in
the definition of a sense will be multiplied by a coefficient that
decreases their value. The reason is that we believe that the
first words in the definition of a sense are the most important
ones. The second edge in Fig. 2 was not multiplied by such a
coefficient because “feline” is the first word in the definition
of the sense.

We have shown two paths between the words “cat” and
“feline”. If we add the evidence from the two paths, then
we will get the number 0.214 + 0.216 = 0.43. The number
0.43 gives us the contribution of the word “feline” towards
the word “cat” in a query that contains the word “cat”. In
other words, for this query we will consider documents that
contain the word “feline”. However, as expected, documents
that contain the word “cat” will be preferred (the weight for
such documents for the word “cat” is multiplied by 1.0 instead
of 0.43).

We next review how information from Wikipedia is used
to augment the similarity graph, where the detailed algorithm
is presented in [43]. Nodes are created for Wikipedia articles,
categories, and redirects, where the label of each node is the
title of the Wikipedia page. Edges are used to connect the
Wikipedia and WordNet nodes. For example, an edge will be
drawn both ways between the Wikipedia node “Government
of the United States” and the WordNet nodes “government”
and “United States”. These edges will represent the semantic
relationship between a Wikipedia article and the word forms
that appear in its title. Similarly, a two-way edge will be drawn
between the node for a Wikipedia page and a node for a word
form that contains a word form that appears in the subtitle of
the page. An edge is also drawn between a Wikipedia node
and the word form nodes for word forms that appear five
times or more in the body of the article. Edges that represent
the category/subcategory relationship and the membership of
a Wikipedia article to a category are also drawn. Wikipedia
articles contain see-also and hyperlink relationships to other
Wikipedia articles and edges that represent these relationships
are also drawn in the graph. Lastly, Wikipedia contains page
redirects, where a page can contain no article and only a
redirect to a different Wikipedia page, where this relationship
is also modeled in the similarity graph.

Instead of describing how the weights of the edges for
the Wikipedia part of the similarity graph are assigned



(this information is available in [43]), we present a previ-
ously unpublished example that demonstrates how we can
return semantically relevant documents based on informa-
tion from Wikipedia. Consider Fig. 3. It describes that the
word “hockey” appears in the title of the Wikipedia arti-
cle about ice hockey in the Olympic Games and that the
word “Canada” appears in this Wikipedia article 89 times.
As a result, we can extract information about the relation-
ship between the words “hockey” and “Canada”. Specif-
ically, suppose that 10 Wikipedia titles contain the word
“hockey”, where “Ice Hockey at the Olympic Games” is one
of these pages. The edge between the nodes “hockey” and
“Ice Hockey in the Olympic Games” will have a weight
of computeMinMax(0, 0.1, 1/10), where the last parameter
represents that the article is only one of 10 Wikipedia articles
that have the word “hockey” in their title. Next, suppose
that the word “Canada” appears 89 times in the Wikipedia
article and that the size of the text that contains words that
appear five times of more in the article is 300 words. Then
we will draw the second edge that is shown in the figure
with weight computeMinMax(0, 0.1, 89/300). The parameter
89/300 describes the contribution of the word “hockey” to
the text that contains frequently accruing words. Note that for
both edges the coefficient 0.1 is relatively low because the
information in Wikipedia is not as reliable as the information
in WordNet.

computeMinMax(0,0.1,1/10)hockey

computeMinMax(0,0.1,89/300)

ice hockey at

the olympic games

Canada

Fig. 3. Example part of a similarity graph that is created from Wikipedia.

Next, consider Fig. 4. The nodes in the graph represent the
Wikipedia article on hockey and the word “Canada”. Suppose
that the word “Canada” appears 10 times in the body of the
article. If we assume that the size of the text in the Wikipedia
article on Canada that consists of words that repeat five times
or more is 45 words, then we will create the edge that is shown
in the figure. The parameter 10/45 describes the contribution
of the word “Canada” to the text that contains frequently
accruing words. Since this is the second path between
the nodes with labels “hockey” and “Canada”, we need to
aggregate the evidence from the two paths and get the number
computeMinMax(0, 0.1, 1/10)∗computeMinMax(0, 0.1, 89/300)
+ computeMinMax(0, 0.1, 10/45) = 0.05. In other words,
based on the presented Wikipedia evidence, we will consider
documents that contain the word “Canada” when searching
for documents about hockey. However, we will assign weight
to these documents for the word “hockey” of only 0.05.
Alternatively, documents that contain the word “hockey” will
be assigned the full weight of 1 for the word “hockey”.

hockey

Canada

computeMinMax(0,0.1,10/45)

Fig. 4. Example part of a similarity graph that is created from Wikipedia.

IV. ADDING QUERIES AND DOCUMENTS TO THE
SIMILARITY GRAPH

Let us examine the first query of the Cranfield benchmark
(see [6]): “What similarity laws must be obeyed when con-
structing aeroelastic models of heated high speed aircraft?”
After we remove all the noise words, we are left with 10
words. We are going to create a node for the query and draw
an edge to each of the 10 word nodes – see Fig. 5. We will
use term to refer to both a word form or a phrase that is a
Wikipedia page title. In general, we consider all the terms in
the query and try to match them against node labels in the
graph. In the specific example, there are no Wikipedia pages
that contain terms of two words or more from the query. If
there were, then edge will be drawn to these nodes as well. The
weight of each edge is equal to computeMinMax (0, 1, ratio),
where ratio is the number of times the term appears in the
query divided by the total number of terms that are considered.
As explained in the previous section, the computeMinMax
function can be used to smoothen the result. In other words,
we do not consider a term that appears twice in the query
twice more important than a term that appears only once. The
computeMinMax function makes the ratio of the two cases
1.3 instead of 2. As we will describe later in this section, the
graph model can be used to implement the standard TF-IDF
scoring function. If we follow this model, then the weight of
each of the edges should be equal to the value of the ratio
parameter. Note that multiplying the weights of the edges by
a number will not affect the ranking of the query result. Here,
we multiply by one because we assume that there is a 100%
probability that the user will be interested in one of the terms
in their query. Note as well that we give equal importance
to all the terms in the query and we do not assume that the
leading terms are more important. Of course, this model can
be adjusted if the user specifies the importance of each term
in the query using a numerical value.

Fig. 5 shows how the query is connected to the
similarity graph. The weight of each edge is equal to
computeMinMax (0, 1, 1/10) = 0.3. If the query contains
a word that is not part of the similarity graph (i.e., not in
WordNet), then we will not draw an edge for this word. As
an alternative example, if there is a Wikipedia page with title
“high speed aircraft”, then a node with this label will exist in
the similarity graph and we will draw an edge between the
query and the node.

Next, let us consider the first document in the Cranfield
benchmark. The word “propeller” appears once in the body of



aeroelastic

Q1

aircraft speed

heated

models

constructing

obeyed

laws

similarity high

all edge weights: computeMinMax(0,1,0.1)

Fig. 5. Connecting the first query of the Cranfield benchmark to the similarity
graph.

the article and it does not appear in its title. Suppose that the
word also appears once in three other documents. Then we
will create the subgraph that is shown in Fig. 6. In general,
the weight of an edge from a term to a document that contains
the term in the tile is equal to computeMinMax (0, 0.8, ratio)
and to a document that contains the term in the body –
computeMinMax (0, 0.2, ratio). Here, ratio is the number of
times the term appears in the title or body of the document,
respectively, divided by the total number of occurrences in
all documents. The reason behind these formulas is that we
believe that documents that have a term from the query in their
title are more likely to be relevant than documents that contain
the term in the body of the document. To put it differently,
the formula implies that there is an 80% chance that a user
that is interested in a term will be also interested in one of the
documents that contains the term in the title. Similarly, there
is a 20% chance that the user will be interested in one of the
documents that contains the term in its body.

computeMinMax(0,0.2,1/4)

propeller

document 1

all edges:

Fig. 6. Connecting the word “propeller” with the documents.

Note that the formulas for computing the edge weights
that connect documents and queries to the graph follows
the TF-IDF model. When computing the value for the ratio
parameter, we consider the number of times the term appears
in the document (the term frequency) and divide by the
number of times the term appears in all documents (the
document frequency). In other words, we multiply the term
frequency by the inverse of the document frequency. An
alternative formula for calculating the weight of an edge
between a term and a document is shown below. This formula
is based on the way the ranking function is computed in the
Apache Lucene system ([10]).

weight =
√
tf ∗ (1 + log2(

numDocs
docFreq+1 ))

2

In the above formula, tf is the number of times the

term appears in the document, numDocs is the total number
of documents, and docFreq is the number of documents in
which the term appears. In order to be consistent with the
previous way of computing the edge weights, we need to
multiply the weights of edges that represent the containment
of a term in the title of a document by 0.8 and the weights
of edges that represent the containment of a term in the body
of a document by 0.2. In the experimental section of this
paper, we compare the two ways of connecting queries and
documents to the graph.

Note that the main contribution of the paper is incorporating
the similarity graph when returning relevant documents ranked
based on their relevance to the input query. If we remove the
similarity graph that is created from WordNet and Wikipedia,
then we will only draw edges from the query to the words in
the query and from the words in the query to the documents,
which is equivalent to applying the TF-IDF model for ranked
document retrieval. In other words, the paper proposes an
extension the TF-IDF model by adding information about term
similarity that can be extracted from WordNet and Wikipedia.

V. SCORING FUNCTIONS

First, let us examine the scoring function that is used
by Apache Lucene ([10]), which is a popular software that
contains a toolkit of routines for information retrieval. Given
a document d and a query q, the scoring function is defined
as follows.

score(q, d) =
∑

t in q

(
√

tf (t in d) ∗ (1 + log2(
numDocs

docFreq(t)+1 ))
2)

In the function, tf (t in d) denotes the number of ap-
pearances of the term t in the document d, numDocs refers
to the total number of documents, and docFreq(t) refers
to the number of documents in which the term t appears.
This follows the TF-IDF formula because the second part of
the formula is one way of computing the inverse document
frequency. The scoring function can be multiplied by boosting
and normalizing parameters, which are skipped because they
are optional parameters and require user tuning.

Next, let us consider how the similarity graph can be used
to compute the value of the scoring function. Recall that the
weight of an edge in the similarity graph is used to represent
the conditional probability that a user is interested in the
destination concept given that they are interested in the source
concept. We compute the directional similarity between two
nodes using the following formula.

A→s C =
∑

Pt is a cycleless path from node A to node C

PPt(C|A) (1)

PPt(C|A) =
∏

(n1,n2) is an edge in the path Pt

P (n2|n1) (2)

In the above formula, P (n2|n1) is used to denote the weight
of the edge from the node n1 to the node n2. Informally,
we compute the directional similarity between two nodes



in the graph as the sum of all the paths between the two
nodes, where we eliminate cycles from the paths. Each path
provides evidence about the similarity between the terms
that are represented by the two end nodes. We compute the
similarity between two nodes along a path as the product of the
weights of the edges along the path, which follows the Markov
chain model. Since the weight of an edge along the path is
almost always smaller than one (i.e., equal to one only in rear
circumstances), the value of the conditional probability will
decrease as the length of the path increases. This is a desirable
behavior because a longer path provides less evidence about
the semantic relationship between the two end nodes.

Note that the value of A →s C can be potentially greater
than 1. Therefore, we will apply the following function for
normalizing the relevance score between two internal nodes
of the graph (i.e., nodes that do not represent queries or
documents).

|w1, w2| = 0.8 ∗min(α,w1 →s w2) ∗
1

α
(3)

In previous work (e.g., [44], [43]) we have shown that
value of 0.1 for α produces data of good quality. Here, we
will use this value. The function transforms the relevance
score between two internal nodes into the range [0,0.8]. The
value 0.8 guarantees that if we substitute a term in the query
with a different term, then the new term will be weighted
with value 0.8 or less. Using this new function, the relevance
score between a query q and a document d is computed as
follows, where w1 iterates over all nodes that can be reached
by following an edge from q and w2 are nodes that have a
direct edge to d.

relevance score(q, d) =
∑

w1,w2

P (w1|q)∗|w1→s w2|∗p(d|w2)

In the above formula, for each value of w1 we restrict w2

to the 50 nodes that have the highest relevance score with w1.
In other words, we consider up to 50 substitutions for every
term in the query.

VI. EXPERIMENTAL RESULTS

The Cranfield benchmark ([6]) contains 1400 short docu-
ments about the physics of aviation. Each document contains
a title and a short body that is usually around 10 lines. As part
the benchmark, 225 natural language queries were created. As
part of the study, the documents and queries were examined
by experts in the area and the documents that are relevant
to each query were identified. The relevant documents were
clustered in four groups. Highly relevant documents were
given relevance score of 1, less relevant documents were given
a relevance score of 2, even less relevant documents were given
a relevance score of 3, while documents of minimum interest
were given a relevance score of 4.

As Table I suggests, for each algorithm we ran four ex-
periments. In the first experiment, we only considered the
documents with relevance score of 1 to be relevant. In the
second experiment, we only considered the documents with
relevance scores of 1 and 2 to be relevant and so on. Each

Rel. 1 Rel. 1-2 Rel. 1-3 Rel. 1-4
Similarity Graph +
our weights

0.29 0.29 0.30 0.35

Similarity Graph +
Lucene weights

0.28 0.28 0.30 0.34

Lucene Algorithm 0.25 0.25 0.27 0.29
Lucene Algorithm +
our weights

0.26 0.26 0.27 0.30

TABLE I
MAP VALUES FOR DIFFERENT ALGORITHMS AND DEGREES OF

RELEVANCE FOR THE CRANFIELD BENCHMARK.

of the experiments took about 10 minute to complete on a
typical laptop with an Intel Core i7 processor and 4GB of
main memory.

For each query, we computed the mean average precision
score, which is also known as the MAP score. Consider the
query Q. Let {Di}di=1 be the relevant documents. Let Ri be
the set of documents that are retrieved by the algorithm until
document Di is returned. Then the MAP score for the query
Q is defined as the average precision of Ri over all values, or
formally as follows.

MAP(Q) =
1

d

d∑
i=1

Precision(Ri) (4)

The precision for Ri is defined as the fraction of retrieved
documents that are relevant, or formally as follows.

Precision(Ri) =
#(relevant items retrieved)

#(retrieved items)
(5)

Next, let us examine Table I in more details. The MAP
score is the average MAP value over all 225 queries. The
top algorithm is the algorithm that is described in the paper.
As the table suggests, it produces higher value for the MAP
metric than the Apache Lucene algorithm. The reason is that
the later performs simple keywords matching and does not
consider the semantic relationship between the terms in queries
and documents. It is clear from the table that our algorithm
produces especially good results when we consider documents
with relevance score from 1 to 4 to be relevant. The reason is
that our algorithm is strong at identifying documents that are
weakly related with the input query. Alternatively, the Apache
Lucene algorithm fails to discriminate between documents that
do not contain the query words.

It is also worth noting that our edge weight functions for
connecting the query and document nodes to the graph produce
slightly higher values for the MAP score than the functions
that are used in the Apache Lucene algorithm.

VII. CONCLUSION AND FUTURE RESEARCH

In two previous papers, we showed how to create a sim-
ilarity graph that stores the degree of semantic relationship
between terms ([44], [43]). In this paper we apply the semantic
similarity graph to the problem of ranked document retrieval.
Specifically, we enhanced the TF-IDF document retrieval
algorithm with the similarity graph and presented an algorithm



that retrieves documents based on the similarity between the
terms in the documents and the terms in the query. We
experimentally validated the algorithm by showing that the
similarity graph can contribute to achieving more relevant
results than using the TF-IDF approach alone.

In the future, we plan to continue exploring new applications
of the similarity graph. Incorporating the graph in a query
answering system that uses an ontology and using the graph
to cluster documents based on the meaning of the terms in
them are two possible areas for future research.
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