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Abstract

We present a probabilistic model for extracting and storing
information from WordNet and the British National Corpus.
We map the data into a directed probabilistic graph that can
be used to compute the conditional probability between a pair
of words from the English language. For example, the graph
can be used to deduce that there is a 10% probability that
someone who is interested in dogs is also interested in the word
“canine”. We propose three ways for computing this probability,
where the best results are achieved when performing multiple
random walks in the graph. Unlike existing approaches that
only process the structured data in WordNet, we process all
available information, including natural language descriptions.
The available evidence is expressed as simple Horn clauses
with probabilities. It is then aggregated using a Markov
Logic Network model to create the probabilistic graph. We
experimentally validate the quality of the data on five different
benchmarks that contain collections of pairs of words and
their semantic similarity as determined by humans. In the
experimental section, we show that our random walk algorithm
with logarithmic distance metric produces higher correlation
with the results of the human judgment on three of the five
benchmarks and better overall average correlation than the
current state-of-the-art algorithms.

Key Words: Semantic similarity, probability-based semantic
similarity and distances, Markov logic network for representing
WordNet data, semantic similarity benchmarks for WordNet.

1 Introduction

Tens of scientists have spent decades to develop WordNet
[22]. This word corpus contains very accurate information about
150,000 word forms from the English language and their senses.
A word form is a word or a short phrase, such as “sports utility
vehicle”. Every word form can have multiple senses and every
sense can be represented by multiple word forms. For example
“a seat for one person” is the most popular sense of the word
“chair”.

The first problem that we will solve in this article is to show
how to map the data from WordNet into a probabilistic graph.
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The graph will contain a node for each word form and each
sense in WordNet. A directed edge between two nodes will be
labeled with the probability that a user who is interested in the
source node would also be interested in the destination node.
For example, based on the definition of the first sense of the
word “chair”, we can create an edge between this sense and
the word “seat”. WordNet also contains information about the
relationships between senses, where this information will also
be used in creating the probabilistic graph.

The second problem that we will address in the article is
how to measure the semantic similarity between two word
forms in the graph. We will show two algorithms that consider
disjoint paths between the two nodes. The first algorithm simply
multiplies the weights of the edges along a path, while the
second algorithm is more sophisticated and uses the Markov
Logic Network (MLN) model [30]. The third algorithm is a
Monte Carlo approximation algorithm that performs random
walks in the graph.

The third and last problem that we will examine is how to
experimentally validate the quality of the data in the graph
and the quality of the semantic similarity algorithm using
multiple benchmarks. As we will show in the next paragraph,
the probabilistic graph has many applications. However, its
usefulness is limited by the quality of the data in the graph.
We will examine five benchmarks that have 201, 28, 65, 65,
and 665 pairs of words, respectively. Each pair of words
was given to multiple people and the average of the semantic
similarity, as determined by their judgment, was recorded. We
will compare the results of our three algorithms to that of 16
algorithms that form the current state-of-the-art in computing
semantic similarity between words. Specifically, we will show
that one of our algorithms produces higher correlation than the
other 16 algorithms on three of the five benchmarks. Moreover,
this algorithm has the highest average correlation over the five
benchmarks.

The probabilistic graph has multiple applications. For
example, in this article and in [43, 46], we focus on computing
the degree of semantic similarity between a pair of word forms.
In [45], we show how a probabilistic graph can be used to
perform semantic search. This means that given a textual
query, we can return documents that contain related words.
For example, if we know that there is a 20% change that a
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user who searches for cats will find documents that contain
the word “pet” relevant, then we can return such documents as
part of the query result. The documents that are returned are
ranked based on the probability of being relevant to the input
query, where the probabilistic graph can help us compute these
probabilities. Lastly, [47] shows how a probabilistic graph can
be used to perform semantic document clustering. For example,
an online store can use the probabilistic graph to cluster the
products that are offered in different categories. Two products
should appear in the same category only when they have textual
descriptions that contain words that are similar based on the
semantic similarity distance that can be computed from the
probabilistic graph.

Note that all the applications of the probabilistic graph rely on
an efficient and precise algorithm for computing the conditional
probability of a word form in the graph being relevant given
that a different word form in the graph is relevant. The semantic
similarity between two nodes can be computed as a function
of the average of the probability of the first word form being
relevant given that the second word form is relevant and the
reverse. Since most of the relationships in the graph are
between senses and not between word forms, we will present
an algorithm that explores all the paths between two word
form nodes in the graph in order to compute the conditional
probability of the second word form being relevant given that
the first word form is relevant.

Converting WordNet in a computer-friendly format is
a daunting task because WordNet contains heterogeneous
data. While there are a plethora of algorithms that process
structured information [15, 37] and textual information [3, 16],
experimental results have shown that processing both types of
information yields the best results (e.g., [44]). The fact that
processing natural language is intrinsically hard for computers
makes the problem even harder. Although significant effort
has been put in automated natural language processing (e.g.,
[9, 10, 25]), current approaches fall short of understanding
the precise meaning of human text. In fact, the questions of
whether computers will ever become as proficient as humans
in understanding natural language text is an open problem.
Lastly, note that the problem of computing the conditional
probability of a word form in the graph being relevant given
that a different word form in the graph is relevant is not trivial.
As [46] shows, we can use the MLN model to compute the
conditional probability along a single path. However, when
there are multiple interweaving paths between the two nodes,
exact computation of the conditional probability becomes
computationally intractable.

To the best of our knowledge, our previous research in the
area [46, 43, 45] is the only study on how structured and
unstructured information from WordNet can be combined to
capture the semantic relationship between word forms in a
probabilistic model. Other approaches that extract information
from WordNet (e.g., [18, 15, 37]) only consider the structured
information in WordNet. However, we believe it is beneficial
to capture all the information in WordNet, including the natural

language text descriptions for the definition and example use
of senses. Most existing research does not consider this
information because natural language text is intrinsically hard
to process.

The algorithm for creating the probabilistic graph first
examines WordNet and creates a node for each word form and
each sense. The label of a word form node is the word form and
the label of a sense node is the definition of the sense. Next, we
represent the relationship between nodes using logical formulas
with weights. Following the MLN approach, the weight of a
formula is equal to the natural logarithm of the odds of the
formula being true. We slightly modify this expression to ensure
that all the weights are positive. Our probability space consists
of a random variable for each node in the graph and a single
predicate called rel (stands for relevant). For example, we can
model the relationship between the main sense of the word chair
(“a seat for one person”) and the first word in the definition of
the sense using the Horn clause rel(aseat f or one person) ⇒
rel(seat). A weight will also be assigned to the formula and
it will be based on how strongly we believe that someone who
is interested in the sense will also be interested in the first non-
noise word in its definition. After all the formulas are created,
we draw edges between each pair of nodes that participate in
a formula. We use the MLN model to aggregate the evidence
about the conditional probability for each of these pairs. The
resulting weight of an edge between two nodes is a normalized
probability value that assures that the sum of the weights of all
the edges that leave each node add up to one.

This article presents three algorithms for computing the
conditional probability that a node is relevant given that a
different node in the graph is relevant. Computing this
probability using the MLN model without approximating the
result is possible, but computationally intractable. Although
[46] shows how to compute this probability along a single
path, we are not aware of a practical algorithm that computes
the probability when there are interweaving paths between the
two nodes. In this article, we introduce a randomized Monte
Carlo algorithm that performs multiple random walks, where the
algorithm contains parameters for tuning the expected accuracy
of the result.

In what follows, in Section 2 we cover related research.
In Section 3, we present an overview of WordNet and our
algorithm for creating the probabilistic graph. The main
contributions of the article are in the next two sections. In
Section 4, we present two existing algorithms and a novel Monte
Carlo algorithm for computing the conditional probability
between two nodes in the probabilistic graph. Section 5 shows
previously unpublished experimental results that test the quality
of the data in the probabilistic graph and the accuracy of
the different algorithms for finding the conditional probability
between two nodes on five different benchmarks. Lastly,
Section 6 summarizes the article and suggests avenues for
further research.
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2 Related Research

First, note that this article builds on several previous papers
by the same author. The paper [43] proposes how to build a
similarity graph, where the weights of the edges in the graph
correspond to the degree of directional semantic similarity
between the nodes. However, the weight of the edges are not
probabilities in the strict sense. The paper [46] extends this
working by showing how to use the MLN model to convert the
weights of the edges in the graph to strict probabilities. This
article extends [46] by presenting more detailed introduction
and related research sections. The algorithm for computing
the probabilistic graph is slightly modified. However, the most
important contribution is the new Monte Carlo algorithm for
computing the conditional probability between two nodes in
the probabilistic graph and the new experimental results that
test the quality of the proposed model on five independent
benchmarks and compare the results to 16 algorithms that form
the current state-of-the-art in algorithms that compute semantic
word similarity.

Existing research that applies Bayesian networks to represent
knowledge deals with the uncertain or probabilistic information
in the knowledgebase [26, 23]. Our approach slightly differs
because we do not store the probability that a word form
is relevant given that an adjacent word form in the graph is
unrelated. We only store a single number along every edge (the
conditional probability that the destination concept is relevant
given that the source concept is relevant) and we do not store all
the information that is needed to create the full joint distribution
of the word forms. Our model is more compact and, as we will
show in the experimental section, contains high quality data.

The idea of creating a graph that stores the degree of semantic
similarity between word forms is not new. For example, Simone
Ponzetto and Michael Strube show how to create a graph that
only represents inheritance of words [15, 37]. Specifically, [28]
proposed one of the first models that computes the information
content by counting the number of occurrences of different
words in the WordNet hierarchy. Alternatively, Glen Jeh
and Jennifer Widom show how to approximate the similarity
between words based on information about the structure of the
graph in which they appear [13]. These papers, however, differ
from our approach because we suggest representing available
evidence from all type of sources, including natural language
descriptions. Our approach is also different from the use of a
semantic network [48] because the latter does not assign weights
to the edges of the graph.

In this article, we show a method that uses the probabilistic
graph to measure the semantic similarity between word forms.
However, there are alternative methods to measure the semantic
similarity between word forms. The most notable approach is
the Google approach [6] in which the similarity between two
word forms is measured as a function of the number of Google
results that are returned by each word form individually and the
two word forms combined. Note that there is a second relevant
paper by Google research [20]. The paper explains how input

text can be used to train a two-layer neural network. Once
trained, the neural network can be used to predict what words
will appear together in a text. This differs from our approach
because we are interested in the semantic similarity between
words, where similar words do not necessarily appear in the
same sentence.

Other approaches that rely on data from the Internet include
papers by Danushka Bollegala, Yutaka Matsuo, and Mitsuru
Ishizuka [3] and by Swarnim Kulkami and Doina Caragea [16].
The first paper searches for lexicographical patterns between
the words using a search engine. For example, in order to
compute the similarity between the words “dog” and “cat”,
the system will search the Internet for the phrase “dog is a
cat”, among others. The second paper uses the Internet to
create a concept cloud around each word and then computes
the semantic distance between two words as a function of
the distance between their concept clouds. For example,
the word “feline” is part of the concept cloud for the word
“cat”. Although these approaches produce good measurement
of semantic similarity, they have their limitations. First, they do
not make use of structured information, such as the hyponym
(i.e., is-a) relationship in WordNet. Second, they do not provide
evidence about the strength of the relationship between the two
word forms that are compared. In contrast, our approach can
show the paths in the probabilistic graph between the two word
forms, which serves as evidence that supports the similarity
score.

Since the early 1990s, research on LSA (stands for latent
semantic analysis) has been carried out [7]. The approach has
the advantage of not relying on external information. Instead,
it considers the closeness of word forms in text documents as
proof of their semantic similarity. For example, LSA can be
used to detect words that are synonyms [17]. This differs from
our approach because we do not consider the closeness of the
words in a document. For the most part, we process natural
language text as a bag of terms, where the main exception is
that we consider the order of the words in the definition of a
WordNet sense when we create the logical formulas. The reason
is that we assume that the first words in the definition of a sense
are more important. The other difference is that our algorithm
can extract overlapping terms from a text source. Although the
LSA approach has its applications, we believe that using a high-
quality word corpus, such as WordNet, is beneficial. Note as
well that the LSA approach cannot be directly used to process
structured knowledge.

Research from information retrieval is also relevant to
creating and using the probabilistic graph. For example, if the
word “ice” appears multiple times in the definition of one of the
senses of the word “hockey”, then this provides evidence about
the relationship between the two words. Our approach uses a
model that is similar to TF-IDF [14] (stands for term frequency
– inverse document frequency) to compute the strength of the
relationship. In the TF-IDF model, if the word “ice” appears two
times in the definition of one of the senses of the word “hockey”,
then the term frequency can be computed as two. This number
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is multiplied by a number that is inversely proportional to how
often the word “ice” appears in the definition of other senses.
For example, if most senses contain the word “ice” as part of
their definition, then the fact that one of the senses of the word
“hockey” contains this word in its definition is inconsequential.
Conversely, if the word “ice” appears only in the definition of a
few senses, then the fact that the definition of one of the senses
of the word “hockey” contains the word “ice” in its definition is
statically meaningful.

Note that a plethora of research effort has recently focused
on using a description language, such as the ontology web
language (OWL) [51], to describe resources. A semantic query
language, such as SPARQL [39] (a recursive acronym that
stands for SPARQL Protocol and RDF Query Language), can
be used to search for relevant items. This research differs
from our approach to semantic search in [45] because it does
not provide ranking of the query result. At the same time,
a SPARQL query returns exactly the resources that fulfill the
query description. Alternatively, [45] returns resources that are
related to the input query in ranked order. There is no need to
describe the resources using a mathematical language, there is
no need to phrase the query using a mathematical language, and
the system is much more scalable (OWL knowledgebases are
usually applied only to a limited knowledge domain because
query answering over them is intrinsically computationally
expensive.) Lastly, there are papers that consider a hybrid
approach for information retrieval using both an ontology and
keyword matching. For example, [32] examines how queries
can be expanded based on the information from an OWL
knowledgebase. Alternatively, [49] proposes a ranking function
that depends on the length of the logical derivation of the result,
where the assumption is that shorter derivations will produce
more relevant documents. Unfortunately, these approaches are
only useful in the presence of an ontology and research on
automatic annotation of resources with OWL descriptions is still
in its early stages of development.

There has also been research in the area of combining a subset
of OWL called RDF [27] (stands for Resource Description
Framework) with information retrieval approaches, such as
BM25F [31] (a version of the TF-IDF approach). For example,
[2] shows how to use natural language to query RDF stores.
Note that this is a keywords-matching search approach and it
does not take into account that the same query can be phrased
differently using different words and terms. There have also
been several papers that explore how to rank the result of queries
over RDF data. For example, [5] uses the TF-IDF algorithm to
rank the result of an RDF query.

Lastly, note that the probabilistic graph can be applied to the
problem of query expansion in natural language search systems
[38]. For example, a user may search for “Mediterranean
Restaurants”. A smart search engine needs to expand the search
query and also search for Egyptian, Moroccan, Syrian, and
Turkish restaurants, among others. This expansion is based on
the knowledge in the probabilistic graph.

3 Building the Probabilistic Graph

3.1 About WordNet

WordNet [22] gives us information about the words in the
English language. In our study, we use WordNet 3.0, which
contains approximately 150,000 different words. WordNet also
contains phrases, such as “sports utility vehicle”. WordNet uses
the term word form to refer to both the words and the phrases
in the corpus. Note that the meaning of a word form is not
precise. For example, the word “spring” can mean the season
after winter, a metal elastic device, or the natural flow of ground
water, among others. This is the reason why WordNet uses the
concept of a sense. For example, earlier in this paragraph we
cited three different senses of the word “spring”. Every word
form has one or more senses and every sense is represented by
one or more word forms. A human can usually determine which
of the many senses a word form represents by the context in
which the word form is used.

WordNet contains a plethora of information about word forms
and senses. For example, it contains the definition and example
use of each sense. Consider the word “chair”. One of its senses
has the definition: “a seat for one person, with a support for the
back” and the example use: “he put his coat over the back of
the chair and sat down”. Two other senses of the word have the
definitions: “the position of a professor” and “the officer who
presides at the meetings of an organization”. We will process
these textual descriptions to extract evidence about the strength
of the relationship between the initial word forms and the word
forms that appear in the definition and example use of their
senses. Note that WordNet also provides information about the
frequency of use of each sense. This represents the popularity of
the sense in the English language relative to the popularity of the
other senses of the word form. For example, the first sense of the
word “chair” (a seat for one person, with a support for the back)
is given a frequency of 35, the second sense (the position of a
professor) is given frequency of just two, while the third sense
(the officer who presides at the meetings of an organization) is
given a frequency of one.

WordNet also contains information about the relationship
between senses. The senses in WordNet are divided into
four categories: nouns, verbs, adjectives, and adverbs. For
example, WordNet stores information about the hypernym
and hyponym relationships between nouns. The hypernym
relationship corresponds to the “kind-of” relationship. For
example, “canine” in a hypernym of “dog”. The hyponym
relationship is the reverse. For example, “dog” is a hyponym
of “canine”. WordNet also provides information about the
meronym and holonym relationships between noun senses. The
meronym relationship corresponds to the “part-of” relationship.
Note that WordNet provides three types of meronyms: part,
member, and substance. The three types of meronyms can be
explained with the following examples: a “tire” is part of a
“car”, a “car” is a member of “traffic jam”, and a “wheel” is
made from “rubber”, respectively. The holonym relationship
is the reverse of the meronym relationship. For example,
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“building” is a holonym of “window”. For verbs, WordNet
defines the hypernym and troponym relationships. X is a
hypernym of Y if performing X is one way of performing Y.
For example, “to perceive” is a hypernym of “to listen”. The
verb Y is a troponym of the verb X if the activity Y is doing
X in some manner. For example, “to lisp” is a troponym
of “to talk”. Lastly, WordNet defines the related to and
similar to relationships between adjective senses, which are self
explanatory. We will use all this structured information from
WordNet as evidence about the degree of conditional probability
between senses.

3.2 The Probabilistic Model

We create a random variable for each sense and each word
form in WordNet. We will refer to a random variable by its
label, where the label of a word form variable is the word form
and the label of a sense variable is the definition of the sense. In
order to avoid ambiguity, we convert all labels to lower case. In
this model, each random variable will have a string label and no
two random variables will have the same label.

We add a single predicate to the model. The name of the
predicate is rel and it tells us if a word form or sense is relevant
in the current world. Our model contains only logical formulas
that are Horn clauses of the form: rel(X)⇒ rel(Y ). We will
add a weight to each logical formula, where the weight will be
computed using the following expression.

w(rel(X)⇒ rel(Y )) = ln(
P+(Y |X)

1−P+(Y |X)
) (1)

Following the MLN model [30], the weight of a logical
formula is equal to the natural logarithm of the odds of the
formula being true, that is ln( p

1−p ). However, this will allow
formulas with negative weights, which is undesirable. When
aggregating evidence, a MLN works by interpreting formulas
with positive weights as positive reinforcement and formulas
with negative weights as evidence why the formula does not
hold. By making all weights positive, we ensure that all the
formulas will have a positive contribution to the aggregated
conditional probability between two concepts. Note that when
we say that there is a 10% probability that the word “table” is
relevant given that the word “chair” is relevant, we want this
evidence to increase the conditional probability of the word
“table” being relevant given the word “chair” is relevant. We
make the weights positive by performing a linear transformation
of the probability to the range [0.5,1]. Specifically, we define
P+ as follows.

P+(Y |X) = 0.5+
Pe(Y |X)

2
(2)

We use Pe(Y |X) to denote our confidence of the formula
being true and refer to this value as the evidence probability.
For example, if we know that the evidence probability is 0.10
(i.e., we are 0.10 confident that someone who is interested in
the word “chair” will also be interested in the word “table”),

then P+(table|chair) = 0.55 and the weight of the formula will
be calculated as ln(0.55/0.45) = 0.2.

Note that the same formula can appear multiple times in our
knowledgebase, but possibly with different weights. At the end
of this section, we will show how we can apply the MLN model
to aggregate multiple evidence about the conditional probability
between two concepts. Before that, we describe an algorithm
that models WordNet as a set of Horn clauses with weights.
Note that, for the most part, we will only describe how to
compute the evidence probability, where the weight of each
formula can be computed using Equations 1 and 2.

3.3 Processing the Senses

We first show how to create logical formulas that show the
relationship between a word form and all its senses. Consider
the word chair and its three meanings: “a seat for one person”,
“the position of a professor” and “the officer who presides at
meetings”. Suppose that WordNet gives a frequency of 35, 2,
and 1, respectively, for the three senses. We will then crate the
following formulas and probabilities.

rel(chair)⇒ rel(aseat for oneperson),(35/38)
rel(chair)⇒ rel(thepositionof aprofessor),(2/38)
rel(chair)⇒ rel(theofficer whopresidesat meetings),(1/38)

Note that the word “chair” has three meanings. Based on
the frequencies that we are given, the evidence probabilities for
the three relationships are 35/38, 2/38, and 1/38, respectively.
Note that for each formula, we put the evidence probability in
parentheses. We can then compute the weight of the formula
using Equations 1 and 2. When we assign an actual weight to a
formula, we omit the parenthesis around the number. In general,
we will compute the evidence probability as the frequency of the
sense divided by the sum of the frequencies of all the senses for
the word form. Here is the general formula, where {sensei}n

i=1
are all the senses of the word form.

rel(word form)⇒ rel(senseof theword form),

(
frequency(sense)

n
∑
i

frequency(sensei)
) (3)

In our example, we will also add the following formulas and
weights. Since there are no parentheses, the expressions show
weights and not evidence probabilities.

rel(aseat for oneperson)⇒ rel(chair),10
rel(thepositionof aprofessor)⇒ rel(chair),10
rel(theofficer whopresidesat meetings)⇒ rel(chair),10

In general, we always add a formula with weight 10 between
a sense and all the word forms that it represents. The general
formula is shown next.

rel(senseof aword form)⇒ rel(word form),10 (4)
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The reason for this formula is that we have a very high degree
of confidence that if a sense is relevant, then so are all the word
forms that represent the sense. A weight of 10 corresponds to
evidence probability of above 99.99%. Note that in a MLN
we cannot assign an evidence probability of one to a formula
because this translates to a weight that is equal to infinity.

3.4 Processing the Definitions of the Senses

We next show how to model the relationship between a sense
and the non-noise word forms in its definition. Note that our
algorithm uses a list of about one hundred noise words, such as
“who”, “where”, “at”, “about” and so on. Consider the second
sense of the word “chair”: “the position of a professor”. The
noise words: “the”, “of”, and “a” will be ignored. We will
therefore be left with two words: “position” and “professor”.
As a result, we will create the following formulas.

rel(thepositionof aprofeesor)⇒ rel(position), (0.6)
rel(thepositionof aprofeesor)⇒ rel(professor), (0.48)

The formulas represent the connection between a sense and
the non-noise words in its definition. We assume that the first
words in the definition of a sense are far more important than
the later words. We will therefore multiply the probability
by coef = 1.0 for the first non-noise word form and keep
decreasing this coefficient by 0.2 for each sequential word form
until the value of the coefficient reaches 0.2. We compute the
evidence probability of each formula using the equation coef ∗
minMax(0,0.6,ratio), where the variable ratio is calculated as
the number of times the word form appears in the definition of
the sense divided by the total number of non-noise words in the
sense.

rel(sense)⇒ rel(word formin thesensedefinition),(coef∗

minMax(0,0.6,
frequencyofwordform

sumof frequencies
))

(5)
The third parameter of the minMax function expresses the

importance of the word form in the definition of the sense. For
example, if there are only two word forms in the definition of
the sense, then they are both very important. However, if there
are 20 word forms in the definition of the sense, then each
individual word form is less important. The minMax function
makes the difference between the two cases less extreme. Using
this function, the evidence probability of the formula in the
second case will be only roughly four times smaller than the
evidence probability of the formula in the first case. This is a
common approach when processing text. The importance of a
word in a text decreases as the size of the text increases, but the
importance of the word decreases at a slower rate than the rate
of the growth of the text. We use the minMax function every
time we compare the number of occurrences of a word form
in a document compared to the total number of words in the
document.

The minMax function returns a number that is in most
cases between the first two arguments, where the magnitude
of the number is determined by the third argument. Since the
appearance of a word form in the definition of a sense is not a
reliable source of evidence about the relationship between the
word form and the sense, the value of the second argument is
set to 0.6. The constant 0.6 is related to the probability that
someone who is interested in a sense will also be interested
in one of the word forms in the definition of the sense. Note
that throughout this paper we introduce multiple constants. In
[44], we give experimental evidence why these constants are
meaningful and produce good results.

Formally, the minMax function is defined as follows.

minMax(minValue,maxValue,ratio) =

minValue+(maxValue−minValue)∗ −1
log2(ratio)

Note that when ratio = 0.5, the function returns maxValue. An
unusual case is when the value of the variable ratio is bigger
than 0.5. For example, if ratio = 1, then we have division by
zero and the value for the function is undefined. We handle
this case separately and assign value to the function equal to
1.2 ∗maxValue. This is an extraordinary case when there is a
single non-noise word in the text description and we need to
assign higher evidence probability to the formula.

In our example, ratio = 1
2 and therefore

minMax(0,0.6,ratio) = 0.6. Therefore, the evidence
probability of the first formula is coef ∗ 0.6 = 1 ∗ 0.6 = 0.6
and for the second formula: coef ∗ 0.6 = 0.8 ∗ 0.6 = 0.48.
To summarize, we assume that the probability that a user is
interested in a word form will be higher if : (1) the word form
appears multiple times in the definition of the sense, (2) the
word form is one of only few words in the definition of the
sense, and (3) the word form is one of the first word forms of
the definition of the sense.

3.5 Processing the Example Uses of a Senses

WordNet also includes example uses for each sense. In
this subsection, we show how to represent this information as
formulas with weights. For example, in WordNet the sentence
“he put his coat over the back of the chair and sat down” is
shown as an example use of the first sense of word “chair”.
Since the example use represents evidence that is weaker than
the evidence from the definition of a sense, we will calculate
the evidence probability as minMax(0,0.2,ratio). Here, the
variable ratio is the number of times the word form appears in
the example use divided by the total number of non-noise words
in the example use. The constant 0.2 is related to the probability
that someone who is interested in a sense will be also interested
in one of the word forms in the example use of the sense. The
following formulas are created from the first sense of the word
“chair” and its example use. Note that the noise words have
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been omitted.

rel(aseat for oneperson)⇒ rel(put), (0.09)
rel(aseat for oneperson)⇒ rel(coat), (0.09)
rel(aseat for oneperson)⇒ rel(back), (0.09)
rel(aseat for oneperson)⇒ rel(sat), (0.09)
rel(aseat for oneperson)⇒ rel(down), (0.09)

The evidence probability is the same for all edges because all
words appear once in the example use. For all words, the value
of ratio is equal to 1

5 . Unlike the case with the definition of
a sense, the first words in the example use are not considered
to be more important. Therefore, we ignore the order of the
words in the example use of a sense. The precise calculation for
the evidence probability is 0.2 ∗ ( −1

log2(0.2)
) = 0.09. The general

formula is shown next.

rel(sense)⇒ rel(word formintheexampleuseo f thesense),

(coef ∗minMax(0,0.2,
frequencyof word forminexampleuse

sumof frequencies
))

(6)

3.6 Processing the Backward Relationships

We also create formulas for the probability that a sense is
relevant given that a word form that appears in its definition is
relevant. The evidence probability of the formula is computed
as minMax(0,0.3,ratio), where the variable ratio is the number
of times the word form appears in the definition of the sense
divided by the total number of occurrences of the word form
in the definition of all senses. The constant 0.3 relates to the
probability that someone who is interested in a word form will
also be interested in one of the senses that have the word form in
their definition. Here, we assume that the backward relationship
is not as strong as the forward relationship. As an example, if
the word “position” occurs as part of the definition of only three
senses and exactly once in each definition, then we will add the
following formula for the second sense of the word “chair”. The
evidence probability is computed as minMax(0,0.3,ratio) =
0.3∗ −1

log2(
1
3 )

= 0.19 and the formula is as follows.

rel(position)⇒ rel(thepositionof aprofessor), (0.19)

The general formula is shown next.

rel(aword forminasense)⇒ rel(sense),(minMax(0,0.3,
frequencyof word forminsensedefinition

sumof frequencies
)

(7)
Similarly, we will create a formula that shows the conditional

probability between a word form and a sense that contains the
word form in its example use. The weight of an edge in this
case will be computed as minMax(0,0.1,ratio). Here, the ratio
parameter is the number of times the word form appears in
the example use of the sense divided by the total number of
occurrences in the example uses of all senses. The constant 0.1

relates to the probability that someone who is interested in a
word form will also be interested in one of the senses that have
the word form in their example use. This value is smaller than
the value for the definition of a sense because the words in the
definition of a sense are more closely related to the meaning
of the sense. As an example, if the word “coat” occurs as
part of the example use of only three senses and exactly once
in each sense, then we will add the following formula for the
first sense of the word “chair”. The evidence probability is
computed as minMax(0,0.1, 1

3 ) = 0.1 ∗ −1
log2(

1
3 )

= 0.06. Recall

that the example use of this sense is: “he put his coat over the
back of the chair and sat down”.

rel(coat)⇒ rel(aseat for oneperson), (0.06)

The general formula is shown next.

rel(aword formin theexampleuseof asense)⇒ rel(sense),

minMax(0,0.1,
frequencyof word forminexampleuse

sumof frequencies
)

(8)

3.7 Populating the Frequencies of the Senses

So far, we have shown how to extract information from
textual sources, such as the text for the definition and example
use of a sense. We will next show how structured knowledge,
such as the hyponym (a.k.a. kind-of) relationship between
senses, can be represented as logical formulas. Most existing
approaches [28] explore these relationships by evaluating the
information content of different word forms. Here, we adjust
this approach and focus on the frequency of use of each
word in the English language as described in the University
of Oxford’s British National Corpus. The description of this
corpus, as presented in [4], is: “The British National Corpus is
a 100 million word collection of samples of written and spoken
language from a wide range of sources, designed to represent a
wide cross-section of British English, both spoken and written,
from the late twentieth century.”

Definition 1. Let s be a sense. Let {wf i}n
i=1 be the word forms

for that sense. We will use BNC(wf ) to denote the frequency of
the word form in the British National Corpus. Let ps(wf ) be the
frequency of use of the sense s of the word form wf , as specified
in WordNet, divided by the sum of the frequencies of use of all
senses of wf (also as defined in WordNet). Then we define the

size of s to be equal to |s|=
n
∑

i=1
(BNC(wf i)∗ ps(wf i)).

The above formula approximates the size of a sense by
looking at all the word forms that represent the sense and
figuring out how much each word form contributes to the sense.
The size of a sense approximates its popularity. For example,
according to WordNet the word “president” has six different
senses with frequencies: 14, 5, 5, 3, 3, and 1. Let us refer
to the fourth sense: “The officer who presides at the meetings
...” as s. According to Definition 1, ps(president) = 3/31 =
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0.096 because the frequency of s is 3 and the sum of all the
frequencies is 31. Since the British National Corpus shows
the frequency of the word “president” as 9781, the contribution
of the word “president” to the size of the sense s is equal to
|s| = BNC(president)∗ ps(president) = 9781∗0.096 = 938.98.
Other word forms that represent the sense s, such as “chairman”,
will also contribute to the size of the sense.

3.8 Processing Structured Knowledge About Nouns

WordNet defines the hyponym (a.k.a. kind-of) relationship
between senses that represent nouns. For example, the most
popular sense of the word “dog” is a hyponym of the most
popular sense of the word “canine”. Consider the first sense
of the word “chair”: “a seat for one person”. WordNet defines
15 hyponyms for this sense, including senses for the words
“armchair” and “wheelchair”. We will add formulas that show
the conditional probability between this first sense of the word
“chair” and each of the hyponyms. Let the probability that
someone who is interested in a sense is also interested in one
of the sub-senses be equal to 0.9. This probability is high
because, for example, someone who is interested in the first
sense of the word “chair” is probably also interested in one of
the chair types. In order to determine the evidence probability
of each formula, we need to compute the size of each sense.
In the British National Corpus, the frequency of “armchair”
is 657 and the frequency of “wheelchair” is 551. Since both
senses are associated with a single word form, we do not need
to consider the frequency of use of each sense. If “armchair”
and “wheelchair” were the only hyponyms of the sense “a seat
for one person”, then we need to add the following formulas.

rel(aseat for oneperson)⇒
rel(chair withsupport oneachside for arms), (0.49)

rel(aseat for oneperson)⇒
rel(amoveablechair mounted onlargewheels), (0.41)

The evidence probabilities were computed as 0.9∗657/1208 =
0.49 and 0.9 ∗ 551/1208 = 0.41. In general, the evidence
probability is computed as 0.9 multiplied by the size of the sense
and divided by the sum of the sizes of all the hyponym senses
of the initial sense.

rel(sense)⇒ rel(hyponymof thesense),

(0.9∗ |hyponymof thesense|
∑

s isahyponymof thesense
|s|

) (9)

The idea is that the conditional probability for “bigger” senses
will be bigger because it is more likely that a bigger sense is
relevant. Note that here we do not apply the minMax function.
The reason is that the function is only relevant when computing
the ratio of the number of occurrences of a word form in text
relative to the size of the text.

We will also create formulas for the hypernym relationship
(the inverse of the hyponym relationship). For example, the first

sense of the word “canine” is a hypernym of the first sense of
the word “dog”. The evidence probability for each formula will
be the same and equal to the constant 0.3. This represents the
probability that someone who is interested in a sense will be
also interested in the hypernym of the sense. For example, if a
user is interested in the sense “wheelchair”, then they may be
also interested in the first sense of the word chair. However, this
probability is not a function of the different hypernyms of the
sense. Next, we show the formula from our example.

rel(chair withsupport oneachside for arms)⇒
rel(aseat for oneperson), (0.3)

The general formula is shown below.

rel(sense)⇒ rel(hypernymof thesense), (0.3) (10)

We next consider the meronym (a.k.a. part-of) relationship
between nouns. Note that we do not make a distinction between
the three types of meronyms (part, member, and substance)
and process them identically. For example, WordNet contains
information that the sense of the word “back”: “a support that
you can lean against ...” and the sense of the word “leg”: “one
of the supports for a piece of furniture” are both meronyms of
the first sense of the word “chair”. In other words, back and
‘legs are building parts of a chair. Part of this information can
be represented using the following equations.

rel(aseat for oneperson)⇒
rel(asupport that youcanleanagainst), (0.3)

rel(aseat for oneperson)⇒
rel(oneof thesupports for apieceof furniture), (0.3)

In general, we compute the evidence probability as 0.6/n,
where n is the number of meronyms of the sense. Here is the
general formula.

rel(sense)⇒ rel(meronymof thesense),

(
0.6

number o f meronymso f thesense
)

(11)

The constant 0.6 represents the probability that a user who is
interested in a sense of a word form is also interested in one of its
meronyms. In our system, this coefficient is set to 0.6 because
the meronym relationship provides weaker evidence than the
hyponym relationship. The reasoning behind the formula is that
the more meronyms a sense has, the less likely it is that we are
interested in a specific meronym.

We also represent the holonym (a.k.a. contains) relationship.
For example, the main sense of the word “building” is a
holonym of the main sense of the word “window”. Similar to
hypernyms, we set the evidence probabilities for the holonym
relationship to a constant. The constant is 0.15 because the
holonym relationship is not as strong as the hypernym relation.
For example, the fact that someone is interested in the first sense
of the word “window” does not translate in strong confidence



IJCA, Vol. 23, No. 3, Sept. 2016 9

that they are also interested in the whole building. For our
running example, we create the following formulas.

rel(asupport that youcanleanagainst)⇒
rel(aseat for oneperson), (0.15)

rel(oneof thesupports for apieceof furniture)⇒
rel(aseat for oneperson), (0.15)

(12)

The general formula is shown next.

rel(sense)⇒ rel(holonymof thesense), (0.15)

3.9 Processing Structured Knowledge About Verbs

We will first represent the troponym (a.k.a. doing in some
manner) relationship for verbs. For example, to lisp is a
troponym of to talk. Suppose that the verb “talk” has only three
troponyms: “lisp”, “orate”, and “converse”. If the sizes of the
main senses of the three verbs are 18, 1, and 95 (as determined
by the formula in Definition 1), respectively, then we will create
the following equations.

rel(anexchangeof ideasviaconversation)⇒
rel(talk witha lisp), (0.14)

rel(anexchangeof ideasviaconversation)⇒
rel(talk pompously), (0.01)

rel(anexchangeof ideasviaconversation)⇒
rel(carryonaconversation)(0.75)

The left side of the formulas contains the first sense of the
word “talk”: “an exchange of ideas via conversation”, while the
right side of the formulas contains the senses for “lisp”, “orate”
and “converse”. The first formula expresses the conditional
probability between the senses for “talk” (an exchange of ideas
via conversation) and “lisp”. The evidence probability for the
formula is equal to 0.9∗ 18

114 = 0.14. The constant 0.9 represents
that there is a 90% chance that if someone is interested in a verb,
then they are also interested in one of its troponyms. We arrive
at the expression 18/114 by dividing the size of the sense by the
sum of the sizes of all the troponym senses. The general formula
is shown next.

rel(sense)⇒ rel(troponymof thesense),

(0.9∗ |sense|
∑

s isatroponymo f thesense
|s||

) (13)

We will also add formulas for the reverse relationship with
evidence probability of 0.3. For example, we will add the
following formula.

rel(talk witha lisp)⇒ rel(anexchangeof ideasvia . . .), (0.3)

This means that if someone is interested in one of the
troponyms, then there is a 30% chance that they are also

interested in the original verb. The general formula is shown
next.

rel(troponymof thesense)⇒ rel(sense), (0.3) (14)

The hyponym and hypernym relationships are defined not
only for nouns, but also for verbs. The two relationships are the
reverse of each other. In other words, if X is a hyponym of Y,
then Y is a hypernym of X. The hypernym relationship for verbs
corresponds to the “one way to” relationship. For example, the
verb “perceive” is the hypernym of the verb “listen” because
one way of perceiving something is by listening. As expected,
the verb “listen” is a hyponym of the verb “perceive”. The first
sense of the word “perceive” is “to become aware of through the
senses”. Suppose that the first senses of the verbs “listen” and
“see” are the only hypernyms of the verb “perceive”.

We will assume that the probability that someone who is
interested in a verb sense is also interested in one of the
hyponym senses is equal to 0.9. This probability is high
because, for example, someone who is interested in perceiving
is probably also interested in one of the ways to perceive. In
order to determine the evidence probabilities of the formulas, we
need to compute the size of each sense. In the British National
Corpus, the frequency of “listen” is 1241 and the frequency of
“see” is 3624. Since both senses are associated with a single
word form, we do not need to consider the frequency of use of
each sense. If “perceive” and “see” were the only hyponyms of
the sense “to become aware of thought and senses”, then we will
create the following formulas.

rel(tobecomeawareof thought and senses)⇒
rel(payattention tosound), (0.23)

rel(tobecomeawareof thought and senses)⇒
rel(percievebysight), (0.67)

The evidence probability for each formula is equal to 0.9
multiplied by the size of the sense and divided by the sum
of the sizes of all the hyponym senses of the initial sense.
For example, the evidence probability of the first formula is
0.9 ∗ 1241/4865 = 0.23 and the evidence probability of the
second formula is 0.9∗3624/4865 = 0.67. The idea behind the
formula is that the conditional probabilities to “bigger” senses
will be bigger because it is more likely that they are relevant.
The general formula is shown next.

rel(sense)⇒ rel(hyponymof thesense),

(0.9∗ |sense|
∑

s isahyponymo f thesense
|s|

) (15)

We will use an evidence probability of 0.3 for the hypernym
(the reverse of the hyponym) relationship. For example, the
main sense of the verb “perceive” is a hypernym of the main
senses of the verbs “listen” and “see”. This information can be
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expressed using the following formulas.

rel(payattention tosound)⇒
rel(tobecomeawareof thought and senses), (0.3)

rel(percievebysight)⇒
rel(tobecomeawareof thought and senses), (0.3)

The number 0.3 represents the probability that someone who
is interested in a sense will also be interested in the hypernym
of the sense. For example, if a user is interested in the sense
“see”, then they may be also interested in the first sense of the
word perceive. However, this probability is not a function of the
different hypernyms of the sense. The general formula is shown
next.

rel(sense)⇒ rel(hypernymof thesense), (0.3) (16)

3.10 Processing Structured Knowledge About Adjectives

WordNet defines two relationships for adjectives: related to
and similar to. For example, the first sense of the adjective
“slow” has definition: “not moving quickly”, while the first
sense of the adjective “fast” has the definition: “acting or
moving or capable of acting or moving quickly”. WordNet
specifies that the two senses are related to each other. We will
represent this relationship using the following formulas.

rel(not movingquickly)⇒ rel(actingor movingquickly), (0.6)
rel(actingor movingquickly)⇒ rel(not movingquickly), (0.6)

This represents that there is a 60% probability that someone
who is interested in an adjective is also interested in a “related
to” adjective. This probability is high because the “related to”
relationship represents relatively strong semantic similarity. The
general formula is shown below.

rel(sense)⇒ rel(related tosense), (0.6) (17)

WordNet also defines the similar to relationship between
adjectives. We create formulas with evidence probability of
0.8 for this relationship because the “similar to” relationship
is stronger than the “related to” relationship. In other words,
we believe that there is an 80% probability that someone who
is interested in an adjective is also interested in a “similar to”
adjective. For example, WordNet contains the information that
the sense for the word “frequent”: “coming at short intervals”
and the sense for the word “prevailing”: “most frequent or
common” are similar to each other. We will therefore create
the following formulas.

rel(comingat short intervals)⇒ rel(most frequent . . .), (0.8)
rel(most frequent or common)⇒ rel(comingat . . .), (0.8)

(18)
Note that both the “similar to” and “related to” relationships
are symmetric and therefore the evidence probability for each

formula and its reverse is the same. The general formula is
shown next.

rel(sense)⇒ rel(similar tosense), (0.6) (19)

3.11 Building the Probabilistic Graph

Equations 3-19 from the previous subsections show how to
create Horn clauses from WordNet. Once the formulas are
extracted, they are converted into a probabilistic graph. In order
to do so, first, we create a node for each random variable,
that is, for each word form and each sense. Next, we convert
the evidence probabilities of the formulas to weights using
Equation 1 and 2. Note that there can be several identical
formulas with possibly different weights that are generated.
When this is the case, we will merge all such formulas into a
single formula. The weight of the new formula is equal to the
sum of the weights of the old formulas. For example, consider
the following two formulas.

rel(X)⇒ rel(Y ), 2.3
rel(X)⇒ rel(Y ), 1.1

(20)

The old formulas will be removed and the following new
formula will be created.

rel(X)⇒ rel(Y ), 3.4 (21)

First, note that we are adding the weights of the formulas
and not the probabilities and therefore the evidence probability
of the formula will always stay below 1.0. Second, note that
since the evidence probabilities are always above 0.5, our model
is monotonic (i.e, adding a new formula will always increase
the evidence probability of the final formula). Lastly, note
that adding the weights is consistent with the MLN model.
Specifically, the probability of a world X is computed using the
following formula.

P(X) =
1

total
e
(∑
F

w(F)∗|F(X)|)
(22)

In the formula, total is a normalizing constant that is used
to make sure that all the probabilities over all worlds add up to
one. The sum is over all formulas F in our knowledgebase. The
expression w(F) is used to denote the weight of the formula
F and |F(X)| is equal to one when the formula F is true in
the world X and is equal to 0 otherwise. Obviously, merging
identical formulas by adding up their weights follows the above
formula.

Next, we add an edge between X and Y in the graph for each
logical formula of the following type.

rel(X)⇒ rel(Y ), w
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The weight of the edge will be converted to a probability and
will be computed using the following formulas.

p =
1

1+ e−w

edgeweight =
2∗ p−1

total

The first formula converts the weight to a probability. The
second formula maps the probability from the interval [0.5,1]
back to the interval [0,1] and divides the result by the sum of
the weights of all edges that leave the source node X . This
guarantees that the sum of the weights of all the edges that leave
a node will be equal to one.

In the probabilistic graph that was constructed, the weight of
each edge is equal to the probability that a user is interested
in the destination concept given that they are interested in the
source concept, where we assume that the user is interested in
only one of the destination concepts.

4 Measuring the Semantic Distance Between Word Forms

We will next show how to compute the semantic similarity
between two arbitrary word form nodes in the graph. Our
algorithm will return a number that is between zero and one.
One will be returned when the two word forms are the same.
Also, note that it is perfectly reasonable for two word forms
to represent completely unrelated concepts and the semantic
similarity between the word forms to be equal to zero. The
semantic distance will be computed as a function of the average
of the probability that the first word form is relevant given the
second word form is relevant and the probability that the second
word form is relevant given the first word form is relevant.

Consider two nodes n1 and nk in the probabilistic graph. We
will show three different ways to compute the probability that
nk is relevant given that n1 is relevant. In Section 5, we will
compare the accuracy of the different approaches.

4.1 Multiplication Approach

A version of this approach was initially published in [43].
Consider a node sequence n1 · · ·nk that forms a directed acyclic
path in the graph. Let Ai be a random variable that represents the
event that ni is relevant for i = 1 to k. From probability theory,
we have the following equation.

P(A2 · · ·Ak|A1) =
P(A1 · · ·Ak)

P(A1)
=

=
P(A1)P(A2|A1)P(A3|A1A2) · · ·P(Ak|A1 · · ·Ak−1)

P(A1)
=

= P(A2|A1)P(A3|A1A2) · · ·P(Ak|A1 · · ·Ak−1)

(23)

Next, we will simplify the formula by assuming some level
of independence. Suppose that the event Ai only depends on the
preceding event Ai−1. This is the same assumptions that is made

in Bayesian networks. Given this assumption, we can rewrite
the equation as follows.

P(A2 · · ·Ak|A1) = P(A2|A1)P(A3|A2) · · ·P(Ak|Ak−1) (24)

The idea of this approach is that if nk is relevant because n1
is relevant and there is an acyclic directed path n1 · · ·nk in the
graph, then the nodes n2, . . . ,nk must also be relevant. Next, we
can use the above formula and compute the probability that nk
is relevant given that n1 is relevant by simply multiplying the
weights of the edges along the path. If there are multiple paths
between n1 and nk in the graph, then we can add the conditional
probability from each path. The result will be a probability
because the weights of the edges are normalized. (Note that
this is not the case in [43].) The formulas for computing the
conditional probability are shown next.

P(Ak|A1) = ∑
Pt is acyclic path from node n1 to node nk

P(Pt) (25)

P(Pt) = ∏
(ni,n j) is an edge in the path Pt

edgeWeight(ni,n j) (26)

The edgeWeight function simply returns the weight of the
edge. Note that the algorithm is not deterministic because
there are different ways to select disjoint paths between two
nodes in the graph. In our experiments we use the depth-first
algorithm that is shown in Figure 1. Before calling the method,
totalDistance is set to zero. After the method is called, the
variable contains the result. When the method is initially called,
distance is equal to one and depth is equal to zero. As the
method is recursively called, the distance decreases and the
depth is incremented by one after every call. In order to find the
probability that nk is relevant given that n1 is relevant, we will
call the method as follows: depthFirst(n1,nk,1,0). The method
starts at n1 and recursively calls itself on all adjacent nodes in
the graph. The recursion terminates when we have reached nk,
we have reached a node that has already been visited, we are on
a path of more than 20 edges, or the value for the conditional
probability for the path has dropped below the threshold of
0.0001.

4.2 Markov Logic Network Approach

A version of this approach was initially published in [46].
This approach is similar to the previous algorithm in the sense
that the conditional probabilities over the different paths are
aggregated. However, this approach uses the MLN approach
to compute the conditional probability along a single path.

Let n1 and nk be two nodes in the probabilistic graph. We will
next describe an efficient way of computing the probability that
nk is relevant given that n1 is relevant using only the evidence
along the path n1 · · ·nk. From probability theory, we have the
following formula.

P(rel(nk)|rel(n1)) =
P(rel(n1)∧ rel(nk))

P(rel(n1))
(27)
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Algorithm 1 depthFirst(currentNode, endNode, distance, depth)

if currentNode = endNode then
totalDistance← totalDistance+distance
return

end if
if depth > 20 or distance < 0.0001 or currentNode is visited
then

return
end if
for all neighbors neighbor of currentNode do

depthFirst(neighbor, endNode, distance ∗
edgeWeigth(currentNode, neighbor) , depth+1)

end for

Figure 1: Recursive method for finding disjoint paths between
two nodes and computing the conditional probability

We will next show how to compute the numerator and
denominator of the above expression using the weights of the
edges along the path n1 · · ·nk.

Let f 00(i) be the non-normalized probability from
Equation 22 (i.e., we do not divide by total) that ni and
nk are both irrelevant. Similarly, let f 01(i) be the non-
normalized probability that ni is irrelevant and nk is relevant,
f 10(i) be the non-normalized probability that ni is relevant and
nk is irrelevant, and f 11(i) be the non-normalized probability
that both ni and nk are relevant. In order to understand why we
need these functions, note that Equation 27 can be rewritten as
follows.

P(rel(n1)∧ rel(nk))

P(rel(n1))
=

f 11(1)
f 10(1)+ f 11(1)

(28)

The numerator expresses the non-normalized probability that
both n1 and nk are relevant. The non-normalized probability of
n1 being relevant is computed as f 10(1)+ f 11(1). The reason
is that this formula computes the probability that n1 is relevant
and nk is irrelevant plus the probability that n1 is relevant and
nk is relevant, which is equal to exactly the probability that
n1 is relevant. Lastly, note that the fact that the probabilities
are not-normalized will not affect the result because we divide
a non-normalized probability by a non-normalized probability.
That is, if the probabilities are normalized, then we will divide
both the numerator and the denominator of the expression by
the same constant total from Equation 22 and the result will not
change.

We will compute f 00, f 01, f 10, and f 11 using dynamic
programming. Using MLN theory, we have the following base

case.

f 00(k−1) =
1+ edgeWeight(nk−1,nk)

1− edgeWeight(nk−1,nk)

f 01(k−1) =
1+ edgeWeight(nk−1,nk)

1− edgeWeight(nk−1,nk)

f 10(k−1) = 1

f 11(k−1) =
1+ edgeWeight(nk−1,nk)

1− edgeWeight(nk−1,nk)

(29)

The four values follow from Equation 22 and Equations 1
and 2. Note that we have the following formula and evidence
probability.

rel(nk−1)⇒ rel(nk),(edgeWeight(nk−1,nk))

The weight of the formula can be computed using Equations 1

and 2 as ln( 0.5+
edgeWeight(nk−1,nk)

2

1−(0.5+ edgeWeight(nk−1 ,nk)
2 )

), which is equal to

ln( 1+edgeWeight(nk−1,nk)
1−edgeWeight(nk−1,nk)

). Now, if nk−1 is not relevant and nk is
not relevant, then the formula rel(nk−1)⇒ rel(nk) will be true
and according to Equation 22 the non-normalized probability

for this world will be equal to e
ln(

1+edgeWeight(nk−1 ,nk)
1−edgeWeight(nk−1,nk)

)
=

1+edgeWeight(nk−1,nk)
1−edgeWeight(nk−1,nk)

. However, if nk−1 is relevant and nk is
irrelevant, then the formula will be false and the non-normalized
probability will be equal to e0 = 1.

Next, we present the recursive formulas for computing the
four functions.

f 00(i) = f 00(i+1)∗ 1+ edgeWeight(ni,ni+1)

1− edgeWeight(ni,ni+1)
+

f 10(i+1)∗ 1+ edgeWeight(ni,ni+1)

1− edgeWeight(ni,ni+1)

f 10(i) = f 00(i+1)∗1+ f 10(i+1)∗ 1+ edgeWeight(ni,ni+1)

1− edgeWeight(ni,ni+1)

f 01(i) = f 01(i+1)∗ 1+ edgeWeight(ni,ni+1)

1− edgeWeight(ni,ni+1)
+

f 11(i+1)∗ 1+ edgeWeight(ni,ni+1)

1− edgeWeight(ni,ni+1)

f 11(i) = f 01(i+1)∗1+ f 11(i+1)∗ 1+ edgeWeight(ni,ni+1)

1− edgeWeight(ni,ni+1)
(30)

Let us examine the first formula in detail. In this case, we
want to compute the non-normalized probability of the world
where both ni and nk are irrelevant. We have two sub-cases:
when ni+1 is relevant and when ni+1 is irrelevant. When ni+1 is
relevant, the following formula will be true.

rel(ni)⇒ rel(nn+1),(edgeWeight(ni,ni+1)) (31)

We will therefore add to the probability f 00(i + 1) ∗

e
ln(

1+edgeWeight(ni ,ni+1)
1−edgeWeight(ni ,ni+1)

)
in this case, which is equal to f 00(i+ 1) ∗

1+edgeWeight(ni,ni+1)
1−edgeWeight(ni,ni+1)

. We use the expression f 00(i+ 1) because
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we know that both ni+1 and nk are irrelevant in this sub-
case. The second sub-case is when ni+1 is irrelevant. The
above formula will be true again and therefore we add to the
probability the expression f 10(i+1)∗ 1+edgeWeight(ni,ni+1)

1−edgeWeight(ni,ni+1)
.

Next, let us examine the second formula from Equation 30.
In this case, we want to compute the non-normalized probability
of the world where ni is relevant, but nk is irrelevant. We have
two sub-cases: when ni+1 is relevant and when ni+1 is irrelevant.
When ni+1 is irrelevant, Equation 31 does not hold and therefore
will add the probability f 00(i+1)∗ e0. The second sub-case is
when ni+1 is relevant and we will add the probability f 10(i+
1)∗ 1+edgeWeight(ni,ni+1)

1−edgeWeight(ni,ni+1)
because Equation 31 holds. The last two

formulas from Equation 30 can be derived similarly.

Note that our program for computing the f functions uses
dynamic programming instead of recursion and runs in linear
time relative to the size of the path. It first computes the value
for the functions with input k−1 and then it applies the formulas
from Equation 30 with values for i from k−2 up to 1. At the end,
Equation 28 can be applied to find the conditional probability
along the path n1 · · ·nk. If there are multiple paths along n1 and
nk, then the conditional probabilities from the disjoint paths are
aggregated using the algorithm from Figure 1.

4.3 Markov Logic Network Combined with Random Walk

Our experimental section (Section 5) shows that this approach
produces the most accurate results. The drawback of the two
previous approaches is that only disjoint paths between the
nodes that are compared are explored. However, in most
cases there are multiple interweaving paths between the two
nodes and looking at only disjoint paths is not a very accurate
approximation of the conditional probability. Here, we propose
a simple alternative using a random walk. The algorithm from
Figure 2 starts at currentNode and randomly visits 20 nodes in
the search of endNode. If endNode is found, then the algorithm
returns 1. Otherwise, it returns 0. We call this algorithm 10,000
times for the two nodes that we are comparing and aggregate
the result. If we divide the total by 10,000, then we will get the
conditional probability that the second node is relevant given
that the first node is relevant, where the accuracy will be 4
digits after the decimal dot. We chose to look at paths of at
most 20 nodes because we believe that longer paths give very
little evidence about the semantic relationship between the word
forms that the nodes represent.

Note that it is possible for the randomWalk algorithm to reach
a dead end. For example, if we reach a node and there are no
adjacent nodes that are not visited, the algorithm will return
0. This means that the random walk was unable to find the
endNode. Specifically, the algorithm tries 100 times to find an
adjacent node that is not visited and it gives up if it is unable to
find such a node.

Algorithm 2 randomWalk(currentNode, endNode)

for i← 0 to 20 do
if currentNode = endNode then

return 1
end if
repeat

nextNode← getRandomNextNode(currentNode)
until nextNode is not already visited or loop has run for
100 times
if above loop ran 100 times then

return 0
end if
curentNode← nextNode

end for
return 0

Figure 2: The method takes a random walk from currentNode
and it returns 1 if it reaches endNode and 0 otherwise

4.4 Linear and Logarithmic Distance Metrics

Let P(Y |X) denote the result of computing P(rel(Y )|rel(X))
using one of the three algorithms that we presented in the
last three subsections. Next, we present two functions for
measuring semantic similarity between two word forms. The
linear function is shown in Equation 32.

|wf 1,wf 2|lin = min(α,
P(wf 1|wf 2)+P(wf 2|wf 1)

2
)∗ 1

α
(32)

The minimum function is used in order to cap the value of
the similarity function at one. The coefficient α amplifies the
available evidence (α ≤ 1). The experimental section of the
article shows how the value for α is picked. Note that when α

is equal to one, then the function simply takes the average of the
two numbers and caps the result at one.

The second semantic similarity function is inverse
logarithmic, that is, it amplifies the smaller values. It is
shown in Equation 33. The norm function simply multiplies the
result by a constant (i.e., −log2(α)) in order to move the result
value in the range [0,1]. Note that the norm function does not
affect the correlation results. Again, the experimental section of
the article shows how the value for α is picked.

|wf 1,wf 2|log = norm(
−1

log2(min(α, P(wf 1|wf 2)+P(wf 2|wf 1)
2 ))

)

(33)
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5 Experimental Validation

The system consists of two programs: one that creates the
probabilistic graph and one that queries the graph. We used
the Java API for WordNet Searching (JAWS) to connect to
WordNet. The interface was developed by Brett Spell [40]. All
experiments were performed on a laptop with Intel i7 CPU and
16GB of main memory. It takes about three minutes to build
the probabilistic graph and save it to the hard disk. The size
of the graph file is 81MB and it easily fits in main memory. It
takes about 5 seconds to load the graph in main memory. We
will refer to the three algorithms for finding the conditional
probability between two nodes as the Multiplication, MLN,
and MLN+Random Walk. The average time for computing
the similarity distance between two word forms is about 100
milliseconds for the first two algorithms and about 1 second for
the MLN+Random Walk algorithm. It takes about three minutes
to build the initial probabilistic graph.

We evaluated our system on five different benchmarks.
For each benchmark, experiments with human subjects were
conducted and the average human judgment for each pair of
words was recorded. The RG65 data set was created by
Rubenstein and Goodenough and contains 65 pairs of words
([33]). The MC28 dataset contains 28 pairs of words and was
created by Miller and Charles [21]. The Agirre201 dataset
contains 201 pairs of words and was developed by Agirre et
al. [1]. It is a subset of the WordSim-353 dataset that contains
353 pairs or words and was created by Finkelstein et al. [8].
Pierro and Euzenant recently ran a new study on the RG65
dataset and got slightly different results ([24]) – we will refer to
this benchmark as the P&S f ull dataset. Lastly, the SimLex665
dataset contains 665 pairs of words and was introduced by Hill
et al. [12]. This happens to be the largest and most recent word
similarity benchmark in literature.

For each dataset, we computed the Person and Spearman
correlation between the data from the studies and the data
that was produced by our system. The Person correlation is
computed as shown in Equation 34. Note that we have used
X̄ to define the average of the numbers in the vector. We assume
that the two vectors: X = 〈x1, . . . ,xn〉 and Y = 〈y1, . . . ,yn〉 are
the input to the formula.

PearsonCorrelation(X ,Y ) =

n
∑

i=1
(xi− X̄)(yi− Ȳ )√

n
∑

i=1
(xi− X̄)2

√
n
∑

i=1
(yi− Ȳ )2

(34)

A notable property of the Pearson correlation is that it is
invariant as regards to any Euclidean operation, such as scaling,
translation, or rotation of the data.

The formula for the Spearman correlation is shown in

Equation 35.

SpearmanCorrelation(X ,Y ) = 1−
6

n
∑

i=1
(rank(xi)− rank(yi))

2

n(n2−1)
(35)

The rank(xi) expression returns the position of the number
xi in the sorted version of the list X . A notable property of
the Spearman correlation is that it is rank invariant, that is, a
monotonic transformation would not affect its value.

In Tables 1, 2, and 3 we show the Pearson, Spearman,
and the average of the two correlations, respectively, for our
algorithms. We compare our results to the current state-of-the-
art, which includes 16 algorithms. The correlation data for these
16 algorithms was taken as report by Lastra-Diaz and Garcia-
Serrano in [18].

Note that both our linear and logarithmic similarity metrics
take as input the parameter α (see Equations 32 and 33). Table 4
shows the values for α that were used to create our experimental
results. These values were selected because they produce the
highest Pearson correlation for the RG65 dataset. It turns
out that they are close to optimal (i.e., produce the highest
correlation) for both the Pearson and Spearman correlation on
the other benchmarks as well.

Looking at Table 1, we see that our MLN+RandomWalk
algorithm that uses the logarithmic similarity metric gives us
the highest Pearson correlation on three of the five benchmarks.
More over, this algorithm also gives us the highest value for
the average of the Pearson correlation over the five benchmarks.
These are significant results that demonstrate the high quality
of the data inside the probabilistic graph. It is also worth noting
that the MLN+RandomWalk algorithm produces higher average
Pearson correlation than the MLN algorithm, which in turns
produces higher average correlation than the Multiplication
algorithm. The reason is that the MLN+RandomWalk algorithm
is based on strict probabilistic theory and is able to take into
account the interweaving paths in the graph between the two
nodes that we are comparing. Note as well that the logarithmic
similarity metric produces slightly better results than the linear
case. Specifically, the average over the three algorithms is
0.7513 for the logarithmic similarity metric and 0.7440 for the
linear one.

Next, consider Table 2. Again, the MLN+RandomWalk
algorithm that uses the logarithmic similarity metric produces
Spearman correlation that is higher than the current state-of-
the-art algorithms on three of the five benchmarks. In addition,
the algorithm produces the highest value for the average of the
Spearman correlation over the five benchmarks. Again, the
logarithmic similarity metric produces a little higher correlation:
0.6931 average Spearman correlation for the linear case and
0.6996 average Spearman correlation for the logarithmic case.
Note that the Spearman correlation for the MLN algorithm
is the same for the linear and logarithmic similarity distance
metric. The reason is that α = 0.3 for both algorithms. This
number means that results that are equal to above 0.3 for
both metrics are mapped to 1. In other words, the ranking
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Table 1: Pearson correlation on the five different benchmarks (the highest values are in bold)

Algorithm/Data Set RG65 MC28 Agirre201 P&S f ull SimLex665 Average
Resnikic−treebank−add1 [29] 0.8653 0.8809 0.6913 0.9003 0.5955 0.7867
Yuan et al. [52] 0.8675 0.8407 0.7061 0.9082 0.6106 0.7866
Seco et al. [36] 0.8642 0.8557 0.6969 0.9042 0.6048 0.7852
Sanchez et al. [34] 0.8752 0.8595 0.6946 0.9025 0.5941 0.7852
Meng et al. [19] 0.8723 0.8393 0.7039 0.9057 0.6010 0.7844
Harispe et al. [11] 0.8589 0.8575 0.6960 0.9003 0.6056 0.7836
Resnikic−semcorraw−add1 [29] 0.8658 0.8621 0.6955 0.8997 0.5930 0.7832
Sanchez et al.[35] 0.8616 0.8507 0.6973 0.9042 0.5995 0.7827
CondProbCosine [18] 0.8634 0.8562 0.6902 0.9015 0.5964 0.7815
CondProbHypo [18] 0.8658 0.8552 0.6874 0.9015 0.5940 0.7808
CondProbLeaves [18] 0.8635 0.8511 0.6891 0.9008 0.5934 0.7796
CPCorpusic−treebank−add1 [18] 0.8633 0.8678 0.6807 0.8987 0.5863 0.7794
CPCorpusic−semcorraw−add1 [18] 0.8647 0.8504 0.6792 0.8979 0.5843 0.7753
Zhou et al. [53] 0.8589 0.8403 0.6848 0.8905 0.5985 0.7746
CondProbLogistick8 [18] 0.8692 0.8142 0.6809 0.9064 0.5972 0.7736
Hadj Taieb et al. [50] 0.7933 0.6899 0.6490 0.8167 0.4921 0.6570
Multiplication(linear) 0.8690 0.8391 0.6256 0.8993 0.3995 0.7265
Multiplication(log) 0.8536 0.8220 0.5962 0.8996 0.4392 0.7221
MLN (linear) 0.8173 0.8653 0.7115 0.8475 0.4438 0.7371
MLN (log) 0.8160 0.8661 0.7273 0.8382 0.4575 0.7410
MLN +RandomWalk (linear) 0.8874 0.8913 0.7002 0.9152 0.4472 0.7683
MLN +RandomWalk (log) 0.8992 0.9290 0.7105 0.9237 0.4914 0.7908

Table 2: Spearman correlation on the five different benchmarks (the highest values are in bold)

Algorithm/Data Set RG65 MC28 Agirre201 P&S f ull SimLex665 Average
Resnikic−treebank−add1 [29] 0.7831 0.8882 0.6461 0.7783 0.5810 0.7353
Yuan et al. [52] 0.8206 0.8274 0.6656 0.8199 0.6027 0.7473
Seco et al. [36] 0.8012 0.8727 0.6643 0.7919 0.5901 0.7441
Sanchez et al. [34] 0.8034 0.8492 0.6576 0.8003 0.5906 0.7402
Meng et al. [19] 0.8166 0.8296 0.6581 0.8127 0.5957 0.7426
Harispe et al. [11] 0.7977 0.8697 0.6539 0.7904 0.5918 0.7407
Resnikic−semcorraw−add1 [29] 0.7922 0.8712 0.6505 0.7835 0.5782 0.7351
Sanchez et al.[35] 0.7911 0.8551 0.6590 0.7854 0.5850 0.7351
CondProbCosine [18] 0.7896 0.8606 0.6524 0.7834 0.5828 0.7337
CondProbHypo [18] 0.8017 0.8554 0.6466 0.7910 0.5806 0.7350
CondProbLeaves [18] 0.7877 0.8389 0.6478 0.7808 0.5799 0.7270
CPCorpusic−treebank−add1 [18] 0.7722 0.8502 0.6364 0.7691 0.5735 0.7203
CPCorpusic−semcorraw−add1 [18] 0.7916 0.8247 0.6389 0.7813 0.5712 0.7216
Zhou et al. [53] 0.8051 0.8244 0.6591 0.7999 0.5945 0.7366
CondProbLogistick8 [18] 0.7993 0.8034 0.6460 0.7921 0.5791 0.7240
Hadj Taieb et al. [50] 0.7417 0.6961 0.6175 0.7463 0.4833 0.6570
Multiplication(linear) 0.7365 0.7653 0.4893 0.7348 0.3964 0.6245
Multiplication(log) 0.7424 0.7859 0.4969 0.7456 0.4140 0.6370
MLN (linear) 0.7704 0.8420 0.6953 0.7687 0.4552 0.7063
MLN (log) 0.7704 0.8420 0.6953 0.7687 0.4552 0.7063
MLN +RandomWalk (linear) 0.8375 0.9236 0.6789 0.8235 0.4794 0.7486
MLN +RandomWalk (log) 0.8392 0.9423 0.6801 0.8253 0.4909 0.7556
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Table 3: Average of Pearson and Spearman correlation on the five benchmarks (the highest values are in bold)

Algorithm/Data Set RG65 MC28 Agirre201 P&S f ull SimLex665 Average
Resnikic−treebank−add1 [29] 0.8242 0.8846 0.6687 0.8393 0.5883 0.7610
Yuan et al. [52] 0.8441 0.8341 0.6859 0.8641 0.6067 0.7670
Seco et al. [36] 0.8327 0.8642 0.6806 0.8481 0.5975 0.7647
Sanchez et al. [34] 0.8393 0.8544 0.6761 0.8514 0.5924 0.7627
Meng et al. [19] 0.8445 0.8345 0.6810 0.8592 0.5984 0.7635
Harispe et al. [11] 0.8283 0.8636 0.6750 0.8454 0.5987 0.7622
Resnikic−semcorraw−add1 [29] 0.8290 0.8667 0.6730 0.8416 0.5856 0.7592
Sanchez et al.[35] 0.8264 0.8529 0.6782 0.8448 0.5923 0.7589
CondProbCosine [18] 0.8265 0.8584 0.6713 0.8425 0.5896 0.7576
CondProbHypo [18] 0.8338 0.8553 0.6670 0.8463 0.5873 0.7579
CondProbLeaves [18] 0.8256 0.8450 0.6685 0.8408 0.5867 0.7533
CPCorpusic−treebank−add1 [18] 0.8178 0.8590 0.6586 0.8339 0.5799 0.7499
CPCorpusic−semcorraw−add1 [18] 0.8282 0.8376 0.6591 0.8396 0.5778 0.7485
Zhou et al. [53] 0.8320 0.8324 0.6720 0.8452 0.5965 0.7556
CondProbLogistick8 [18] 0.8343 0.8088 0.6635 0.8493 0.5882 0.7488
Hadj Taieb et al. [50] 0.7675 0.6930 0.6333 0.7815 0.4877 0.6570
Multiplication(linear) 0.8028 0.8022 0.5575 0.8171 0.3980 0.6755
Multiplication(log) 0.7980 0.8040 0.5466 0.8226 0.4266 0.6795
MLN (linear) 0.7939 0.8537 0.7034 0.8081 0.4495 0.7217
MLN (log) 0.7932 0.8541 0.7113 0.8035 0.4564 0.7237
MLN +RandomWalk (linear) 0.8625 0.9075 0.6896 0.8694 0.4633 0.7584
MLN +RandomWalk (log) 0.8692 0.9357 0.6953 0.8745 0.4912 0.7732

Table 4: Values for α

Algorithm α linear metric α log metric
Multiplication 0.002 0.1
MLN 0.3 0.3
MLN+RandomWalk 0.006 0.015

is the same after applying the linear or logarithmic similarity
distance metric and therefore the Spearman correlation is the
same. Lastly, note that again the MLN+RandomWalk algorithm
produces the highest average correlation, followed by the MLN
and the Multiplication algorithm. However, the MLN algorithm
produces the best results on the Agirre201 benchmark.

Lastly, consider Table 3 that shows the average of the Pearson
and Spearman correlation. Again, the MLN+RandomWalk
algorithm that uses the logarithmic similarity measure produces
higher correlation than previous algorithms on four of the
five benchmarks and the highest average correlation over
the five benchmarks. The logarithmic similarity metric
produces a little higher correlation than the linear one: 0.7185
average correlation for the linear case and 0.7255 average
correlation for the logarithmic case. The MLN+RandomWalk
algorithm produces higher average correlation than the MLN
algorithm, which produces higher average correlation than the
Multiplication algorithm.

The Java source code and all text files that are needed to
reproduce the experimental results can be found at [41].

6 Conclusion and Future Research

In this article, we presented a new Markov Logic Network
algorithm that uses a random walk to compute the semantic
similarity between two word forms of the English language. We
showed that the logarithmic version of the algorithm produces
higher average correlation over five benchmarks than the current
state-of-the-art algorithms. We believe that these results are
due to the fact that our algorithm processes not only structured
data, but also natural language information from WordNet.
Moreover, unlike our previous work, the algorithm considers
all the evidence from the probabilistic graph and not only the
disjoint paths between the nodes that are compared.

Although the random walk algorithm gives very accurate
results, it is not necessarily the most efficient way of computing
the semantic similarity between two nodes in the probabilistic
graph. In the future, we plan to explore alternative methods for
computing the semantic similarity distance between two nodes,
such as Gibbs sampling, belief propagation, and approximation
via pseudolikelihood. We also plan on conducting experiments
on the full-blown version of the probabilistic graph that includes
data from Wikipedia ([42]) and determining if this can improve
the correlation values with the five benchmarks.
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