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Abstract

Design by Contract is a design methodology that promotes
software reliability and reusability by requiring each com-
ponent module to have a well-specified interface and leaves
a module’s behavior undefined if its requirements are not
met. The DBC methodology may well lead to software
with fewer overall faults, but its lack of interface validation
encourages the class of failures that, through error propa-
gation, results in violation of security policy. In this paper
we explore the interaction of the tenets of the design by
contract methodology with the requirements of system se-
curity.

Keywords: Software Methodologies, Security, Reliability,
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1 Introduction

Over the past decade, the principles of Design by
ContractTM (DBC) have been promoted as a way to develop
simple, correct software by clearly defining who is respon-
sible for each component of that software. The claim is that
by following these design principles the software produced
will be more reliable,

Reliability, in this case, is defined in terms of
correctness—the ability of software to perform its speci-
fied tasks—and robustness—the ability of software to re-
spond appropriately to abnormal conditions [9, 11]. Soft-
ware fails to be reliable through faults—departures from a
system’s intended behavior—which are caused by defects
in the system, which are, in turn, caused by errors either of
specification or of implementation [11].

We agree that the design by contract philosophy may
indeed lead to software with fewer overall defects [14], but
are concerned that this same philosophy—requiring inter-
faces to be precisely specified but allowing modules’ be-
havior to be undefined if the specification is not met—may
lead to a false sense of security.

When it comes to failures that lead to security
violations—failures resulting from intentional attack—all
faults are not created equal. What is of importance is not

the number of potential faults, but how these errors in exe-
cution can propagate to cause damage—not in the presence
of accident, but in presence of an intelligent and malicious
adversary [13].

One principle of design by contract is that the behav-
ior of a module whose input requirements are not met is
undefined. This means that a module need not validate its
inputs, and, further, should not, because the caller has al-
ready promised to meet the module’s preconditions, and
the introduction of (ostensibly) redundant code to validate
inputs simply increases the number of places where defects
can occur. This Non-Redundancy Principle and its interac-
tion with system security is the focus of this work.

The rest of this paper is organized as follows. First,
the following section will review the principles of Design
by Contract, then section 3 will review the requirements of
designing secure systems. Following that, section 4 looks
at ways in which contracts can be breached to violate se-
curity principles. Finally, section 5 reflects on error re-
sponses, and section 6 draws some conclusions.

2 Design by Contract

Design by Contract [9, 11] is a software development
methodology comprising two major principles. The first
principle is that every component of the system must have
a well-defined interface, a contract, defining its obligations
and benefits in terms of preconditions, postconditions, and
consistency requirements (invariants). A module whose in-
puts satisfy its preconditions is obligated to produce an out-
put satisfying both its postconditions and its given invari-
ants. A module whose inputs violate its preconditions is
not obliged to meet its postconditions and is, in fact, free to
do anything at all; its behavior is undefined.

Consider the example service contract, shown in Fig-
ure 1, used by Meyer [9] and revisited below in section 4.3.

The contract is one for a postal service, laid out in
terms of obligations and benefits. A party meeting his obli-
gations is entitled to the stated benefits from the other party.
Generally these are reciprocals of one another as each party
is obliged to provide the benefits to the other.



Obligations Benefits
Sender • Provide a parcel

within size and
weight limits.

• Pay postage.

• Parcel is delivered
to addressee in a
reasonable time.

Post
Office

• Deliver parcel
to addressee in
a reasonable
time.

• Need not deal
with too large, too
heavy, packages.

• Gets paid.

Figure 1. An example contract for a postal service

2.1 Well Specified Interfaces

The first principle of DBC is that of the well-defined inter-
face. Each module of a system must fully specify its pre-,
post-, and invariant conditions. Furthermore, these spec-
ifications must be made explicit in the program itself via
assertions. These assertions serve to inform the module’s
clients of their obligations and responsibilities, facilitating
both correctness and re-use. Some languages, in particu-
lar Eiffel [10], provide embedded mechanisms for assertion
checking that can be used during development and testing,
but are customarily disabled when the final product is de-
livered.

We are whole-heartedly in favor of well-specified sys-
tems. DBC’s insistence that every module be well-specified
may indeed increase reliability, reusability, and security, to
the extent that we can rely on specifications being com-
plete, consistent, and correct.

2.2 Non-Redundancy Principle

The second principle of DBC, the Non-Redundancy Princi-
ple, [9, 11] states that modules should not verify their pre-
conditions and that consumers should not verify modules’
post-conditions. The arguments for this are: (1) that in-
troducing redundant checks unnecessarily complicates the
code, leading to more overall faults, and (2) that program-
mers will write better quality code if they know that they
alone are responsible for its correctness because nobody
else will be checking it.

Even if it is true that eliminating error checking code
leads to fewer implementation defects, failure to test for
error conditions will allow those errors that do exist to
propagate unchecked. The choice to intentionally elimi-
nate checks on error propagation is, on its face, disturbing
to the security-conscious developer.

3 Designing for Security

Full specification and adherence to that specification is the
way to create systems that function correctly under ex-
pected conditions. High assurance computing is the sci-
ence of creating systems that do no harm when faced with
unexpected conditions.

While security is sometimes a difficult concept to de-
fine, fundamentally it rests on three principles: confiden-
tiality, integrity, and availability [4]. Confidentiality refers
to a system’s ability not to divulge information it shouldn’t,
integrity refers to a system’s ability to produce true infor-
mation, and availability refers to a system’s ability to func-
tion for the system’s intended users when required. To-
gether, these three properties ensure that the system will
do what it is specified to do (and nothing else) under both
expected and unexpected conditions.

Security is a system property. When it comes to a
security violation, it doesn’t matter whose fault it is; the
system as a whole has failed.

3.1 Types of threats

When we consider how a system will function in unex-
pected circumstances we need to consider how those cir-
cumstances would arise. In general, threats to a system
can be broken up into several categories. In terms of DBC,
these represent ways in which a contract can be violated.
The threat categories are:

External attack: An attacker acting outside the system
could violate an unverified system assumption and
cause inputs to violate a module’s contract.

Programmer errors: A programmer implementing one
module in the system could unintentionally violate the
input preconditions of another module. This is differ-
ent from an external attack because the offending data
is coming from inside the security perimeter. It may
be possible for an attacker to act in ways that com-
pletely satisfy external interface requirements to trig-
ger the internal violation.

Physical faults: The system’s hardware may fail in such
a way as to allow inputs in violation of a module’s
contract, or a value could change after it has been val-
idated. This change could either be accidental or in-
tentionally induced [5].

Insider misuse: A programmer or privileged user could
use that privilege to intentionally violate a module’s
contract. In effect, this is similar to a programmer er-
ror, except that it is much less likely to be discovered
during development and testing because the defect is
both intentional and likely disguised.

Any of these threats could cause a contract to be vi-
olated and thus lead modules into the states where their
postconditions are undefined. In addition, it is possible for
several of the above mechanisms to be combined in an at-
tack where several faults that are individually benign can
be combined to violate a contract. In order to uphold the
principles of confidentiality, integrity, and availability it is
necessary to design systems first to limit both the number
of such failures and the damage that can be done by those
that exist.



3.2 Design Principles

In order to defend against the attacks described in the pre-
vious section, it is necessary to anticipate them in the sys-
tem’s design and limit exposure. Design principles in-
tended to promote system security have been found in the
literature for decades. In 1975 Saltzer and Schroeder [12]
proposed a set of eight design principles intended to pre-
vent security violations.

In practice, however, it has proved extremely diffi-
cult to both design and implement systems with no security
vulnerabilities. The inherent complexity of software and
the fallibility of its designers and implementors conspire to
leave holes in the castle walls.

3.3 Defense in Depth

“No battle plan ever survived contact with the enemy.”
— Field Marshall Helmuth Carl Bernard von Moltke

Experience has shown that no matter how carefully
specified and implemented a system is, defects will still
remain within it [8, 3]. Given this track record, we must
assume that any piece of software will have some flaws re-
maining in it and respond accordingly.

Defense in Depth [1, 2] is the strategic principle that
a series of interlocking defensive positions should be used
both to support each other and to limit the scope the damage
should one of the defensive positions fail. In the arena of
military operations, where the strategy was originally de-
fined, this can mean castles with moats surrounding walls,
parapets overlooking the gates to protect them from attack,
inner walls to which defenders can fall back when the outer
walls fail, etc.

The model of physical defenses does not apply di-
rectly to software, but the principle still does. It is foolish
for a system, no matter how well specified, to assume that
its external perimeter is inviolable and have no contingency
plan for what to do when it fails.

Note that failure-aware design does not mean that the
system will necessarily be able to recover from the failure.
A function that performs error checking and produces an
error result is the antithesis of reliability. Once a module’s
precondition has been violated, it may very well be unable
to fulfill its function1. Thus, the module is forced to fail,
but all failures are not equal. By checking for the failure
state and responding appropriately it may be able to miti-
gate the damage. When failure is the only option, choosing
the nature of that failure can be of critical importance.

4 Breach of Contract

An attacker operates outside the bounds of the contractual
framework. He is either unwilling or unable to satisfy the

1In fact, if it is able to fulfill its function in the presence of a violated
precondition, the precondition must have been unnecessary.

obligations of a contract that would achieve his goal. Fur-
thermore, the benefit he seeks may be completely outside
the bounds of the system in question. The attacker’s ap-
proach is to violate a system’s specification intentionally
in order to cause it to do something outside of its intended
behavior.

The attacker’s breach of contract could arise from
many possible sources. In this section we look first at the
nature of these failings, then how they may be exploited,
and finally an example of an attack using the post office
example of section 2.

4.1 The Nature of Defects

It is generally accepted that any sufficiently complex piece
of software will have within it some defects. These de-
fects may either be observable, affecting the functionality
of the system in the normal course of its use, or latent, not
related to normal functionality and thus hidden during nor-
mal use. Reducing the number of defects in a piece of code
generally leads to more reliable code. One of the moti-
vations of DBC’s non-redundancy principle is that adding
code to modules to validate contractual assertions should
be avoided because this practice increases overall code size
and complexity and thereby increases the total number of
defects in a given system [9]. Fewer defects should mean
more reliable software. This point is well taken. What is
not considered here, however, is that all faults are not cre-
ated equal.

An automated teller machine might have a routine that
controls the money dispenser, and it may have a contract
that states that whoever calls it must check the user’s bal-
ance before calling dispense(). Now consider the fol-
lowing two error cases:

1. Dispense() has code in it to independently verify
the user’s balance and there is an error in that code
causing it always to fail. The result of this is that no-
body will get any money. This is unfortunate, but re-
mediable by walking into the bank to speak to a real
teller. If there is an error that always determines the
balance to be sufficient, that error is mostly harmless
because the caller should have already checked.

2. Dispense() does not check, and there is a similar
error in the caller’s balance checking code that always
determines the balance to be correct. Here, all with-
drawal requests, valid or not, will be approved, and
there is no remedy because the cash is already gone
and untraceable.

Although this example is of a functional failure, the
faults that lead to security violations are not necessary func-
tional. That is, there is no relationship between visible ef-
fects when the system is used properly and security bugs,
therefore there is no incentive to find these flaws because
there are no bug reports [13].



Faults that could cause contract violations, and
thereby security violations, fall into several categories:

Errors in specification: An error in the system’s specifi-
cation could lead to an erroneous contract that would
cause a module to malfunction itself or to accept an
input that would cause it to violate another module’s
preconditions.

In one sense this is not a defect at all, since the spec-
ification is the best definition of what the system is
supposed to do. With a less narrow definition of de-
fect, however, this is clearly an error in the system.

Defects in the code: An error in implementation can
cause a module to violate either its own or another
module’s contractual obligations under certain cir-
cumstances. These errors may or may not manifest
themselves in the normal course of use.

Insider abuse: An insider may insert code into a module
that will either open a back door for use at a later date
or that will intentionally violate another module’s pre-
conditions in order to produce a desired effect.

Environmental failure: Even if all of the software com-
ponents are behaving responsibly it is possible for the
situation to change between time of check and time of
use. Consider situation described by Govindavajhala
and Appel [5] where they demonstrated their ability
to take control of a Java virtual machine, with all of
its internal reference consistency checks, by inducing
memory errors with a heatlamp!

Any of the above faults could lead to a situation where
a module’s preconditions are violated. In terms of DBC,
this would free the module from its obligation to fulfill its
postcondition and leave its behavior undefined. That unde-
fined behavior provides an opening for attackers.

4.2 Undefined does not mean Unpredictable

Just because a system’s behavior is undefined does not
mean it is unpredictable. Computers are largely determin-
istic machines. Regardless of the specification leaving a
module’s response to a given input undefined, in general, a
module’s response to a given input is deterministic.

To illustrate this, consider the all-too-common buffer
overflow attack. In this attack an attacker passes a program
a string that is longer than the buffer intended to hold it and
overwrites the neighboring memory. Typically the attack is
perpetrated against a local array allocated on the program’s
runtime stack. The given string overflows the end of the
buffer, overwriting the function’s return address, and caus-
ing it to return to code embedded in the string itself rather
than to the original caller. To effect this attack it is nec-
essary for the attacker to know the hardware architecture,
the size and layout of local variables on the stack, and the

memory location of the stack itself in order to correctly de-
termine the malicious return address. None of these things
are typically part of the specification of the program, or, in-
deed, that of the language or operating system either. All
of these things, however, do tend to be predictable, and that
is what opens the door to the attack.

In the following example we look at what may hap-
pen when a system’s behavior is undefined but can be an-
ticipated.

4.3 A Bomb in the Mailbox

Meyer’s example in [9] and the variant of it presented in
section 2 involve a contract with the post office to carry a
parcel. When applied to security, however, the model goes
wrong in that an attacker is not interested in the offered
product—conveying a parcel from here to there; he is in-
terested in something else, a side-effect.

Consider the case where an attacker can place a bomb
that does not conform to either the size or weight require-
ments in a mailbox without putting postage on it. Under the
rules of design by contract, the attacker is permitted to do
this and, by the non-redundancy principle, the post office
is forbidden to check. The bomb is, however, in violation
of the contract, and therefore the postal service is under
no obligation to transport it anywhere in particular, but the
attacker’s goal isn’t transportation, it is the destruction of
other mail in the box.

In this example the attacker has been able to accom-
plish two things without violating the system’s design prin-
ciples:

1. He has accomplished the destruction of the mailbox
preventing the post office from entering into any new
delivery contracts, and,

2. He has destroyed all the mail in the box causing the
post office to violate pre-existing contracts with those
senders.

4.4 Analysis

DBC demonstrates a strong dependence on its contracts.
We are interested in whether this involves necessary trade-
offs with some known security concerns. From the perspec-
tive of our adversary (the “black hat” hacker who seeks to
control our system in some way), we wonder whether the
contract is sufficient to prevent a destructive exploit. This
central question may be broken down into some more basic
security issues:

1. Is there a risk of incorrect, incomplete or inconsis-
tent allocation (by system architect), or derivation (by
software designer) of system security requirements to
individual module contracts?

2. Is there a risk of incorrect, incomplete or inconsistent
implementation of a given contract in code?



3. What is the risk that security may be compromised by
design of the contracts themselves?

4.4.1 Specification Concerns

The state of software specification has not reached the point
of high confidence in correctness, completeness and con-
sistency, at least for software systems of nontrivial scope
[7]. Thus, the security conscious programmer is not in-
clined to accept that preconditions or invariants should not
be checked (when a call to his module is made) without
some suspicion or defensive design measures.2 Even if
system specifications are correct, complete and consistent,
there are two activities critical to module contracts that in-
volve risk of error: allocation of security specifications to
individual software modules as contracts, and derivation of
the higher level security specifications down to individual
module contracts. Again, the security conscious program-
mer will remain suspicious to protect the security of critical
functions and data. Acceptance of a random call without a
serious inquiry about whether preconditions have been met
would be a mistake.

4.4.2 Implementation Concerns

Supposing that the first issues are apparently resolved, we
have a set of contracts that specify a set of modules for the
programmers to implement. The implementation process is
not without its risk of error. Certainly, at the module level,
the use of testing and proof techniques may prove useful
to expose and correct defects. Testing, though indispens-
able, can expose defects but never show their absence [6].
This is where proof techniques may be used to fill the gap,
and DBC embraces the possibility through use of pre- and
post- and invariant conditions associated with the modules.
Assertions may be used to check that no violations occur
during runtime, but their efficacy depends on two things:
1) that assertions are “turned on” (not always true); and, 2)
the (unanticipated) problematic state that violates the asser-
tion must be reached. Thus, the exposure of critical errors
for DBC works similarly to testing: there is not enough
time or resources (in nontrivial cases) to completely cover
the state space and expose all critical defects. The security
conscious programmer must remain skeptical and defen-
sive.

4.4.3 Inside Jobs

The last issue we examine is that of the malicious insider.
It is a particularly difficult issue, to be sure, but not un-
common. Can the malicious insider design the contract to

2Since security is an “emergent” property of a system, we realize that
the system designer does indeed bear the lion’s share of responsibility for
proper specifications. However, security experience shows that security is
a distributed responsibility where the system is to be protected regardless
of the assignment of “fault” or responsibility (which can be useful during
debugging or assessing liability).

facilitate security violations and deter efforts to discover
them? Of course, DBC does not address this issue directly.
However, the non-redundancy principle appears to discour-
age checking of another module’s call. If the other module
is designed to violate system security by design of its own
(and other) contracts, this philosophy of trust is misplaced.
The security conscious programmer must look to defensive
programming if such problems are anticipated at any level.

5 Defensive Programming vs. Exception
Handling

While we laud the goals of Design by Contract—perfection
in both specification and implementation—we believe
these goals to be unattainable.

Defensive programming does not—and cannot—
prevent or recover from errors of either specification or im-
plementation. Once an erroneous state has been reached
where the specification does not specify behavior, the sys-
tem has been damaged and there is no way for it to guess
at what the designers would have wanted it to do. What
it can do, however, is to limit the scope of damage caused
by that failure. By preventing errors from propagating we
hope to prevent the sorts of errors that allow confidentiality,
integrity, or availability to be compromised.

Exception handling, as defined by the DBC commu-
nity, still focuses on meeting the specification. Meyer [9]
defines an exception as “a runtime event that may cause a
routine to fail” where failure is defined a routine terminat-
ing in a state that violates its contract. A routine whose
preconditions are not met is not obligated to honor its con-
tract; therefore the undefined behavior of such a routine is
not considered exceptional.

In deference to the DBC philosophy, we recognize
that a tradeoff is being made to accept complexity, and the
larger number of defects inherent in that complexity, in ex-
change for damage control. Certainly code should be made
as simple as is practical, but no simpler.

6 Conclusion

The design by contract methodology has much to con-
tribute toward the development of software that will func-
tion well in its intended environment. By requiring ev-
ery module to be well-specified, it reduces the chance
of error in both design and implementation. Even the
non-redundancy principle, by not validating pre- and post-
conditions, reduces the likelihood of defects in the final de-
livered product simply by reducing the amount of code to
be produced. At the same time, however, not validating
these conditions allows failures arising from the remaining
defects to propagate silently through the system increasing
the expected damage from those faults.

In any sufficiently complex piece of software we can-
not guarantee that all contingencies will be addressed in a
specification, nor can we guarantee that all modules will



properly meet their specifications under all conditions. If
software failures are a given, what remains to the system is
the opportunity to choose the manner in which it fails. It
can stand on the principle of a valid contract and refuse to
bend, or it can take action to renegotiate that contract and
limit the scope of the damage.

Caveat Emptor.
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