
Toward a Common Host Interface for Network Processors
�

Appearing in: Proceedings of the 2003 IASTED International Conference
on Communications, Internet, & Information Technology (CIIT), Scottsdale,
Arizona, November, 2003.

Eric Hawkins
Department of Computer Science

California Polytechnic State University
San Luis Obispo, CA 93407

ehawkins@calpoly.edu

Phillip L. Nico
Department of Computer Science

California Polytechnic State University
San Luis Obispo, CA 93407

pnico@acm.org
Hugh Smith

Department of Computer Science
California Polytechnic State University

San Luis Obispo, CA 93407
husmith@calpoly.edu

Abstract

Since their invention, network interfaces have generally
been treated as special by operating systems because of
their complexity and unique control requirements. In this
paper we present a generic host interface through which an
intelligent network interface or network processor can be
managed as a simple networking device. To accomplish
this, we push the complex network connection manage-
ment and protocol processing code down onto the network
interface. This new network processing platform is treated
as a simple device by the host operating system. This
model of host operating system interconnection provides
for various network processor architectures to be handled
identically using a well-defined kernel interface. Selection
of the exact location for the kernel interface to the network
processor was based on our goals to maximize the utility
of the network processing platform, require no changes to
existing network applications, and provide interoperability
with existing network protocols (e.g. TCP, UDP). This pa-
per documents the criteria and methodology used in devel-
oping such a kernel interface and discusses our prototype
implementation using Linux kernel modules and our own
ASIC-based intelligent network interface card.

Keywords: Information Systems and the Internet, Operat-
ing Systems Support, intelligent NIC, network processors

1 Introduction

The concept of offloading network processing from the
host processor to a separate communication processor is
not a new one. It has been discussed in the literature for
some time, and several vendors have emerged to fill the
newly created market niches for such devices. In order for
such devices to be accepted into mainstream computing,
however, a general interface is needed by which operating
systems can offload network processing tasks to the co-

�
The work described in this paper was partially supported by the De-

partment of the Navy, Office of Naval Research.

processor without requiring a device-specific application
programing interface (API) or other support mechanisms.

Traditional network interfaces have relied upon rela-
tively dumb network adapters that simply connect the net-
working medium to the host I/O bus. These adapters are
driven by networking code in the host operating system. To
the host operating system, the network adapter looks like a
small buffer into which packets can be written for transmis-
sion by the network interface card (NIC) onto the network.
The Berkeley socket programming interface[8] is predom-
inantly used by applications to send and receive data via
the various network protocols supported by the operating
system.

As networks have grown in size and complexity the
network protocols have evolved to support these networks.
Modern network protocol code is quite complex, especially
protocols such as TCP/IP. Due to this growth in complex-
ity, the processing required for transmitting and receiv-
ing data over the network has grown to a point where it
is easy to justify the need for a device to offload these
processing duties.[6][5] Much like the evolution of sepa-
rate graphics processors was encouraged by increasing de-
mands on graphics processing capabilities, the processing
requirements of modern networking tasks are pushing the
development of separate network processors for even the
common network communication tasks.

Network processors provide many benefits beyond re-
lieving host processors of common networking duties. Ei-
ther through the use of general purpose CPUs or custom
hardware, network processors can support auxiliary ser-
vices right at the network edge. Security services such as
intrusion detection or firewalling are enhanced by the phys-
ical separation of such devices from the host machine’s
software environment. Support for encryption can be in-
corporated into these devices either in hardware or soft-
ware. Network quality of service mechanisms can be in-
corporated as well to enable multimedia applications.

Different approaches to the host-coprocessor inter-
face have been proposed, but the most popular solution
has been to use custom APIs and function libraries. The



Trapeze/Myrinet project[2] has shown impressive through-
put across an intelligent network adapter, but it relies upon
the Trapeze API to access the network adapter. Like-
wise, the Nectar Communication Processor offloads pro-
tocol processing as well as application specific tasks but
does so through the use of the Nectarine programming in-
terface which provides access to the Nectar message pass-
ing facilities[1]. Network processors based on the Intel
I2O specifications which utilize a split-driver model to iso-
late host functionality from network interface functionality
are also bound to a custom API for the host-coprocessor
interface[3]. Since nearly all host-network processor inter-
faces rely on custom APIs, the benefits of network proces-
sors have not been realized on a broad scale. Incompatibil-
ity with existing network software is a major impediment
to the incorporation of these technologies.

To address the issue of binary compatibility we have
defined an interface to the network processor that works
along with the socket programming interface. We have de-
veloped a prototype system that uses a well-defined Linux
kernel interface at the top of the protocol stack. Using
Linux kernel modules we have integrated support for the
Cal Poly Intelligent Network Interface Card (CiNIC)[4]
into the native Linux network protocol stack. Operations
on CiNIC connections are dispatched through this interface
in the host operating system to the CiNIC for protocol pro-
cessing. Although the initial development has been done
in Linux, the requirements and architecture of the interface
can be applied to any operating system that supports the
socket API.

The rest of this paper is organized as follows: In Sec-
tion 2 we discuss the requirements of the host-network pro-
cessor interface. In Section 3 we describe the kernel level
interface selection for our prototype implementation. In
Section 4 we describe our implementation and prototype
platform. In Section 5 we discuss directions for future
work. In Section 6 we present conclusions from our work.

2 Interface Requirements

We identified several requirements for the host-network
processor interface. These requirements all stem from the
primary requirement that our new OS interface be compat-
ible with existing user-level interfaces so that existing pro-
grams would not have to be altered.

Use socket API: Since the majority of legacy network ap-
plication code uses the socket API, the interface to the net-
work processor must exist within the scope of socket calls.
Figure 1 shows the traditional socket call interface. The
socket API sits at the top of the network subsystem and
provides user programs with an interface to the operating
system’s network subsystem. The great majority of ex-
isting network-based programs were written to the socket
API, and so to ensure compatibility with existing programs
the interface to the network processor must exist within the
scope of the socket API. However, this requirement means

TCP/IP
Stack

Socket
Interface

BSD Socket

U
se

r S
pa

ce
K

er
ne

l S
pa

ce

Application

Socket API

System Calls

UDPTCP

INET Socket

IP

Ethernet

Figure 1. Socket API and OS interface.

that either the user-level socket library must be modified or
support must be built into the OS. We chose the second ap-
proach since OS modification is the best way to support the
existing APIs and applications.

Utilize native device management: The network proces-
sor should be managed as a normal device by the host oper-
ating system. Custom application-level code should not be
required to manage the device. Rather, existing operating
system support for synchronization and protection should
be used. The justification for this requirement is that pro-
duction operating systems use proved access management
policies and procedures. With a well-designed interface to
the network processor, these existing mechanisms can be
utilized intact. Requiring network processors to be treated
as special devices outside the scope of operating systems’
existing device management facilities poses a potential se-
curity and robustness risk.

Look like a regular character device: To the host oper-
ating system the network processor should appear to be a
simple character device. The device should interact with
the host operating system using a minimal number of oper-
ations (open, read, write, close, etc.), and it should funda-
mentally act like a simple device that raw data is written to
and read from. This requirement is essential to preserving



the simplicity of the host-network processor interface. In
implementation this requirement translates to locating the
cleanest point at which to terminate host processing and in-
voke the co-processor. Determination of the point at which
this division should be made is driven by two considera-
tions.

First, the number of operations required for device
support should be minimized in order to simplify the imple-
mentation of the interface. Second, the data structures used
by the operating system for network devices must be kept
consistent on both the host and the co-processor with min-
imum synchronization overhead. Many network related
data structures are used at various points in the OS network-
ing code and care must be taken to divide processing be-
tween the host and co-processor such that minimal replica-
tion of data is required. For example, the Linux kernel uses
the socket data structure for filesystem information such as
the inode number while the sock data structure is used for
socket-specific network connection information. It is nec-
essary to have the sock available to the co-processor since
it takes care of network processing. This requires the sock
to either be replicated between the host and co-processor
or available only to the co-processor. On the other hand,
the socket is required by the host who takes care of filesys-
tem management. However, due to interdependencies be-
tween the data structures, separation of the two data struc-
tures would require synchronization overhead, but replica-
tion would require more.

3 The Socket Family Interface

As discussed in the previous section, the requirements for
the host-network processor interface drove the design of
the interface to be a kernel level modification. Several ex-
isting interfaces within the Linux kernel appeared as poten-
tial points to make the processing break between the host
and co-processor.

The host-network processor interface could be imple-
mented by intercepting all socket system calls destined for
network processor connections and redirecting these calls
to the co-processor. The host OS’s system call table could
be modified to redirect processing to functions capable of
checking connections and dispatching calls appropriately.
System call redirection minimizes the number of data struc-
tures requiring synchronization between the host OS and
network processing platform. Also, due to the high level at
which the processing division is made, system call redirec-
tion maximizes the amount of processing offloaded from
the host to the co-processor. Unfortunately, the number of
system calls and the requirement for catching all system
calls makes this approach prohibitive in terms of imple-
mentation and execution overhead. The mapping mech-
anisms required to maintain network connections across
multiple processes would also be complex and costly.

Another possible OS interface is the Virtual Filesys-
tem Switch (VFS). The VFS is a software layer within the
kernel that handles system calls related to a filesystem. It

provides a common interface to various filesystems through
specification of the functions and data structures that must
be implemented to support a particular filesystem. The
VFS seems like the natural spot to break host processing
since it would allow network processor support to be im-
plemented as a new filesystem type. Operations destined
for the co-processor would be redirected through the VFS
interface and handled on the co-processor. However, the
implementation of OS socket call handling makes the VFS
an inappropriate point for interfacing to the co-processor.
The primary reason for this is that not all socket process-
ing proceeds through the VFS. The socketcall multiplexer
is actually a parallel data path to the VFS through which
network operations can alternately be invoked. For exam-
ple, to receive data from a socket, an application can make
a read call, which is handled by the VFS implementation of
the read system call. Alternately, an application can make
a recv call on a connected socket, which is handled by the
socketcall multiplexer and does not interact directly with
the VFS.

The socket protocol family interface is a well-defined
kernel interface just below the VFS layer. All socket pro-
cessing converges from the VFS and socketcall multiplexer
at the protocol family interface where it is dispatched to
particular socket implementations. In the native network-
ing code, this interface allows for the implementation of
different socket types or protocol families. For example,
with Internet domain sockets using the Internet Protocol
(IP), this interface redirects socket processing to the set of
data and operations defined for the Internet protocol family
(PF INET). The protocol family interface provides a nar-
row point at which to terminate host processing and invoke
the co-processor on behalf of socket operations.

Using the socket protocol family interface, we have
implemented a new type of socket family to be used with
our network processor. We have named our protocol fam-
ily PF CINIC, since our prototype implementation utilized
the CiNIC as previously mentioned. Figure 2 shows the
software architecture of the network processor interface us-
ing the PF CINIC protocol family alongside the host’s na-
tive protocol families and network stack. Implementation
of the PF CINIC protocol family requires a minimal num-
ber of functions to be implemented (17 to be exact) due to
the fact that the various possible data paths for socket op-
erations converge at this point into the fundamental socket
operations (e.g. create, release, connect, bind, sendmsg,
recvmsg, etc).

Another advantage of making the break in host pro-
cessing at the protocol family interface is that it provides a
low-level view of the socket based only on the kernel data
structures. Integration of the socket into the filesystem is
handled by the kernel at a higher level, so all of the filesys-
tem maintenance operations such as allocating and main-
taining file descriptors for sockets are automatically taken
care of. This allows the network processor to function as
a true networking device without the overhead of filesys-
tem operations, which would be required if host processing



BSD Socket

Host Kernel

Native Host Network Stack

Network Processor
Network Processor Stack

PF_INET PF_UNIX PF_CINIC

Network
Drivers

UDP/IP TCP/IP TCP/IPUDP/IP

Network
Drivers

Figure 2. Protocol family interface

was terminated at a higher level. The low-level view of the
socket at the protocol family interface also limits the set
of data structures affected by kernel operations on both the
host and co-processor, providing for a clean separation of
data between the host and co-processor with minimal syn-
chronization requirements.

Breaking the host network processing at the protocol
family level allows multiple network protocols to be sup-
ported by the co-processor. Protocol such as TCP/IP and
UDP/IP are implemented at lower levels in the operating
system, so processing destined for different types of sock-
ets can proceed through the PF CINIC interface and be
switched based on the type of connection at lower levels.
This approach stands in contrast to other so-called offload
engines that can only support specific protocols.

4 The CiNIC Prototype Implementation

Our prototype implementation utilizes our Strong-ARM
processor based CiNIC for the network co-processor. It
runs a full Linux 2.4 operating system and is connected
to the x86 Linux 2.4 host computer through a PCI-to-
PCI bridge. A shared memory interface between the host
and co-processor provides communication between the two
platforms. Figure 3 shows the development platform.

Socket operations destined for CiNIC connections are
intercepted at the protocol family layer, just at the top of
the network protocol stack. The implementation of the
PF CINIC interface uses Linux loadable kernel modules,
which are loaded prior to network processor usage much
like a standard device driver. When host processing reaches
the PF CINIC interface, a communication packet is built
with the necessary data and control information to trans-
fer processing to the co-processor. This communication
packet is then placed onto shared memory and a data ready

Host

Memory

x86 Linux

Host

PCI Bus

NICMemory

Shared

Strong−ARM Linux

CiNIC

Memory

CiNIC

Network

Figure 3. CiNIC development platform

flag is marked. The host process is then put to sleep un-
til the call returns from the co-processor. Figure 4 shows
the shared memory communication protocol and threading
architecure for the host-network processor interface.

A kernel thread on the co-processor is responsible
for retrieving the communication packet from shared mem-
ory. The current implementation uses a polling protocol in
which a kernel thread constantly checks the data ready flag
in shared memory to see if a communication packet is ready
for handling. When a communication packet is ready, this
thread moves it out of shared memory and clears the flag.
The communication packet is then placed on a wait queue
to be handled by another thread responsible for maintain-
ing socket connections and dispatching processing on each
socket to worker threads. This handler thread allocates and
deallocates socket data structures. It maintains a mapping
of host sockets to co-processor sockets so that subsequent
socket calls on a pre-existing socket proceed through the
proper connection. The handler thread also manages a pool
of worker threads, which are responsible for all socket pro-
cessing other than creation and destruction. These worker
threads pick up where processing left off on the host, call-
ing functions within the native network family implemen-
tation.

When the co-processor completes its work on behalf
of a socket call, all return data and control information are
in the associated communication packet, which is placed
onto shared memory for the host to pick up. The host uti-
lizes a kernel thread that polls shared memory for returning
packets. When a communication packet arrives, the host
thread pulls the packet out of shared memory and wakes
up the associated sleeping process. The native host process
resumes where it left off and the socket call returns.

5 Future Work

Several optimizations are possible for the host-network
processor interface as well as for our prototype platform.
We are currently working to reduce the number of data



fromHost_thread

To Co−Processor

Shared Memory

socket_threads

From Co−Processor

Call Return Queue

Outgoing Call Queue

Call Return

Host Co−processor

handler_thread

toHost_threadfromCoProc_thead

toCoProc_thread

Figure 4. Shared memory communication architecture.

copies required for communication between the host and
co-processor in our development platform. The current
implementation requires data to be copied from the host
to shared memory and from shared memory to the co-
processor (and vice versa). Since data copy operations are
a major bottleneck in network processing[7], we need to
reduce the number of copy operations in order to get rea-
sonable performance. However, unlike other performance-
oriented research on network processors, our goal is not
to enhance overall network performance, rather to pro-
vide a standard interface to the network processor through
which the network processor can provide various process-
ing tasks.

Eventually, we plan to investigate how our Linux im-
plementation of the host-network processor interface ties
into the structure of networking code in other operating sys-
tems. We expect that other Unix implementations should
coincide fairly well with the Linux implementation. The
correlation to other proprietary operating systems may not
be so close.

We are also developing a next-generation CiNIC us-
ing a FPGA design with an embedded soft-core proces-
sor running Linux. This future platform will provide us
with many hardware capabilities beyond that of the current
Strong-ARM platform such as the ability to create auxil-
iary processing blocks for special purposes. Along with
development of our next-generation hardware, we plan to
move from a polling communication protocol between the
host and co-processor to an interrupt-driven communica-
tion protocol. This approach will be facilitated by the new
hardware and will relieve both the host and co-processor

from supporting the busy-waiting kernel threads used in the
polling protocol.

6 Conclusions

We have described the implementation of a host-network
processor interface that relies upon the traditional socket
programming API. We implemented the interface in kernel
space using loadable Linux kernel modules. The selection
of the network protocol family fulfilled our design require-
ments for the host-network processor interface by provid-
ing a narrow point at which to terminate host processing.
This interface allows network processing to proceed on the
outboard platform with minimal synchronization overhead,
and allows the network processor to look like a simple de-
vice to the host operating system.

References

[1] COOPER, E. C., STEENKISTE, P. A., SANSOM,
R. D., AND ZILL, B. D. Protocol Implementation on
the Nectar Communication Processor. In Proceedings
of the SIGCOMM Symposium on Communications Ar-
chitectures and Protocols (1990), ACM, pp. 135–144.

[2] GALLATIN, A., CHASE, J., AND YOCUM, K.
Trapeze/IP: TCP/IP at near-gigabit speeds. In Proceed-
ings of the USENIX ’99 Technical Conference (June
1999), pp. 109–120.

[3] GUTLEBER, J., AND ORSINI, L. Architectural soft-
ware support for processing clusters. In Proceedings



of the IEEE Int’l Conference on Cluster Computing
(2000), pp. 153–161.

[4] HATASHITA, J., HARRIS, J., SMITH, H., AND NICO,
P. An evaluation architecture for a network copro-
cessor. In Proceedings of the 2002 IASTED Interna-
tional Conference on Parallel and Distributed Comput-
ing and Systems (PDCS) (November 2002).

[5] KAISERSWERTH, M. The Parallel Protocol Engine.
IEEE/ACM Transactions on Networking 1, 6 (1993),
650–663.

[6] KANAKIA, H., AND CHERITON, D. R. The VMP
network adapter board (NAB): High-performance net-
work communication for multiprocessors. In Proceed-
ings of Sigcomm-88 (1988), pp. 175–187.

[7] KLEINPASTE, K., STEENKISTE, P., AND ZILL, B.
Software support for outboard buffering and check-
summing. In Proceedings of the Conference on Ap-
plications, Technologies, Architectures, and Protocols
for Computer Communication (1995), pp. 87–98.

[8] STEVENS, R. W. UNIX Network Programming. Pren-
tice Hall, Englewood Cliffs, NJ, 1990.


