

ASYNCHRONOUS MATRIX FRAMEWORK

WITH PRIORITY-BASED PROCESSING

A Thesis

Presented to

the Faculty of

California Polytechnic State University, San Luis Obispo

In Partial Fulfillment

of the Requirements for the Degree

Master of Science in Computer Science

By

Jeremy Andrew Seeba

May 2007

ii

AUTHORIZATION FOR REPRODUCTION

OF MASTER’S THESIS

I grant permission for the reproduction of this thesis in its entirety or any of its parts,

without further authorization from me.

Signature

Date

iv

ABSTRACT

Asynchronous Matrix Framework with Priority-Based Processing

Jeremy Andrew Seeba

Complex computer graphics simulations rely on a large number of calculations

which can usually be represented through matrix operations. In a real-time simulation,

not all elements in a matrix calculation would need to be known synchronously as some

elements may be off screen at the time. This thesis investigates asynchronous

computation of matrix results and the impacts of the framework compared to a

synchronous design.

For the purpose of asynchronous execution, matrix operations can be seen as base

operators, such as multiply or add, combined with the operand matrices on either side of

the operator. Instead of performing the operation when it is first seen, the operator and

operands are stored, space is allocated for the results, and tasks necessary to complete

execution of the resulting matrix can be made. By setting up operations this way,

execution of operations are completely decoupled from the initial operation and different

execution strategies can be employed.

This paper looks at different strategies such as a just-in-time execution where

results are only computed when a matrix element is requested and multi-threaded

execution using both priority and non-priority based execution. Each thread can

implement actual execution in different ways such as on the CPU or on a GPU. The

flexibility of asynchronous matrices is weighed against the overhead needed to make this

system function.

v

Table of Contents

Page

List of Tables …………………………………………………………………… vi

List of Figures .…………………………………………………………………... vii

Chapter

1. Introduction …………………………………………………… 1

 1.1 Architecture …………………………………………… 5

2. Related Work …………………………………………………… 9

3. Implementation …………………………………………… 11

 3.1 Matrix Job …………………………………………… 14

 3.2 Job Priorities …………………………………………… 18

 3.3 Job Dependencies …………………………………… 20

 3.4 Multi-Threading …………………………………… 22

 3.5 Flexible Execution Engine …………………………… 24

4. Results …………………………………………………… 26

 4.1 Overhead …………………………………………… 27

 4.2 Operations ………………………………………….... 28

 4.3 GPU ………………………………………………….... 32

 4.4 Multi-Threading …………………………………… 34

 4.5 Partial Completion …………………………………… 36

5. Conclusion …………………………………………………… 38

6. Future Work …………………………………………………… 40

References …………………………………………………………………… 42

vi

Tables

Table

 Page

 1. Currently Supported Operations …………………………… 12

 2. A*B+C (seconds) …………………………………………… 29

 3. All operations performed on 10,000 x 10,000

 matrices (seconds) …………………………………… 31

 4. Multiplication scaling on 2,000 x 2,000

 matrices (seconds) …………………………………… 32

 5. Composite operations performed on 2,000 x

 2,000 matrices (seconds) …………………………… 33

 6. Composite operations performed on 1,000 x

 1,000 matrices (seconds) …………………………… 34

 7. A*B+C Effects of size on relative computation

 time (seconds) …………………………………… 34

 8. A*B+C GPU Execution (seconds) …………………………… 35

 9. A*B+C on 2,000 x 2,000 matrices using 3

 different platforms (seconds) …………………………… 37

 10. A*B+C on 2,000 x 2,000 matrices. Different

 completion percentages (seconds) …………………… 39

 11. A*B+C on 2,000 x 2,000 matrices. Elements

 complete after one second …………………………… 39

 12. A*B+C on 5,000 x 5,000 matrices. Different

 completion percentages (seconds) …………………… 40

vii

Figures

Figure

 Page

 1. Overall Architecture of Asynchronous

 Matrix Framework …………………………………… 5

 2. A job getting data from (#1) and (#2) to fill

 in an element of (#3) …………………………………… 16

 3. Job Repository stores and creates jobs …………………… 17

 4. Jobs related to the sections of the matrix

 they represent …………………………………………… 18

 5. Job Queue enforces priorities and gives a

 central location for threads to

 acquire new jobs …………………………………… 20

 6. Job dependencies allow for the specification

 of multiple operations before any

 data is computed …………………………………… 22

 7. General multi-threading execution path …………………… 24

 8. Job execution using CPU and GPU

 execution engines …………………………………… 26

1

CHAPTER 1

Introduction

Complex physical simulations rely on massive computations to complete each

simulation step. For a large number of simulations, the interactions between various

simulation elements and forces that link them together can be represented by matrices

and matrix operations, such as the visualization of smoke [8] or cloth simulation [4]. The

number of matrix elements scales with the geometric complexity of objects causing

significant slow down for large simulations. Real-time interaction is a desirable property

of many physical simulations (e.g. for computer games) and large matrix computations

are a challenge to keeping real-time interaction possible. This thesis investigates a

possible solution by allowing for only some of the matrix elements to be computed for a

given frame. We call this an asynchronous framework. This framework is justified by

the fact that real-time simulations may only need to compute the interactions for elements

that would be displayed on the screen for a given time frame, while other elements of the

model may be off screen for that frame. This means that the viewing space versus and

the simulation space is vastly different, with the viewing space likely being much

smaller. When working in a constrained viewing space where only a few elements of the

entire original simulation are used, there could be a number of elements in the simulation

that are not needed. Instead of rewriting a simulation to optimize for only the pertinent

elements, the matrix elements that are not needed can be delayed until after useful data is

collected and possibly never calculated if the simulation never displays those elements.

Likewise, this type of asynchronous framework allows for a de-coupling of rendering and

2

computing the next frame. In other words, for a given frame, the geometric/matrix

elements on screen can be computed and, while those elements are drawn, the rest of the

matrix elements can be updated. In traditional matrix frameworks this is not possible but

with an asynchronous matrix framework it is possible.

Before we discuss the project in more detail, please note that throughout this

paper upper-case, bold letters will be used to represent matrices. A traditional matrix

framework will be used to mean a synchronous, non-multithreaded framework. A

synchronous matrix calculates all of its elements when an operation is defined, as in A*B.

An asynchronous matrix calculates its elements at some point after the operation is

defined. So if C=A*B and C is an asynchronous matrix, C would store its operands as A

and B and store information they need to be multiplied together at a later time to

complete the elements of C. For most of this paper the example C=A*B, E=C+D will be

used where A, B, and D are assumed to have numerical data loaded directly into them.

While using synchronous matrices there are many different issues that are not

desirable. The first and possibly most obvious is that a matrix operation calculates all the

elements of the resulting matrix at the time the operation is called. The main reason this

is undesirable is because, if the operation is called in the main thread of execution, there

is no other work that can be done until after the computation is finished. This can be seen

in the following pseudo-code:

C=A*B

Get User Input **completely unrelated to C**

Update Screen **completely unrelated to C**

Even through getting user input and updating the screen are unrelated to the matrix

operation, both have to wait until the operation completes before the program would

3

become responsive again to a user. Another issue with synchronous execution is that no

individual elements are ready to be used until the entire matrix is ready. In other words,

even if element C0,0 is useful to determine what to do next in a program, it is not

available until all other matrix elements are also computed.

Even though there are some drawbacks to synchronous matrix execution, there are

some benefits which simplify bookkeeping and associated overhead that asynchronous

matrices incur. For example, a synchronous matrix does not have to track if a previous

matrix is finished before executing on the data in that matrix because synchronous

matrices must have all of its elements finished by the time it is available for use in other

matrix operations. Because of this, more complex algorithms can be applied without

checking whether certain sections of a matrix are finished. Another benefit is that the

amount of space that is necessary in a synchronous matrix is exactly the size of the

number of elements the matrix contains and does not need any additional bookkeeping

information like asynchronous matrices need. Complexity related to synchronization is

not present in a traditional matrix framework, though a multi-threaded synchronous

matrix framework would still need to some extra mechanisms to perform synchronization

such as locks.

Even with the reduced complexity and other benefits of a synchronous matrix

framework, we found that the overhead required for asynchronous matrices offers many

benefits. Specifically, our algorithm provides the ability to access 50% of a matrix’s

elements between 41% and 79% faster than a synchronized matrix framework. We

discuss these results and more later in section 4. One of the major requirements of the

asynchronous matrix framework we present is that it must represent matrices in a fashion

4

that is as similar as possible to how a synchronous matrix framework would while only

adding the necessary interfaces to account for difference in execution styles. Another

major requirement is to completely decouple the definition of a matrix via a matrix

operation, such as C=A*B, from the execution of any of the elements and decouple the

execution of elements from one another such that as an example C0,0 might not be

completed but C3,4 could be complete and there is no interdependence.

Our system is able to provide fast asynchronous matrix computation through the

use of multi-threading to allow for background processing and utilization of unused

resources. Because of this, some additional data structures and computation, such as

prioritizing what computation to do next, need to be added to our matrix framework

representation to help facilitate multithreading. In summary, the overall goal of this

project is to create a matrix framework that is:

• comparable in speed to a synchronous matrix

• quicker to give individual elements

• able to out perform comparable traditional matrix frameworks using multi-

threading.

Comparable speed to traditional matrix frameworks is achieved through limiting the

overhead that is associated with each element of the matrix compared to the total

computation required for that element. Individual elements are retrieved from an

asynchronous matrix much more quickly because computation is not dependent on any

other matrix elements and the matrix does not have to complete all the elements before

returning any elements like a synchronous matrix has to. Unless the overhead is too great

compared to the computation of matrix elements, multi-threading allows asynchronous

5

matrices to out perform traditional matrix frameworks because more computational

resources are available. Multi-threading allows for multiple jobs, which represent parts

of the matrix that need to be computed, to be executed at the same time as long as they do

not depend on any other jobs completing before they can execute.

1.1 Architecture

Figure 1: Overall Architecture of Asynchronous Matrix Framework

 The matrix framework is a structured to make the interfaces into the framework

very natural and minimize the amount of work that is necessary to set up the

asynchronous part of the system. In addition to providing natural interfaces, cross-

platform threading details are also handled by the framework. This framework has been

implemented and tested on Windows XP, Mac OS X 10.4.8, and Fedora Core 5.

Matrices and thread creation and deletion are the interfaces into the asynchronous

matrix framework while the rest of the architecture is internal to the framework. The

matrix operations that are currently defined by this framework are:

6

• matrix multiply

• matrix add and subtract

• matrix/scalar multiply and divide.

 In addition, a user can designate that a certain part of the matrix is a higher

priority than the other parts of the matrix. Apart from performing operations, getting data

out of the matrix, and setting priorities for different sections of the matrix, there are not

any additional interfaces for the matrices.

 One of the major components of our system architecture is that there is an easy

way to specify the number of threads that the matrix should create at runtime. Each

thread handles execution for a number of sections of the matrix computation, for

example, a row of a matrix addition. The basic execution path that the threads follow is

to get a section of the matrix that is not finished and execute that section. The details of

multi-threading are discussed further in section 3.4. In order to set up the threads

initially, the matrix framework is told how many threads to create and what execution

engines each thread will use. The execution engine handles the actual computation of

specific matrix operations. In this project, a standard CPU engine and a GPU engine

based off of the stream processing project BrookGPU [7] show how different execution

engines can be implemented. See Section 3.5 for more details. When the matrix

framework is no longer needed, a single call terminates all the threads and frees all the

used resources.

The central matrix data location is where all the shared matrix data is stored. A

central matrix data location is used because when an operation like C=A*B is performed,

the system decomposes this into the task where the data that is in A and B, at the moment

7

the instruction is run, should be multiplied together and stored in C. If the next step in

the program is to set A = B, C is still expected to be A*B, not B*B. Because of this, the

data is separated from the matrix containing it because the data in the matrix is not

guaranteed to be stable over the duration of the computation. Matrix data is the expected

numerical data that would be found in a synchronous matrix plus the addition of

Booleans which represent whether a particular element in the matrix is ready and the task

that was used to make this matrix. Matrix data is incrementally numbered when it is first

added to the central matrix data location so that it can be easily identified and referenced.

Matrix data is created once and referenced by any matrices or matrix tasks that use it.

A matrix task is stored by the matrix data and has the information about what

operation and operands were used to create a matrix. The operands are other matrix data

stored in the central matrix data location to ensure persistence of the data, or, in the case

of a scalar operation, the value representing the scalar. Using the C=A*B example again,

A’s data would be matrix data (#1) and B’s data would be matrix data (#2), so the matrix

task would be:

1) the operation: matrix multiply

2) the left operand: (#1)

3) the right operand: (#2)

Jobs are at the heart of the asynchronous matrix framework and can be

fundamentally thought of as the matrix task applied to a smaller section of the matrix. A

job can represent an element, row, or column of the resulting matrix and contains some

additional information as to its stage of execution and what other jobs it is dependent on

before executing in order to facilitate multi-threading. Using the C=A*B example again,

8

C’s data would be (#3), so a job that would finish row one and column one in (#3) would

perform a dot product between row one of A’s data, (#1), and column one of B’s data,

(#2). Without multi-threading, jobs could have only three stages of execution: not ready

to execute, ready to execute, and complete. However, because multi-threads are trying to

execute jobs simultaneously, the job needs another stage of execution to specify that it is

being executed to prevent multiple threads from trying to execute the same job.

Jobs are stored in a Job Repository so that there is a single creation point to co-

ordinate multiple threads trying to potentially get the same job and to allow jobs to be

referenced multiple times. This is useful when tracking dependencies such that if

C=A*B, where the elements of A are dependant on another computation, all the elements

in a row of C would reference the job for that row in A. As the job in A is completed, all

the elements in C would recognize that one of their dependencies was eliminated.

The Job Queue is a set of three queues and a stack used to enforce priorities and

dependencies. Priorities are enforced by putting jobs into the queues that correspond to

their priority and getting jobs out of the queues from the highest priority to the lowest

priority queue. Before a job is given to the execution engine it is moved to that thread’s

execution stack and all the dependencies of that job are moved on top of it in the stack.

By expanding out the dependencies of all jobs of the stack, the job at the top of the stack

will be executed before the jobs that are dependent on it lower down the stack. The

execution stack in the job queue is used if the main thread of execution requests an

element of a matrix and begins to process jobs in order to finish that element and each

thread has its own execution stack for when it acquires a job from one of the queues.

We detail the fundamental architecture and timings of the implementation in the

9

following sections. Overall, we found that, even with the added overhead required, this

asynchronous matrix framework met all of our project goals. The system performs

comparably to the synchronous system with a constant linear overhead that is dependent

on matrix size. The system allows access to individual or groups of matrix elements

before the entire matrix has been computed and much sooner than a synchronous system

would allow. Finally, the asynchronous system outperforms the synchronous matrix as

soon as two threads are used and increases performance by up to 70% using two threads

in our testing.

10

CHAPTER 2

Related Work

 While there are some asynchronous matrices already [15], these are talking about

hardware matrices that would require a new processor instead of a software framework

that runs on current microprocessors. In fact, there do not appear to be any matrix

frameworks that try to delay computation possibly indefinitely while tracking

dependencies. Many matrix frameworks take the approach of trying to structure

computations and memory accesses in order to try to reuse data that is likely to still be in

memory and take advantage of the hardware cache hierarchy [1][12] [13]. The recursive

blocking algorithm in [9] is similar in concept as jobs are structured recursively but

instead of recursion within a matrix the jobs span across multiple matrices and produce a

single result. The use of jobs to specify sub-jobs discussed at the end of Section 3.3 is

even more closely related to [9]. Another framework [5] attempted to optimize

performance of a matrix multiply using code that compilers can optimize well plus

having an automatically tuning block size.

 A collection of linear algebra subroutines that is implemented using matrix

operations is ScaLAPACK [6]. This package is a multi-threaded matrix framework that is

based off of LAPACK [3], which is a linear algebra library and is designed to be scalable

to distributed memory machines. This distributed memory is somewhat similar to GPU

computation as the memory space for the CPU and GPU are not shared. Similar issues

about communication and the amount of data that is moved from one memory space to

another are encountered because the asynchronous framework allows for execution to be

11

implemented on many different devices.

 The strategy pattern [10], which allows an algorithm to be encapsulated an a

object and allows algorithms to be interchangeable, is used to enable many different

implementations for execution including GPU execution. Performing matrix

computation on the GPU [11] exploits the huge amount of parallel resource that GPUs

contain. General purpose computing on the GPU was popularized when the Stanford

Graphics Lab released BrookGPU [7], which enabled computation to be specified

without knowing all the details of the graphics card. With the current generation of

GPUs, both NVIDIA with CUDA [14] and AMD/ATI with their stream processing

initiative [2] have put more native support for general purpose computing into their

graphics cards. Previously results for matrix computation on the GPU has been very

good but the difference in this paper is that computation is element independent meaning

that a single element could be computed without computing any other elements. This

could cause the GPU to no longer be a good fit with how the data is represented which is

discussed in Section 4.3.

12

CHAPTER 3

Implementation

Matrix

Operation

Multiply Addition Subtraction Scalar

Multiply

Scalar

Divide

Syntax A*B A+B A–B A*(scalar) A/(scalar)

Table 1: Currently Supported Operations

Using asynchronous matrices via the matrix framework hides almost all of the

differences between synchronous and asynchronous matrices from the user. The matrix

class is the outermost view of an asynchronous matrix and allows for simple operators

such as multiplication and addition to be defined in a clean way without having to

account for any asynchronous behavior. Matrix operators that are supported at this time

are shown in table 1 in addition to any chain of these operators that are meaningful. This

is shown in the following pseudo code snippet:

The only place where asynchronous operation causes a different interface for the

user is in the matrix framework being able to initialize a number of threads to perform

calculations and the ability to set a priority level for a single matrix element, row, or

column. The asynchronous framework extensions allow matrices to be executed in many

different ways such as executing an element only when it is asked for, executing elements

in the background if there are additional threads created, or if executing elements in a

different order than they were specified if they were set to a higher priority. Threads are

initialized in a similar fashion to the following pseudo code:

Matrix A(4,3), B(3,4), C(4,4), D(3,3); // 4x3, 3x4, 4x4, 3x3 Matrix

Matrix E = A * B; // results in a 4x4 matrix

Matrix F = B * A + D; // results in a 3x3 Matrix

Matrix G = A * B + C * A; // results in a 4x3 Matrix

Matrix H = A * B + D; // runtime error, can’t add 4x4 to 3x3

13

Matrices can only be created through being filled directly with numbers or

through operations between matrices. Asynchronous matrix operations can be executed

between any two compatible matrices that are either filled with data directly or represent

a previous matrix computation. A matrix operation is compatible if A and B have the

same number of rows and columns for matrix addition and subtraction and that A has the

same number of columns as B has rows for matrix multiplication. If two compatible

matrices A and B were defined, A*B would create an intermediary matrix that represents

A*B but would not perform any calculations yet. Because A and B could be assigned

different values at some later time, the data that is currently stored in A and B are stored

in a central location. The framework does not assume the data in the matrices to be

static. By using a shared location, asynchronous operation can be performed even when

the initial matrix does not persistently point to the same data throughout the calculation.

When the resulting matrix from A*B is created, storage for all the elements’ data

is created along with a Boolean for each element to denote whether or not each data

element is done. Depending on the compiler and optimizations for storing Booleans in an

array as little as 1-bit per Boolean overhead is required for this additional state

information. The worst case would require 32-bits per Boolean on a 32-bit system. In

addition to data storage and storage to determine if each element is complete, a matrix

task that specifies the operation and operands is created. For the example of A*B, this

would be a matrix multiply with operands of A’s data and B’s data. The final step in the

matrix creation process is the creation of a number of jobs that, if all completed, would

Matrix.initialize(2 CPU threads, 1 GPU thread);

14

fill in the data of the newly created matrix.

A matrix task is a data structure used by the framework to signify what operation

should be performed and points to the correct operands in the shared matrix location. A

task is the basic guide to creating jobs that will be able to calculate certain parts of the

new matrix. Based on the task, the location of dependent elements in previous matrices

is also determined. The task also is used when executing a job to tell the execution

engine what operation is being performed. For each given operation, a different action in

the execution engine is performed, such as with matrix multiply specifying that for an

element the dot product of a row and a column needs to happen or with a matrix/scalar

multiply that the element is multiplied by the scalar stored in the task.

Jobs are created that represent an element, row, or column which need some type

of matrix operation executed to complete a section of the matrix according to the matrix

task that is specified. When a matrix operation occurs, jobs are added into the job queue

and are executed either because of being a dependency of a different job or due to being

the next job out of the queue. Job dependencies are further explained in Section 3.3.

The only time that a matrix computation is not immediately able to execute is

when a matrix element is requested that has dependencies that are not yet complete. This

will occur only with chained matrix operations. If an element is ready, then the value can

be returned immediately and no delay is experienced. If an element is not ready, the job

repository is asked for a job that matches the section of the matrix that needs to be

completed. That job is then put onto the execution stack and its dependent jobs likewise

pushed on top of the stack. All the jobs on the execution stack are executed until the job

fills in the section of the matrix that was initially requested. When this job is complete,

15

the value is returned as it would be in any other matrix framework.

Job execution is handled by an execution engine. The execution engine handles

the actual computation of specific matrix operations. The execution engine is not tightly

coupled with the other aspects of the matrix framework, and many different

implementations are possible including a CPU and GPU engine for this project. As long

as the execution engine has an equivalent mathematical operation defined (such as

multiply), it will be able to execute that type of job. As newer technologies become

available other engines that might be better suited for execution of matrices can be

developed.

Overall, a job is the most vital building block of out asynchronous matrices

framework. This is due to the fact that jobs allow flexible asynchronous execution to

occur by providing a standard way to specify that a job is responsible for completing the

necessary computation for a certain part of the matrix. In order to enable flexible

execution, jobs provide a standard way of presenting data to an execution engine to

ensure that they can easily process the data coming in, which is explained further in

Section 3.5. Jobs are also responsible for returning values to the matrix data and marking

the Booleans that specify that elements are ready (i.e. completed).

16

3.1 Matrix Job

Figure 2: A job getting data from (#1) and (#2) to fill in an element of (#3).

A job defines a section of data that can be completed in a destination matrix if this

job is executed. A job contains:

• its status

• where the results of the job will be stored

• the rows and columns this job defines,

• and the jobs that it is dependent on to execute.

The status of a job can be various values based on where it is in the execution

process. The possible values are:

• not ready to execute,

• ready to execute,

• executing,

• and complete.

When a job is first created, it starts in the “not ready to execute” state. If a job is the next

17

in the queue or about to execute, it is queried to check if it is ready to execute. This, in

turn, causes the job to check its dependencies and if all of the dependent jobs are

complete, this job is ready to execute and transitions into the “ready to execute” state.

Dependent jobs are determined by figuring out what sections of operand matrices would

need to be completed to allow the current job to execute and adding jobs representing

those sections to the current job. This is further explained in Section 3.3.

When a job is passed to the execution engine to begin execution, the job is moved

into the executing state so that it is not given to multiple threads. After the job finishes

executing and returns the values to the matrix, the job is complete and all the data that is

defined by this job has been calculated and the associated Booleans are set for these

elements.

Figure 3: Job Repository stores and creates jobs.

Jobs specify what matrix data they will write into and what row and column they

represent. Jobs are identified in this paper as a tuple, a group of three numbers: the

matrix data to write to, the row, and the column denoted as (#, #, #). For example in

matrix data (#3), row 1, column 1 would correspond to Job (3, 1, 1). The job repository

18

is a data structure that uses a map with the previously specified tuple used as the key

which jobs are stored against. As stated earlier, the matrix data is numbered when it is

added to the central matrix data location, so matrix data (#3) would be the third matrix

specified. A job can also specify all rows or all columns, meaning that a column or row

can be represented with a single job which is denoted as: “–1”. Theoretically, the entire

matrix could be represented but this was never found to be useful in the test cases

explored in this thesis. Because jobs can be uniquely identified with their tuple data, jobs

are only created once and, if requested again, the same job will be used in every

applicable scenario. In other words, since matrix data (#3) represents a matrix multiply

between (#1) and (#2), Jobs (3, 1, 0), (3, 1, 1)… (3, 1, 5) would all depend on Job (1, 1, -

1) so it is created once by the job repository and used as a dependency by all the jobs in

row one of matrix data (#3). Reusing jobs is also useful to eliminate recalculation of

different parts of a matrix.

Figure 4: Jobs related to the sections of the matrix they represent.

Default jobs are created when each new matrix operation is defined. Creating

individual jobs for each matrix element when a matrix operation is specified is avoided

because this causes a large amount of overhead. This is due to the fact that a majority of

the jobs will not have to be created individually and will only be created if a single

19

element is requested. However, default jobs are created and grouped together by row in

order to minimize the job creation overhead while having jobs that would complete the

entire matrix if executed.

Jobs get data required for execution from the operand matrices based on what task

it is supposed to perform, such as matrix multiply. For example for Job (3, 1, 1), the

execution data that would be required is the first row of matrix data (#1) and the first

column of matrix data (#2). Based on the type of task and the section the job represents

in the destination matrix, the job determines what the operand data passed onto the

engine will be, whether scalar or an array of data. The job also specifies how much data

will be calculated, as in a row, column, or single element.

When the execution engine has completed the calculations, the results are passed

back to the job to write into the destination matrix. The data is set in the destination

matrix as well as marking that chunk of the matrix as complete. After this process is

finished, the job is complete and its status is updated.

In order to support asynchronous operations, a priority can be set to allow earlier

execution than default jobs that were added at the lowest priority, which is explained

further in the next section.

20

3.2 Job Priorities

Figure 5: Job Queue enforces priorities and gives a central location for threads to acquire new jobs.

Priorities are one of the only places where asynchronous matrices look different

from synchronous matrices. Different priority values correspond to the queues in the job

queue being Normal, High, and Requested. To set a priority, all that is needed is to select

a certain section of the matrix and specify what the new priority is. Priorities allow for

individual elements or specific sections of a matrix to be prioritized to execute sooner

than they would normally execute and thus they allow for asynchronous matrix

computation to work. When a priority on a matrix section is set, a corresponding job

from the job repository is created or requested. If the job is not already complete or

executing, it is moved to the start of the queue that corresponds to the given priority.

Therefore, if row 1 in a matrix was set to high priority, the job for row 1 would be put at

the end of the high priority queue.

Priorities are used to determine what jobs will execute next when a thread is ready

to execute another job. When a matrix element is requested, a job moves to the end of

the requested priority queue and quickly moves on to execution. Priorities are useful

when there are threads performing background computation of a matrix because if a

21

certain matrix element or section in a matrix is known to be needed sooner than the rest

of the matrix, it can be prioritized so that background threads can perform those jobs first

instead of blindly picking the earliest defined default jobs.

Jobs that are defined to be at the same priority level are executed in a first-in-first-

out order of operation. When a matrix operation is created, it in turn creates default jobs

that are needed to complete this computation and all the jobs are added to the normal

priority level queue. If another matrix, created after the first operation, also makes

default jobs, these would be executed after the first matrix unless priorities on those jobs

were changed.

Priorities also allow jobs that are moved to a higher priority to be grouped in a

different way than the default grouping which is by row. Jobs can be grouped as

individual elements, as a row, as a column, or as an entire matrix. This allows either

certain elements that would normally be grouped with many more elements to be

calculated individually or allows an entire row or column to be given higher priority.

 When a job of any priority, even the highest priority, is about to be executed, all

of the jobs that it is dependent on are expanded onto the execution stack above the job.

This only happens with chained operations as using fixed data there would be no

dependencies. In this sense, even though the other jobs might not have been explicitly set

to a certain priority level, they inherit the priority level of the job that needs them to

complete.

22

3.3 Job Dependencies

Figure 6: Job dependencies allow for the specification of multiple operations before any data is computed.

Dependencies are created based on matrix operands and the type of operation

specified. If both operands were loaded directly with numbers, there would never be a

case where the resulting matrix would be dependent on any parts of the previous

matrices. The job would still have dependencies but those dependent jobs would always

be complete. Instead of using only matrices that are loaded directly with numbers,

consider if the following two sequential matrix operations were specified in an operation

chain:

1) C=A*B

2) E=C+D

The data in C would not be computed when E is specified and therefore there is an

23

obvious dependence on the data of C to complete before data in E can finish. This

scenario is illustrated in figure 6.

The ability to create dependencies allows a matrix operation to be defined even

before the input matrices are complete. If this were not allowed, matrices that were used

as inputs would have to complete all of their computation before returning the matrix.

This would end up making it seem like all matrix operations are synchronous except for

the last operations that were performed, nullifying the point of asynchronous operation

and introducing the bookkeeping overhead for no good reason.

Dependencies are built into a job and basically specify what other jobs need to be

completed before this job can be executed. By arranging it in this manner, one job can be

dependent on another job that can in turn be dependent on other jobs. This allows a

dependence chain to be built and a series of tasks that need to be completed to make the

current job ready to execute. This also allows for the smallest amount of work needed to

ready a job for execution to be done and is one reason why a single element can be

obtained much faster than the calculations for a synchronous matrix. This is evident in

figure 6 because only a dot product between row 1 in (#1) and column 1 in (#2) and the

addition of that and element (1,1) in (#4) give the result for (5, 1, 1).

Dependencies are not created until a job is checked if it is ready to execute in

order to speed up matrix creation time and reduce overhead. When a matrix computation

is specified, there is no reason for the dependencies of each job in that matrix to be found

because the jobs may not need to be executed in their default state and could possibly

never be requested. Creating objects representing every possible dependency for a matrix

would be far slower than synchronously performing the matrix calculations and would be

24

a huge space overhead.

Dependencies can also be made in order to group elements together in a job. An

example of this is grouping the jobs that make up a row together. Instead of Job (3, 1, -1)

depending on Job (1, 1, -1) and Job (2, -1, -1), Job (3, 1, -1) can be dependent on Jobs (3,

1, 0), (3, 1, 1)…(3, 1, n) which are then dependent on the row in (#1) and the columns in

(#2). This is useful for grouping jobs from matrix operations such as a row of a matrix

multiply. Instead of being dependent on the entire previous matrix to execute, each

element in the row can execute as soon as the rows and columns that it depends on are

finished.

3.4 Multi-Threading

Figure 7: General multi-threading execution path

Multi-threading in this application allows for background processing of matrix

elements while the main program that uses this framework continues to execute

something else, for example rendering in a graphical program. The general multi-

threading strategy is to have a number of threads using the following execution path:

25

1. Check if there are any jobs that belong to this thread.

2. If not, try to get a job from the Job Queue.

3. If a job is acquired in steps 1 or 2, execute that job with the execution engine

associated with this thread.

4. Repeat until notified to terminate.

In order to enable multi-threading without race conditions, the code uses locks for

job creation, setting job dependencies, adding and removing jobs from the job queue, and

when creating shared storage for the matrices. If this were a completely single threaded

project, all locks could be removed to eliminate any extra overhead that they may create.

This is a simple use of multi-threading and allows for easy creation of multiple

computation threads to complete jobs based on the physical systems that are being used

and the requirements of the application. This simple multi-threading could be a big help

for an application that is using matrices as the main computational tool but is not

leveraging the extra computational resources on a multi-core/processor machine. While

this benefits people that have not employed multi-threading in their projects up to this

point in their applications, care needs to be taken that the number of threads does not

slow down the application’s other functions. When using this matrix framework, we

would suggest that a good number of threads to have running would equal to the number

of processing cores that are available or less. If the number of threads gets too large, the

threads will spend time contending with each other for resources instead of getting more

meaningful work done, which is explored in Section 4.4.

26

3.5 Flexible Execution Engine

Figure 8: Job execution using CPU and GPU execution engines

Multiple execution engines are possible because the data that is retrieved from a

job is always in a uniform format. The data has the matrix operation, which could be

matrix multiplication, addition, etc., and arrays of data or an array and a scalar depending

of the operation. By making the jobs convert execution data to a uniform format, the

execution portion of the matrix is decoupled from more intimate knowledge of the jobs

and allows for easier updates to include new operations and different strategies to be

implemented.

Currently basic CPU and GPU execution engines are implemented to show how

execution can be accomplished on two completely different processors and to measure

performance using different strategies. The CPU engine is written in plain C++ using

basic matrix algorithms without trying to add additional optimizations that could possibly

improve performance using architecture specific vector instructions such as SSE or other

27

instruction set extensions. The GPU engine is written using BrookGPU [7] as the

interface for general purpose computing on the GPU. In addition to the CPU and GPU

engines, others could be implemented to try to collect jobs that are adjacent and group

those jobs together or try to optimize other parts of the execution.

Future hardware that is optimized for stream processing, large dot products, and

other operations that could be useful for matrix calculations can be implemented very

easily. Any C++ class that implements the ExecutionEngine class, meaning it is capable

of executing a job, knowing how to interact with a job to retrieve the necessary data for

computation and returning completed results, could be an execution engine.

28

CHAPTER 4

Results

 Various matrix sizes, operations, and threading models have been tested using our

matrix framework in order to show:

• what overhead is inherent to the asynchronous design,

• how well matrix operations scale on multi-core systems,

• and different strengths and weaknesses of this framework.

Testing was performed on three different physical systems, using three different

operating systems. All single core testing was performed on a system running Windows

XP, dual core testing was performed on a system running Mac OS X 10.4.8, and quad

core testing was performed on a system running Fedora Core 5. Testing on these

different platforms shows that this framework is a portable solution for asynchronous

matrix processing. In order to simplify testing and be able to easily chain together any

number of operations, all matrices are square matrices. Non-square matrices have been

tested and are supported on this framework, but their timings are not included, because

the timings did not show any interesting differences and non-square matrices are more

difficult to string together in order to test longer operation sequences.

Three different types of execution are tested:

• Synchronous matrix execution: completes the entire matrix then returns. Used as

the baseline for comparisons for other execution types.

• Just-in-time execution: does not create any additional threads and only does work

when an element from the matrix is requested.

• Asynchronous execution: creates one or more threads to do work in the

29

background in addition to using the just-in-time idiom when an element is

requested.

Unless otherwise noted, all timings are in seconds and all matrix elements are computed.

The following results include asynchronous results for more than one thread to present

how this framework scales but direct comparisons should be drawn only between

synchronous and single threads.

4.1 Overhead

 In order to reveal the overhead introduced by moving from a synchronous

execution to an asynchronous model, synchronous, just-in-time, and asynchronous matrix

operations were all tested using one thread of execution with matrices of various sizes.

Size Synchronous Just In Time Asynchronous

 (1 thread)

1,000 x 1,000 3 5 5

2,000 x 2,000 20 29 31

5,000 x 5,000 303 375 374

Table 2: A*B+C (seconds)

Using one thread of execution, it is not surprising that there is an increase in overhead.

There are many different reasons why this overhead accumulates from the asynchronous

framework. The synchronous version does not have to keep any extra objects or other

data that is associated with completing parts of the matrix after the initial matrix

operations are defined. Some of the sources of overhead come from creating jobs and

tracking the dependencies between jobs in order to ensure asynchronous operation.

Another reason overhead is introduced is due to the corresponding array which keeps

track of what elements have been completed in the matrix data.

30

While the synchronous matrix scales almost exactly with the increase in area and

execution complexity, where a doubling in size should increase by eight times and an

increase of two and half should increase by 15.625, the asynchronous matrices scale

better moving to larger sizes. The overhead has less of an impact with the asynchronous

version increasing only 6.2 times when doubling and 12.1 times with a 2.5 increase. This

shows that the overhead is not completely dependent on the size of the matrix.

When comparing the just-in-time and the asynchronous, the differences in speed

are not due to object creation or bookkeeping because the same amount of work is being

done. Instead, context switches between the main thread and the asynchronous thread

and contention for execution resources introduces enough variability to explain the result.

Because the results are so similar and because the just-in-time solution is not scalable, the

rest of the testing is performed using synchronous and asynchronous matrices.

4.2 Operations

 The type of operation and size of matrices affects the time that an operation will

take to complete. Consider comparing a matrix multiply to a matrix addition, instead of

just a single addition per element, for a matrix multiply there are n multiplications and n-

1 additions where n is the inner matrix dimensions. Obviously, the multiplication is

much slower and testing was done to determine how much each operation contributes to

the overall execution time. Also examined were how well matrix operations scale when

strung together and the effects of different size matrices on how long matrix

computations take to execute.

31

4.2.1 Individual Operation Comparison

 Synchronous Asynchronous

 (1 thread) (2 threads)

Matrix Multiply 3586 3652 2101

Matrix Addition 4 6 6

Matrix Subtraction 4 6 6

Matrix Scalar

Multiplicaiton 0* 6 6

Matrix Scalar

Division 0* 6 6

Table 3: All operations performed on 10,000 x 10,000 matrices (seconds)

*operations took less than 1 second

Using significantly larger matrices allowed operations to be tested individually to

see how much time each type of operation takes. Until matrix sizes are well above 5,000,

performing a synchronous matrix addition, subtraction or any scalar-matrix operation

takes less then one second. In fact, a synchronous matrix performing a scalar-matrix

operation on a 10,000 x 10,000 matrix still finishes its operation in less than one second.

In terms of execution power differences in scalar-matrix and matrix operations, excluding

multiplication, the amount of computation is about the same between a single add,

subtract, multiply, or divide per element. Matrix multiplication on a matrix of this size

uses approximately 10,000 times as many multiplies and adds per element.

One might ask, if scalar-matrix and non-multiply matrix operations perform equal

amounts of arithmetic operations, why are the scalar-matrix operations so much faster on

the synchronous version? One possible explanation is that the matrix operations have to

work with twice the amount of data and pull that data into the processor before it can

32

perform its work. This could be one reason that the matrix multiply does not take a full

10,000 times longer to execute compared to the other matrix operations since parts of the

matrix are fresh in memory and do not have to be retrieved again. Our testing did not

account for any possible caching of matrix data elements between operations.

Asynchronous matrices have a fixed overhead, no matter which operation, as jobs

need to be made to ensure the matrix completes and need to check if certain parts of the

matrix are completed. This can be seen in the matrix-scalar operation compared to the

simple matrix operations as the times are all exactly the same. Because the majority of

the execution time for non-multiply operations in the asynchronous version is spent

fetching data to perform operations, adding additional threads does not help in those

cases and as seen above, slightly slows down computation as there is contention for

memory and synchronization objects in the program. The matrix multiply performed on

large matrices shows a very good speed up when more threads are allowed to execute as

opposed to the simpler operations.

4.2.2 Composite Operations (Matrix Multiplication Only)

 Synchronous Asynchronous

 (1 thread) (2 threads)

A*B 29 38 21

A*B*C 57 75 42

A*B*C*D 85 114 62

A*B*C*D*E 113 154 84

Average per Multiply 28.4 38.1 20.9

Table 4: Multiplication scaling on 2,000 x 2,000 matrices (seconds)

When chaining multiplication operations, our asynchronous framework always

performs faster then synchronous when using two threads. When performing multiple

33

operations on matrices there is a memory overhead and an execution overhead. When

stringing matrix multiplies together the typical amount of time for execution of a single

operation can be seen. Using a single thread of execution, it is always faster to complete

the entire matrix with the synchronous version. The matrix multiplications are not

dependent on the total number of operations that have been issued but only on the size

and for the asynchronous version, the amount of bookkeeping overhead and

synchronization that is happening. For 2,000 x 2,000 matrices, the amount of overhead

that is added to each operation is an additional 30% compared to the synchronous version

for matrix multiplies. Using two threads, if the threading was completely independent

and there were no additional overhead because of thread interaction, the total execution

time would drop to 66% of the synchronous time. Instead because of the interaction

between just two threads the total execution time is about 72% of the synchronous

version.

4.2.3 Composite Operations (Various Operands)

 Synchronous Asynchronous

 (1 thread) (2 threads)

A*B+C*D-E 57 76 42

Table 5: Composite operations performed on 2,000 x 2,000 matrices (seconds)

This test uses the same size matrices as before but adds in additional matrices being

added and subtracted. The additions and subtractions have no appreciable effect on the

total execution time compared to the same operation without those operations. We again

see that our asynchronous framework with two threads performs faster then the

synchronous. This is not entirely surprising as the number of additions is comparable to

the combined additions and multiplications in half of one row of a matrix multiplication.

34

This test also shows that creating the additional storage to house the intermediate

matrices and create jobs for additions and subtractions is trivial compared to matrix

multiplication.

4.2.4 Composite Operations, Smaller Matrices (Various Operands)

 Synchronous Asynchronous

 (1 thread) (2 threads)

A*B+C*D-E*F+G*H-I 14 26 14

Table 6: Composite operations performed on 1,000 x 1,000 matrices (seconds)

This test strings together many smaller matrices to see how size and number of matrices

affects the framework. Because of the overhead that the asynchronous matrices introduce

per job compared to the total amount of execution to be done to complete the matrix is

higher per element, the asynchronous matrices do not perform as well on smaller

matrices. Likewise the reverse is true; larger matrix operations have a lower amount of

overhead compared to computational work so they perform better relative to the

synchronous matrices. Threads can make up for some of the overhead when using

asynchronous matrices but with sufficiently small matrices the threads cannot make up

for the overhead.

4.2.5 Same Operation on Different Size Matrices

Size Synchronous Asynchronous

 (1 thread) (2 threads)

2,000 x 2,000 29 38 21

 100% 131% 72%

5,000 x 5,000 447 493 282

 100% 110% 63%

Table 7: A*B+C Effects of size on relative computation time (seconds)

As shown in the above table, when the size of the matrix is smaller, the percent of

35

execution that is overhead compared to actual work is larger. While with size 2,000 x

2,000 matrices the overhead is about 30% as mentioned before, size 5,000 x 5,000

matrices have an additional overhead of only 10%. This shows that larger matrices are

the ideal case for asynchronous matrices as the overhead is very negligible while with

very small matrices the overhead can climb to 100% or more extra work. Also of note is

that with all sizes, the increase in speed moving from one to two threads is between 55%

and 75% with smaller matrices seeing better scaling.

4.3 GPU

This matrix framework supports multiple execution strategies and to show how

this functionality works, a GPU execution strategy was implemented. Testing was done

to figure out how fast this form of execution is and what the drawbacks and benefits of

this approach are. This implementation was thought to be a good source of extra

execution units for computation as GPU accelerated matrices have shown good

performance improvements in the past.

Size

GPU Execution

(seconds)

GPU Memory

Reads

GPU Memory

Writes

500 x 500 51 501000 250500

1,000 x 1,000 218 2002000 1001000

2,000 x 2,000 1001 8004000 4002000

Table 8: A*B+C GPU Execution

As can be seen with the above numbers, GPU execution is far slower when used with this

framework instead of performing the computations on the CPU. The asynchronous

matrix framework’s main objective is to minimize the amount of work that is done at one

time to the point where matrix multiplies compute every element in the matrix

independently of all the other elements. This leads to a very poor fit for use with the

36

GPU at least in the current general purpose GPU climate. Because of how the matrices

are implemented and their general independence between elements, there ends up being a

very large number of GPU memory reads and writes which was tested in tuning suites to

be the source of the long execution times. Other frameworks are able to minimize the

number of GPU memory reads and writes because they can make assumptions that the

matrix will go through the entire execute before being returned and that all the matrices

that are being used as input are completed before being passed into another matrix

operation.

With the current execution strategy used in the asynchronous matrices, the basic

operations that are computed on the GPU spend far less time executing than loading data

into graphics memory. This can be seen in the comparison between the CPU and GPU

versions and how they scale with matrix size. The expectation is that if a resource is

being fully utilized by a matrix multiply then the execution time would be eight times as

much as a matrix of half the size seeing as there is a quadrupling of matrix elements and

doubling of execution per element. In the CPU versions, the scaling is in the expected

range increasing by about 8x but the GPU seems to scale fairly closely to the number of

elements and GPU memory operations. The additional increase makes sense as accessing

more memory and writing and reading larger sections of GPU memory would take a bit

longer.

In the future, if graphics cards can have an open path to and from main memory

instead of requiring dedicated GPU memory manipulation, the execution could benefit

from the additional computational resources. In the newer graphics cards, CUDA [14]

from nVidia and stream processing [2] from AMD/ATI could solve some of the problems

37

that currently limit this framework, though if these new execution paths that graphics

venders have recently opened rely on execution from GPU memory or other expensive

memory operations this framework will have to wait for different advances or change

from a completely asynchronous model per element to a block based system.

4.4 Multi-threading

This framework aims to be a simple solution to exploit hardware advances to

automatically increase the execution speed by utilizing all of the resources that are given

to the program. The framework allows the number of threads to be chosen at runtime so

a program can be tuned based on the system it is running on. Three different systems

with different numbers of processor cores performed the same operations with the

synchronous as a baseline and a number of threads created for the asynchronous version.

The single core version was executed on Windows XP, the dual core on Mac OS X

10.4.8, and the quad core was run on Fedora Core 5.

 Synchronous Asynchronous

 (1 thread) (2 threads) (4 threads) (8 threads)

single core 20 31 30 28 28

dual core 28 38 21 24 43

quad core 34 45 24 21 21

Table 9: A*B+C on 2,000 x 2,000 matrices using 3 different platforms (seconds)

The assumption before performing this test was that, when the number of threads of

execution matched the number of physical cores, the execution time would be the lowest

compared to all other possibly combinations. This was only the case on the dual core

system and the other systems managed to continue to decrease execution time for at least

double the number of threads compared to cores. Moving from one thread to two threads

38

on the dual and quad core machines decreases the total execution time compared to a

single thread to 55% on the dual core and 53% on the quad core and in both cases made

the execution time less than the synchronous version. For the quad core moving from

two to four threads increased the speed of execution by 3 seconds and lowered the total

execution time to 47% compared to one thread. This shows that synchronization starts to

play a large part in terms of how much speedup can be obtained with this framework in

its current state. In all multi-processor cases, when the asynchronous version is running

the same number of threads as physical cores, the asynchronous version is faster than the

synchronous version. Differences in physical hardware and operating system differences

account for the differing timings for the single-threaded versions.

It is interesting to note that both the Windows and Fedora systems allow for a

difference between the number of threads and the number of cores without any

immediate loss in execution speed. With the exact same underlying implementation, the

Macintosh saw an immediate and non-trivial increase in execution time as soon as the

number of threads exceeded the number of physical cores in the machine. Because of

this the ability to specify the number of threads at runtime could be critical on machines

that exhibit the same characteristics as the Macintosh.

4.5 Partial Completion

Up until this point of the testing the only way asynchronous matrices have been

able to compete is by using multiple threads, but being able to return results before the

matrix is fully complete or not calculating parts of the matrix are important features of

our system. Being able to process only part of a matrix and use the information in that

matrix to either start other paths of execution or decide that the rest of the matrix does not

39

need to be finished is only possible with our asynchronous matrix framework. Testing

was preformed with various amounts of the matrix requested and different numbers of

threads on the quad core system.

 Synchronous Asynchronous

 (1 thread) (2 threads) (4 threads) (8 threads)

% Complete

25 34 12 7 6 6

50 34 24 12 11 11

75 34 35 18 16 16

100 34 45 24 21 21

Table 10: A*B+C on 2,000 x 2,000 matrix. Different completion percentages. (seconds)

As seen in table 10, the time to retrieve even a single element from the synchronous

matrix is 34 seconds. The asynchronous matrices are able the retrieve close to 75% of

the matrix when using a single thread in about the same amount of time and are faster for

all amounts lower than that percentage or when using more threads. Using a single

asynchronous thread, pulling 50% of the matrix is completed 10 seconds faster and 25%

is 22 seconds faster than the synchronous version providing a 42% and 183% increase in

speed respectively. The amount of time to retrieve a certain number of elements is linear

compared to retrieving all of the elements showing there is not a penalty for retrieving a

small number of elements from the matrix compared to the entire matrix.

Asynchronous

(1 thread) (2 threads) (4 threads)

104000 218000 282000

Table 11: A*B+C on 2,000 x 2,000 matrix. Elements complete after one second

In just one second of execution, there are a number of elements that are ready and can be

used to start other tasks or make decisions. One possible use could be if all the elements

in the matrix need to be post processed and can be streamed to that other process as they

40

complete.

 Synchronous Asynchronous

 (1 thread) (2 threads) (4 threads) (8 threads)

%

Complete

25 1067 297 164 144 143

50 1067 595 325 284 284

75 1067 890 484 424 428

100 1067 1188 640 562 564

Table 12: A*B*C on 5,000 x 5,000 matrix. Different completion percentages. (seconds)

This larger matrix, performing two matrix multiplies shows how asynchronous matrices

have the advantage in every multi-threaded test and tests where 75% or less of the

elements are requested. When only 25% of the elements are requested and 4 threads are

used, the computation time takes only 13% of the time the synchronous matrix takes and

all before even a single element is available in the synchronous matrix. When comparing

synchronous to asynchronous with a single thread, pulling 90% or fewer matrix elements

would be as fast or faster using the asynchronous framework. Pulling 75% of the

elements only takes 83% compared to synchronous, pulling 50% takes 56% compared to

synchronous, and pulling 25% takes 28% compared to synchronous. This shows how

asynchronous matrices benefit even without multi-threading.

41

CHAPTER 5

Conclusion

Asynchronous matrices provide a framework that allows a very similar

representation to how synchronous matrices would be represented and therefore allows it

to be used with almost no additional knowledge on the user’s part. In order to support

prioritizing matrix elements, one additional function needed to be added though this is

only necessary to force certain matrix sections to be completed sooner than normal.

Asynchronous matrices allow for each individual element to be completed independently

from all the other elements in the matrix allowing for the sections of the matrix to be

completed while others have not been computed at all. Applied to a graphical simulation,

only the matrix elements necessary for a given frame of a simulation can be computed

quickly without waiting for the rest of the matrix elements to be done.

Multithreading is easily accomplished using this framework and can be set at

runtime to match the host machine’s capabilities. This allows using this framework to

take advantage of parallel execution and additional processing units using a very simple

programming model without the user needing to understand parallel programming.

Multithreading produced between a 33% to a 85% increase in speed moving from one to

two threads depending on matrix dimensions when there were two of more physical cores

but the current implementation does not scale as well moving from two to four threads as

it has too much high level synchronization, though this could be fixed using locking

based on the matrices involved or by making a single thread responsible for job

scheduling.

42

As matrix operations are performed on larger matrices, the execution time of the

asynchronous version becomes comparable to the synchronous version. With the largest

matrices tested the overhead of the asynchronous matrix was only 1.8% though with

smaller matrices tested the overhead could be up to 85% additional execution time.

When paired with multi-threading, the framework performed well on completing faster

than the synchronous version in most cases.

A clear win of our system is its ability to compute parts of the matrix as opposed

to the entire matrix. This system consistently returns 50% of the elements faster than the

synchronous framework while only using a single thread. In most cases, 75% or more of

the matrix elements can be computed faster than the synchronous framework depending

on matrix size. When it is known that a problem will only need a subset of the elements

in a matrix, the asynchronous framework provides a significant advantage over

synchronous matrices.

Overall, asynchronous matrices perform well on large matrices, are able to

leverage multithreading and different execution strategies as they come available, and

perform faster in cases where the entire matrix is not needed. With some additional

work, overhead could be reduced bringing the speed to a much more comparable level

without the need for threading and threading benefits could be extended even further in a

more linear manner.

43

CHAPTER 6

Future Work

One obvious extension to this work is to implement more execution strategies.

There are numerous different strategies that could be tried such as implementing

execution on a new device such as a physics card or changing how individual jobs were

handled by an execution engine. Different instruction set advances in future processors

could be useful such as a hardware optimized dot product. Another clear extension to

enhance the framework is to implement additional matrix operations such as inversion.

Grouping jobs that are similar in order to reduce memory access by lowering how

many times a set of numbers is iterated over could increase the total speed of the matrix

multiply. This could be accomplished by having a row and finding other columns that

are ready to execute and performing operations on all available data at the same time.

Another quick extension would be to store what operands and operations occurred so that

in the case where an operation like (A*B) happened in multiple places, the same end

matrix would be used in order to save processing where duplication is hidden or the

program was computing similar matrices in different areas.

In order to increase thread throughput and decrease locking contention, finer grain

locking of matrices and job storage locations could make the increase moving to more

threads closer to a linear increase.

 An additional extension that could be possible is to allow load sharing between

threads. Currently, once a thread acquires a job, it has to execute all of that job’s

dependencies. It should be possible to allow threads to acquire jobs from other threads so

44

that if there were no other jobs available in the main job queue, a thread would be able to

take a job from a thread that still had work to do.

Another possible and perhaps most promising direction is to set a minimum block

size and perform all operations using blocks of data rather than individual matrix

elements. While this means that there is not quite the same fine grain control over which

elements execute and which do not, this lowers the overhead in checking whether parts of

the matrix are ready, removes a good amount of the storage overhead, and reduces the

overall job overhead. If the block sizes correspond to a good GPU memory size for

graphics cards, the ability to use the GPU as a resource would be greatly enhanced as the

number of GPU memory operations would drop and the amount of work per section of

GPU memory would increase.

45

References

[1] Adams, M. D. and Wise, D. S. 2006. Seven at one stroke: results from a cache-

oblivious paradigm for scalable matrix algorithms. In Proceedings of the 2006

Workshop on Memory System Performance and Correctness (San Jose, California,

October 22 - 22, 2006). MSPC '06. ACM Press, New York, NY, 41-50.

[2] Advanced Micro Devices, Inc. “AMD Stream Computing.” 23 Apr. 2007

<http://ati.amd.com/technology/streamcomputing/index.html>.

[3] Anderson, E., Bai, Z., Dongarra, J., Greenbaum, A., McKenney, A., Du Croz, J.,

Hammarling, S., Demmel, J., Bischof, C., and Sorensen, D. 1990. LAPACK: a

portable linear algebra library for high-performance computers. In Proceedings of

the 1990 ACM/IEEE Conference on Supercomputing (New York, New York,

November 12 - 16, 1990). Conference on High Performance Networking and

Computing. IEEE Computer Society, Washington, DC, 2-11.

[4] Baraff, D. and Witkin, A. 1998. Large steps in cloth simulation. In Proceedings of

the 25th Annual Conference on Computer Graphics and interactive Techniques

SIGGRAPH '98. ACM Press, New York, NY, 43-54.

[5] Bilmes, J., Asanovic, K., Chin, C., and Demmel, J. 1997. Optimizing matrix

multiply using PHiPAC: a portable, high-performance, ANSI C coding

methodology. In Proceedings of the 11th international Conference on

Supercomputing (Vienna, Austria, July 07 - 11, 1997). ICS '97. ACM Press, New

York, NY, 340-347.

[6] Blackford, L. S., Choi, J., Cleary, A., D'Azeuedo, E., Demmel, J., Dhillon, I.,

Hammarling, S., Henry, G., Petitet, A., Stanley, K., Walker, D., and Whaley, R. C.

1997 ScaLAPACK User's Guide. Society for Industrial and Applied Mathematics.

[7] Buck, I., Foley, T., Horn, D., Sugerman, J., Fatahalian, K., Houston, M., and

Hanrahan, P. 2004. Brook for GPUs: stream computing on graphics hardware. In

ACM SIGGRAPH 2004 Papers (Los Angeles, California, August 08 - 12, 2004). J.

Marks, Ed. SIGGRAPH '04. ACM Press, New York, NY, 777-786.

[8] Fedkiw, R., Stam, J., and Jensen, H. W. 2001. Visual simulation of smoke. In

Proceedings of the 28th Annual Conference on Computer Graphics and interactive

Techniques SIGGRAPH '01. ACM Press, New York, NY, 15-22.

46

[9] Frens, J. D. and Wise, D. S. 1997. Auto-blocking matrix-multiplication or tracking

BLAS3 performance from source code. In Proceedings of the Sixth ACM SIGPLAN

Symposium on Principles and Practice of Parallel Programming (Las Vegas,

Nevada, United States, June 18 - 21, 1997). M. A. Berman, Ed. PPOPP '97. ACM

Press, New York, NY, 206-216.

[10] Gamma, E., Helm, R., Johnson, R., and Vlissides, J. 1995 Design Patterns:

Elements of Reusable Object-Oriented Software. Addison-Wesley Longman

Publishing Co., Inc.

[11] Krüger, J. and Westermann, R. 2003. Linear algebra operators for GPU

implementation of numerical algorithms. In ACM SIGGRAPH 2003 Papers (San

Diego, California, July 27 - 31, 2003). SIGGRAPH '03. ACM Press, New York,

NY, 908-916.

[12] Navarro, J. J., García-Diego, E., and Herrero, J. R. 1996. Data prefetching and

multilevel blocking for linear algebra operations. In Proceedings of the 10th

international Conference on Supercomputing (Philadelphia, Pennsylvania, United

States, May 25 - 28, 1996). ICS '96. ACM Press, New York, NY, 109-116.

[13] Navarro, J. J., Juan, T., and Lang, T. 1994. MOB forms: a class of multilevel block

algorithms for dense linear algebra operations. In Proceedings of the 8th

international Conference on Supercomputing (Manchester, England, July 11 - 15,

1994). ICS '94. ACM Press, New York, NY, 354-363.

[14] NVIDIA Corporation. “NVIDIA CUDA Homepage.” 17 Apr. 2007

<http://developer.nvidia.com/object/cuda.html>.

[15] Tugsinavisut, S., Hong, Y., Kim, D., Kim, K., and Beerel, P. A. 2005. Efficient

asynchronous bundled-data pipelines for DCT matrix-vector multiplication. IEEE

Trans. Very Large Scale Integr. Syst. 13, 4 (Apr. 2005), 448-461.

