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ABSTRACT 

 

Asynchronous Matrix Framework with Priority-Based Processing 

 

Jeremy Andrew Seeba 

 

 

 

Complex computer graphics simulations rely on a large number of calculations 

which can usually be represented through matrix operations.  In a real-time simulation, 

not all elements in a matrix calculation would need to be known synchronously as some 

elements may be off screen at the time.  This thesis investigates asynchronous 

computation of matrix results and the impacts of the framework compared to a 

synchronous design. 

For the purpose of asynchronous execution, matrix operations can be seen as base 

operators, such as multiply or add, combined with the operand matrices on either side of 

the operator.  Instead of performing the operation when it is first seen, the operator and 

operands are stored, space is allocated for the results, and tasks necessary to complete 

execution of the resulting matrix can be made.  By setting up operations this way, 

execution of operations are completely decoupled from the initial operation and different 

execution strategies can be employed. 

This paper looks at different strategies such as a just-in-time execution where 

results are only computed when a matrix element is requested and multi-threaded 

execution using both priority and non-priority based execution.  Each thread can 

implement actual execution in different ways such as on the CPU or on a GPU.  The 

flexibility of asynchronous matrices is weighed against the overhead needed to make this 

system function. 
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CHAPTER 1 

Introduction 

 

Complex physical simulations rely on massive computations to complete each 

simulation step.  For a large number of simulations, the interactions between various 

simulation elements and forces that link them together can be represented by matrices 

and matrix operations, such as the visualization of smoke [8] or cloth simulation [4].  The 

number of matrix elements scales with the geometric complexity of objects causing 

significant slow down for large simulations.  Real-time interaction is a desirable property 

of many physical simulations (e.g. for computer games) and large matrix computations 

are a challenge to keeping real-time interaction possible.  This thesis investigates a 

possible solution by allowing for only some of the matrix elements to be computed for a 

given frame.  We call this an asynchronous framework.  This framework is justified by 

the fact that real-time simulations may only need to compute the interactions for elements 

that would be displayed on the screen for a given time frame, while other elements of the 

model may be off screen for that frame.  This means that the viewing space versus and 

the simulation space is vastly different, with the viewing space likely being much 

smaller.  When working in a constrained viewing space where only a few elements of the 

entire original simulation are used, there could be a number of elements in the simulation 

that are not needed.  Instead of rewriting a simulation to optimize for only the pertinent 

elements, the matrix elements that are not needed can be delayed until after useful data is 

collected and possibly never calculated if the simulation never displays those elements. 

Likewise, this type of asynchronous framework allows for a de-coupling of rendering and 
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computing the next frame.  In other words, for a given frame, the geometric/matrix 

elements on screen can be computed and, while those elements are drawn, the rest of the 

matrix elements can be updated. In traditional matrix frameworks this is not possible but 

with an asynchronous matrix framework it is possible. 

Before we discuss the project in more detail, please note that throughout this 

paper upper-case, bold letters will be used to represent matrices.  A traditional matrix 

framework will be used to mean a synchronous, non-multithreaded framework.  A 

synchronous matrix calculates all of its elements when an operation is defined, as in A*B.  

An asynchronous matrix calculates its elements at some point after the operation is 

defined.  So if C=A*B and C is an asynchronous matrix, C would store its operands as A 

and B and store information they need to be multiplied together at a later time to 

complete the elements of C.  For most of this paper the example C=A*B, E=C+D will be 

used where A, B, and D are assumed to have numerical data loaded directly into them. 

While using synchronous matrices there are many different issues that are not 

desirable.  The first and possibly most obvious is that a matrix operation calculates all the 

elements of the resulting matrix at the time the operation is called.  The main reason this 

is undesirable is because, if the operation is called in the main thread of execution, there 

is no other work that can be done until after the computation is finished. This can be seen 

in the following pseudo-code: 

C=A*B 

Get User Input  **completely unrelated to C** 

Update Screen  **completely unrelated to C** 

 

Even through getting user input and updating the screen are unrelated to the matrix 

operation, both have to wait until the operation completes before the program would 
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become responsive again to a user.  Another issue with synchronous execution is that no 

individual elements are ready to be used until the entire matrix is ready.  In other words, 

even if element C0,0 is useful to determine what to do next in a program, it is not 

available until all other matrix elements are also computed. 

Even though there are some drawbacks to synchronous matrix execution, there are 

some benefits which simplify bookkeeping and associated overhead that asynchronous 

matrices incur.  For example, a synchronous matrix does not have to track if a previous 

matrix is finished before executing on the data in that matrix because synchronous 

matrices must have all of its elements finished by the time it is available for use in other 

matrix operations.  Because of this, more complex algorithms can be applied without 

checking whether certain sections of a matrix are finished.  Another benefit is that the 

amount of space that is necessary in a synchronous matrix is exactly the size of the 

number of elements the matrix contains and does not need any additional bookkeeping 

information like asynchronous matrices need.  Complexity related to synchronization is 

not present in a traditional matrix framework, though a multi-threaded synchronous 

matrix framework would still need to some extra mechanisms to perform synchronization 

such as locks. 

Even with the reduced complexity and other benefits of a synchronous matrix 

framework, we found that the overhead required for asynchronous matrices offers many 

benefits.  Specifically, our algorithm provides the ability to access 50% of a matrix’s 

elements between 41% and 79% faster than a synchronized matrix framework.  We 

discuss these results and more later in section 4.  One of the major requirements of the 

asynchronous matrix framework we present is that it must represent matrices in a fashion 
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that is as similar as possible to how a synchronous matrix framework would while only 

adding the necessary interfaces to account for difference in execution styles.  Another 

major requirement is to completely decouple the definition of a matrix via a matrix 

operation, such as C=A*B, from the execution of any of the elements and decouple the 

execution of elements from one another such that as an example C0,0 might not be 

completed but C3,4 could be complete and there is no interdependence. 

Our system is able to provide fast asynchronous matrix computation through the 

use of multi-threading to allow for background processing and utilization of unused 

resources.  Because of this, some additional data structures and computation, such as 

prioritizing what computation to do next, need to be added to our matrix framework 

representation to help facilitate multithreading.  In summary, the overall goal of this 

project is to create a matrix framework that is: 

• comparable in speed to a synchronous matrix 

• quicker to give individual elements  

• able to out perform comparable traditional matrix frameworks using multi-

threading. 

Comparable speed to traditional matrix frameworks is achieved through limiting the 

overhead that is associated with each element of the matrix compared to the total 

computation required for that element.  Individual elements are retrieved from an 

asynchronous matrix much more quickly because computation is not dependent on any 

other matrix elements and the matrix does not have to complete all the elements before 

returning any elements like a synchronous matrix has to.  Unless the overhead is too great 

compared to the computation of matrix elements, multi-threading allows asynchronous 
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matrices to out perform traditional matrix frameworks because more computational 

resources are available.  Multi-threading allows for multiple jobs, which represent parts 

of the matrix that need to be computed, to be executed at the same time as long as they do 

not depend on any other jobs completing before they can execute. 

1.1 Architecture 

 

Figure 1: Overall Architecture of Asynchronous Matrix Framework 

 

 The matrix framework is a structured to make the interfaces into the framework 

very natural and minimize the amount of work that is necessary to set up the 

asynchronous part of the system.  In addition to providing natural interfaces, cross-

platform threading details are also handled by the framework.  This framework has been 

implemented and tested on Windows XP, Mac OS X 10.4.8, and Fedora Core 5. 

Matrices and thread creation and deletion are the interfaces into the asynchronous 

matrix framework while the rest of the architecture is internal to the framework.  The 

matrix operations that are currently defined by this framework are: 
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• matrix multiply 

• matrix add and subtract 

• matrix/scalar multiply and divide.   

 In addition, a user can designate that a certain part of the matrix is a higher 

priority than the other parts of the matrix.  Apart from performing operations, getting data 

out of the matrix, and setting priorities for different sections of the matrix, there are not 

any additional interfaces for the matrices.   

 One of the major components of our system architecture is that there is an easy 

way to specify the number of threads that the matrix should create at runtime.  Each 

thread handles execution for a number of sections of the matrix computation, for 

example, a row of a matrix addition.  The basic execution path that the threads follow is 

to get a section of the matrix that is not finished and execute that section.  The details of 

multi-threading are discussed further in section 3.4.  In order to set up the threads 

initially, the matrix framework is told how many threads to create and what execution 

engines each thread will use.  The execution engine handles the actual computation of 

specific matrix operations.  In this project, a standard CPU engine and a GPU engine 

based off of the stream processing project BrookGPU [7] show how different execution 

engines can be implemented.  See Section 3.5 for more details.  When the matrix 

framework is no longer needed, a single call terminates all the threads and frees all the 

used resources. 

The central matrix data location is where all the shared matrix data is stored.  A 

central matrix data location is used because when an operation like C=A*B is performed, 

the system decomposes this into the task where the data that is in A and B, at the moment 
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the instruction is run, should be multiplied together and stored in C.  If the next step in 

the program is to set A = B, C is still expected to be A*B, not B*B.  Because of this, the 

data is separated from the matrix containing it because the data in the matrix is not 

guaranteed to be stable over the duration of the computation.  Matrix data is the expected 

numerical data that would be found in a synchronous matrix plus the addition of 

Booleans which represent whether a particular element in the matrix is ready and the task 

that was used to make this matrix.  Matrix data is incrementally numbered when it is first 

added to the central matrix data location so that it can be easily identified and referenced.  

Matrix data is created once and referenced by any matrices or matrix tasks that use it. 

A matrix task is stored by the matrix data and has the information about what 

operation and operands were used to create a matrix.  The operands are other matrix data 

stored in the central matrix data location to ensure persistence of the data, or, in the case 

of a scalar operation, the value representing the scalar.  Using the C=A*B example again, 

A’s data would be matrix data (#1) and B’s data would be matrix data (#2), so the matrix 

task would be: 

1) the operation: matrix multiply 

2) the left operand: (#1) 

3) the right operand: (#2) 

Jobs are at the heart of the asynchronous matrix framework and can be 

fundamentally thought of as the matrix task applied to a smaller section of the matrix.  A 

job can represent an element, row, or column of the resulting matrix and contains some 

additional information as to its stage of execution and what other jobs it is dependent on 

before executing in order to facilitate multi-threading.  Using the C=A*B example again, 
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C’s data would be (#3), so a job that would finish row one and column one in (#3) would 

perform a dot product between row one of A’s data, (#1), and column one of B’s data, 

(#2).  Without multi-threading, jobs could have only three stages of execution: not ready 

to execute, ready to execute, and complete.  However, because multi-threads are trying to 

execute jobs simultaneously, the job needs another stage of execution to specify that it is 

being executed to prevent multiple threads from trying to execute the same job. 

Jobs are stored in a Job Repository so that there is a single creation point to co-

ordinate multiple threads trying to potentially get the same job and to allow jobs to be 

referenced multiple times.  This is useful when tracking dependencies such that if 

C=A*B, where the elements of A are dependant on another computation, all the elements 

in a row of C would reference the job for that row in A.  As the job in A is completed, all 

the elements in C would recognize that one of their dependencies was eliminated. 

The Job Queue is a set of three queues and a stack used to enforce priorities and 

dependencies.  Priorities are enforced by putting jobs into the queues that correspond to 

their priority and getting jobs out of the queues from the highest priority to the lowest 

priority queue.  Before a job is given to the execution engine it is moved to that thread’s 

execution stack and all the dependencies of that job are moved on top of it in the stack.  

By expanding out the dependencies of all jobs of the stack, the job at the top of the stack 

will be executed before the jobs that are dependent on it lower down the stack.  The 

execution stack in the job queue is used if the main thread of execution requests an 

element of a matrix and begins to process jobs in order to finish that element and each 

thread has its own execution stack for when it acquires a job from one of the queues. 

We detail the fundamental architecture and timings of the implementation in the 
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following sections.  Overall, we found that, even with the added overhead required, this 

asynchronous matrix framework met all of our project goals.  The system performs 

comparably to the synchronous system with a constant linear overhead that is dependent 

on matrix size.  The system allows access to individual or groups of matrix elements 

before the entire matrix has been computed and much sooner than a synchronous system 

would allow.  Finally, the asynchronous system outperforms the synchronous matrix as 

soon as two threads are used and increases performance by up to 70% using two threads 

in our testing. 
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CHAPTER 2 

Related Work 

 

 While there are some asynchronous matrices already [15], these are talking about 

hardware matrices that would require a new processor instead of a software framework 

that runs on current microprocessors.  In fact, there do not appear to be any matrix 

frameworks that try to delay computation possibly indefinitely while tracking 

dependencies.  Many matrix frameworks take the approach of trying to structure 

computations and memory accesses in order to try to reuse data that is likely to still be in 

memory and take advantage of the hardware cache hierarchy [1][12] [13].  The recursive 

blocking algorithm in [9] is similar in concept as jobs are structured recursively but 

instead of recursion within a matrix the jobs span across multiple matrices and produce a 

single result.  The use of jobs to specify sub-jobs discussed at the end of Section 3.3 is 

even more closely related to [9].  Another framework [5] attempted to optimize 

performance of a matrix multiply using code that compilers can optimize well plus 

having an automatically tuning block size. 

 A collection of linear algebra subroutines that is implemented using matrix 

operations is ScaLAPACK [6]. This package is a multi-threaded matrix framework that is 

based off of LAPACK [3], which is a linear algebra library and is designed to be scalable 

to distributed memory machines.  This distributed memory is somewhat similar to GPU 

computation as the memory space for the CPU and GPU are not shared.  Similar issues 

about communication and the amount of data that is moved from one memory space to 

another are encountered because the asynchronous framework allows for execution to be 
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implemented on many different devices. 

 The strategy pattern [10], which allows an algorithm to be encapsulated an a 

object and allows algorithms to be interchangeable, is used to enable many different 

implementations for execution including GPU execution.  Performing matrix 

computation on the GPU [11] exploits the huge amount of parallel resource that GPUs 

contain.  General purpose computing on the GPU was popularized when the Stanford 

Graphics Lab released BrookGPU [7], which enabled computation to be specified 

without knowing all the details of the graphics card.  With the current generation of 

GPUs, both NVIDIA with CUDA [14] and AMD/ATI with their stream processing 

initiative [2] have put more native support for general purpose computing into their 

graphics cards.  Previously results for matrix computation on the GPU has been very 

good but the difference in this paper is that computation is element independent meaning 

that a single element could be computed without computing any other elements.  This 

could cause the GPU to no longer be a good fit with how the data is represented which is 

discussed in Section 4.3. 
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CHAPTER 3 

Implementation 

 

Matrix 

Operation 

Multiply Addition Subtraction Scalar 

Multiply 

Scalar 

Divide 

Syntax A*B A+B A–B A*(scalar) A/(scalar) 

Table 1: Currently Supported Operations 

Using asynchronous matrices via the matrix framework hides almost all of the 

differences between synchronous and asynchronous matrices from the user.  The matrix 

class is the outermost view of an asynchronous matrix and allows for simple operators 

such as multiplication and addition to be defined in a clean way without having to 

account for any asynchronous behavior.  Matrix operators that are supported at this time 

are shown in table 1 in addition to any chain of these operators that are meaningful. This 

is shown in the following pseudo code snippet: 

 

 

 

 

 

 

The only place where asynchronous operation causes a different interface for the 

user is in the matrix framework being able to initialize a number of threads to perform 

calculations and the ability to set a priority level for a single matrix element, row, or 

column.  The asynchronous framework extensions allow matrices to be executed in many 

different ways such as executing an element only when it is asked for, executing elements 

in the background if there are additional threads created, or if executing elements in a 

different order than they were specified if they were set to a higher priority.  Threads are 

initialized in a similar fashion to the following pseudo code: 

Matrix A(4,3), B(3,4), C(4,4), D(3,3); // 4x3, 3x4, 4x4, 3x3 Matrix  

Matrix E = A * B;   // results in a 4x4 matrix 

Matrix F = B * A + D;   // results in a 3x3 Matrix 

Matrix G = A * B + C * A; // results in a 4x3 Matrix 

Matrix H = A * B + D;  // runtime error, can’t add 4x4 to 3x3 
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Matrices can only be created through being filled directly with numbers or 

through operations between matrices.  Asynchronous matrix operations can be executed 

between any two compatible matrices that are either filled with data directly or represent 

a previous matrix computation.  A matrix operation is compatible if A and B have the 

same number of rows and columns for matrix addition and subtraction and that A has the 

same number of columns as B has rows for matrix multiplication.  If two compatible 

matrices A and B were defined, A*B would create an intermediary matrix that represents 

A*B but would not perform any calculations yet.  Because A and B could be assigned 

different values at some later time, the data that is currently stored in A and B are stored 

in a central location.  The framework does not assume the data in the matrices to be 

static.  By using a shared location, asynchronous operation can be performed even when 

the initial matrix does not persistently point to the same data throughout the calculation. 

When the resulting matrix from A*B is created, storage for all the elements’ data 

is created along with a Boolean for each element to denote whether or not each data 

element is done.  Depending on the compiler and optimizations for storing Booleans in an 

array as little as 1-bit per Boolean overhead is required for this additional state 

information.  The worst case would require 32-bits per Boolean on a 32-bit system.  In 

addition to data storage and storage to determine if each element is complete, a matrix 

task that specifies the operation and operands is created.  For the example of A*B, this 

would be a matrix multiply with operands of A’s data and B’s data.  The final step in the 

matrix creation process is the creation of a number of jobs that, if all completed, would 

Matrix.initialize( 2 CPU threads, 1 GPU thread ); 
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fill in the data of the newly created matrix. 

A matrix task is a data structure used by the framework to signify what operation 

should be performed and points to the correct operands in the shared matrix location.  A 

task is the basic guide to creating jobs that will be able to calculate certain parts of the 

new matrix.  Based on the task, the location of dependent elements in previous matrices 

is also determined.  The task also is used when executing a job to tell the execution 

engine what operation is being performed.  For each given operation, a different action in 

the execution engine is performed, such as with matrix multiply specifying that for an 

element the dot product of a row and a column needs to happen or with a matrix/scalar 

multiply that the element is multiplied by the scalar stored in the task. 

Jobs are created that represent an element, row, or column which need some type 

of matrix operation executed to complete a section of the matrix according to the matrix 

task that is specified.  When a matrix operation occurs, jobs are added into the job queue 

and are executed either because of being a dependency of a different job or due to being 

the next job out of the queue.  Job dependencies are further explained in Section 3.3. 

The only time that a matrix computation is not immediately able to execute is 

when a matrix element is requested that has dependencies that are not yet complete.  This 

will occur only with chained matrix operations.  If an element is ready, then the value can 

be returned immediately and no delay is experienced.  If an element is not ready, the job 

repository is asked for a job that matches the section of the matrix that needs to be 

completed.  That job is then put onto the execution stack and its dependent jobs likewise 

pushed on top of the stack.  All the jobs on the execution stack are executed until the job 

fills in the section of the matrix that was initially requested.  When this job is complete, 
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the value is returned as it would be in any other matrix framework. 

Job execution is handled by an execution engine.  The execution engine handles 

the actual computation of specific matrix operations.  The execution engine is not tightly 

coupled with the other aspects of the matrix framework, and many different 

implementations are possible including a CPU and GPU engine for this project.  As long 

as the execution engine has an equivalent mathematical operation defined (such as 

multiply), it will be able to execute that type of job.  As newer technologies become 

available other engines that might be better suited for execution of matrices can be 

developed.  

Overall, a job is the most vital building block of out asynchronous matrices 

framework.  This is due to the fact that jobs allow flexible asynchronous execution to 

occur by providing a standard way to specify that a job is responsible for completing the 

necessary computation for a certain part of the matrix.  In order to enable flexible 

execution, jobs provide a standard way of presenting data to an execution engine to 

ensure that they can easily process the data coming in, which is explained further in 

Section 3.5.  Jobs are also responsible for returning values to the matrix data and marking 

the Booleans that specify that elements are ready (i.e. completed). 
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3.1 Matrix Job 

 

Figure 2: A job getting data from (#1) and (#2) to fill in an element of (#3). 

A job defines a section of data that can be completed in a destination matrix if this 

job is executed.  A job contains: 

• its status 

• where the results of the job will be stored 

• the rows and columns this job defines,  

• and the jobs that it is dependent on to execute.   

The status of a job can be various values based on where it is in the execution 

process.  The possible values are: 

• not ready to execute,  

• ready to execute,  

• executing,  

• and complete.   

When a job is first created, it starts in the “not ready to execute” state.  If a job is the next 
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in the queue or about to execute, it is queried to check if it is ready to execute.  This, in 

turn, causes the job to check its dependencies and if all of the dependent jobs are 

complete, this job is ready to execute and transitions into the “ready to execute” state.  

Dependent jobs are determined by figuring out what sections of operand matrices would 

need to be completed to allow the current job to execute and adding jobs representing 

those sections to the current job.  This is further explained in Section 3.3.  

When a job is passed to the execution engine to begin execution, the job is moved 

into the executing state so that it is not given to multiple threads.  After the job finishes 

executing and returns the values to the matrix, the job is complete and all the data that is 

defined by this job has been calculated and the associated Booleans are set for these 

elements. 

 

Figure 3: Job Repository stores and creates jobs. 

 

Jobs specify what matrix data they will write into and what row and column they 

represent.  Jobs are identified in this paper as a tuple, a group of three numbers: the 

matrix data to write to, the row, and the column denoted as (#, #, #).  For example in 

matrix data (#3), row 1, column 1 would correspond to Job (3, 1, 1).  The job repository 
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is a data structure that uses a map with the previously specified tuple used as the key 

which jobs are stored against.  As stated earlier, the matrix data is numbered when it is 

added to the central matrix data location, so matrix data (#3) would be the third matrix 

specified.  A job can also specify all rows or all columns, meaning that a column or row 

can be represented with a single job which is denoted as: “–1”.  Theoretically, the entire 

matrix could be represented but this was never found to be useful in the test cases 

explored in this thesis.  Because jobs can be uniquely identified with their tuple data, jobs 

are only created once and, if requested again, the same job will be used in every 

applicable scenario.  In other words, since matrix data (#3) represents a matrix multiply 

between (#1) and (#2), Jobs (3, 1, 0), (3, 1, 1)… (3, 1, 5) would all depend on Job (1, 1, -

1) so it is created once by the job repository and used as a dependency by all the jobs in 

row one of matrix data (#3).  Reusing jobs is also useful to eliminate recalculation of 

different parts of a matrix. 

 

Figure 4: Jobs related to the sections of the matrix they represent. 

Default jobs are created when each new matrix operation is defined.  Creating 

individual jobs for each matrix element when a matrix operation is specified is avoided 

because this causes a large amount of overhead.  This is due to the fact that a majority of 

the jobs will not have to be created individually and will only be created if a single 
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element is requested.  However, default jobs are created and grouped together by row in 

order to minimize the job creation overhead while having jobs that would complete the 

entire matrix if executed. 

Jobs get data required for execution from the operand matrices based on what task 

it is supposed to perform, such as matrix multiply.  For example for Job (3, 1, 1), the 

execution data that would be required is the first row of matrix data (#1) and the first 

column of matrix data (#2).  Based on the type of task and the section the job represents 

in the destination matrix, the job determines what the operand data passed onto the 

engine will be, whether scalar or an array of data.  The job also specifies how much data 

will be calculated, as in a row, column, or single element. 

When the execution engine has completed the calculations, the results are passed 

back to the job to write into the destination matrix.  The data is set in the destination 

matrix as well as marking that chunk of the matrix as complete.  After this process is 

finished, the job is complete and its status is updated. 

In order to support asynchronous operations, a priority can be set to allow earlier 

execution than default jobs that were added at the lowest priority, which is explained 

further in the next section. 

 

 

 

 

 

 



 

20 

3.2 Job Priorities 

 

Figure 5: Job Queue enforces priorities and gives a central location for threads to acquire new jobs. 

 

Priorities are one of the only places where asynchronous matrices look different 

from synchronous matrices.  Different priority values correspond to the queues in the job 

queue being Normal, High, and Requested.  To set a priority, all that is needed is to select 

a certain section of the matrix and specify what the new priority is.  Priorities allow for 

individual elements or specific sections of a matrix to be prioritized to execute sooner 

than they would normally execute and thus they allow for asynchronous matrix 

computation to work.  When a priority on a matrix section is set, a corresponding job 

from the job repository is created or requested.  If the job is not already complete or 

executing, it is moved to the start of the queue that corresponds to the given priority.  

Therefore, if row 1 in a matrix was set to high priority, the job for row 1 would be put at 

the end of the high priority queue. 

Priorities are used to determine what jobs will execute next when a thread is ready 

to execute another job.  When a matrix element is requested, a job moves to the end of 

the requested priority queue and quickly moves on to execution.  Priorities are useful 

when there are threads performing background computation of a matrix because if a 
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certain matrix element or section in a matrix is known to be needed sooner than the rest 

of the matrix, it can be prioritized so that background threads can perform those jobs first 

instead of blindly picking the earliest defined default jobs. 

Jobs that are defined to be at the same priority level are executed in a first-in-first-

out order of operation.  When a matrix operation is created, it in turn creates default jobs 

that are needed to complete this computation and all the jobs are added to the normal 

priority level queue.  If another matrix, created after the first operation, also makes 

default jobs, these would be executed after the first matrix unless priorities on those jobs 

were changed. 

Priorities also allow jobs that are moved to a higher priority to be grouped in a 

different way than the default grouping which is by row.  Jobs can be grouped as 

individual elements, as a row, as a column, or as an entire matrix.  This allows either 

certain elements that would normally be grouped with many more elements to be 

calculated individually or allows an entire row or column to be given higher priority. 

 When a job of any priority, even the highest priority, is about to be executed, all 

of the jobs that it is dependent on are expanded onto the execution stack above the job.  

This only happens with chained operations as using fixed data there would be no 

dependencies.  In this sense, even though the other jobs might not have been explicitly set 

to a certain priority level, they inherit the priority level of the job that needs them to 

complete. 
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3.3 Job Dependencies 

 

Figure 6: Job dependencies allow for the specification of multiple operations before any data is computed. 

 

Dependencies are created based on matrix operands and the type of operation 

specified.  If both operands were loaded directly with numbers, there would never be a 

case where the resulting matrix would be dependent on any parts of the previous 

matrices.  The job would still have dependencies but those dependent jobs would always 

be complete.  Instead of using only matrices that are loaded directly with numbers, 

consider if the following two sequential matrix operations were specified in an operation 

chain: 

1) C=A*B  

2) E=C+D 

The data in C would not be computed when E is specified and therefore there is an 
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obvious dependence on the data of C to complete before data in E can finish.  This 

scenario is illustrated in figure 6. 

The ability to create dependencies allows a matrix operation to be defined even 

before the input matrices are complete.  If this were not allowed, matrices that were used 

as inputs would have to complete all of their computation before returning the matrix.  

This would end up making it seem like all matrix operations are synchronous except for 

the last operations that were performed, nullifying the point of asynchronous operation 

and introducing the bookkeeping overhead for no good reason. 

Dependencies are built into a job and basically specify what other jobs need to be 

completed before this job can be executed.  By arranging it in this manner, one job can be 

dependent on another job that can in turn be dependent on other jobs.  This allows a 

dependence chain to be built and a series of tasks that need to be completed to make the 

current job ready to execute.  This also allows for the smallest amount of work needed to 

ready a job for execution to be done and is one reason why a single element can be 

obtained much faster than the calculations for a synchronous matrix.  This is evident in 

figure 6 because only a dot product between row 1 in (#1) and column 1 in (#2) and the 

addition of that and element (1,1) in (#4) give the result for (5, 1, 1). 

Dependencies are not created until a job is checked if it is ready to execute in 

order to speed up matrix creation time and reduce overhead.  When a matrix computation 

is specified, there is no reason for the dependencies of each job in that matrix to be found 

because the jobs may not need to be executed in their default state and could possibly 

never be requested.  Creating objects representing every possible dependency for a matrix 

would be far slower than synchronously performing the matrix calculations and would be 
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a huge space overhead. 

Dependencies can also be made in order to group elements together in a job.  An 

example of this is grouping the jobs that make up a row together.  Instead of Job (3, 1, -1) 

depending on Job (1, 1, -1) and Job (2, -1, -1), Job (3, 1, -1) can be dependent on Jobs (3, 

1, 0), (3, 1, 1)…(3, 1, n) which are then dependent on the row in (#1) and the columns in 

(#2).  This is useful for grouping jobs from matrix operations such as a row of a matrix 

multiply.  Instead of being dependent on the entire previous matrix to execute, each 

element in the row can execute as soon as the rows and columns that it depends on are 

finished. 

3.4 Multi-Threading 

 

Figure 7: General multi-threading execution path 

 

Multi-threading in this application allows for background processing of matrix 

elements while the main program that uses this framework continues to execute 

something else, for example rendering in a graphical program.  The general multi-

threading strategy is to have a number of threads using the following execution path: 
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1. Check if there are any jobs that belong to this thread. 

2. If not, try to get a job from the Job Queue. 

3. If a job is acquired in steps 1 or 2, execute that job with the execution engine 

associated with this thread. 

4. Repeat until notified to terminate. 

In order to enable multi-threading without race conditions, the code uses locks for 

job creation, setting job dependencies, adding and removing jobs from the job queue, and 

when creating shared storage for the matrices.  If this were a completely single threaded 

project, all locks could be removed to eliminate any extra overhead that they may create.   

This is a simple use of multi-threading and allows for easy creation of multiple 

computation threads to complete jobs based on the physical systems that are being used 

and the requirements of the application.  This simple multi-threading could be a big help 

for an application that is using matrices as the main computational tool but is not 

leveraging the extra computational resources on a multi-core/processor machine.  While 

this benefits people that have not employed multi-threading in their projects up to this 

point in their applications, care needs to be taken that the number of threads does not 

slow down the application’s other functions.  When using this matrix framework, we 

would suggest that a good number of threads to have running would equal to the number 

of processing cores that are available or less.  If the number of threads gets too large, the 

threads will spend time contending with each other for resources instead of getting more 

meaningful work done, which is explored in Section 4.4. 
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3.5 Flexible Execution Engine 

 

 

Figure 8: Job execution using CPU and GPU execution engines 

 

Multiple execution engines are possible because the data that is retrieved from a 

job is always in a uniform format.  The data has the matrix operation, which could be 

matrix multiplication, addition, etc., and arrays of data or an array and a scalar depending 

of the operation.  By making the jobs convert execution data to a uniform format, the 

execution portion of the matrix is decoupled from more intimate knowledge of the jobs 

and allows for easier updates to include new operations and different strategies to be 

implemented. 

Currently basic CPU and GPU execution engines are implemented to show how 

execution can be accomplished on two completely different processors and to measure 

performance using different strategies.  The CPU engine is written in plain C++ using 

basic matrix algorithms without trying to add additional optimizations that could possibly 

improve performance using architecture specific vector instructions such as SSE or other 
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instruction set extensions.  The GPU engine is written using BrookGPU [7] as the 

interface for general purpose computing on the GPU.  In addition to the CPU and GPU 

engines, others could be implemented to try to collect jobs that are adjacent and group 

those jobs together or try to optimize other parts of the execution. 

Future hardware that is optimized for stream processing, large dot products, and 

other operations that could be useful for matrix calculations can be implemented very 

easily.  Any C++ class that implements the ExecutionEngine class, meaning it is capable 

of executing a job, knowing how to interact with a job to retrieve the necessary data for 

computation and returning completed results, could be an execution engine. 
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CHAPTER 4 

Results 

 

 

 Various matrix sizes, operations, and threading models have been tested using our 

matrix framework in order to show: 

• what overhead is inherent to the asynchronous design,  

• how well matrix operations scale on multi-core systems,  

• and different strengths and weaknesses of this framework.   

Testing was performed on three different physical systems, using three different 

operating systems.  All single core testing was performed on a system running Windows 

XP, dual core testing was performed on a system running Mac OS X 10.4.8, and quad 

core testing was performed on a system running Fedora Core 5.  Testing on these 

different platforms shows that this framework is a portable solution for asynchronous 

matrix processing.  In order to simplify testing and be able to easily chain together any 

number of operations, all matrices are square matrices.  Non-square matrices have been 

tested and are supported on this framework, but their timings are not included, because 

the timings did not show any interesting differences and non-square matrices are more 

difficult to string together in order to test longer operation sequences. 

Three different types of execution are tested:   

• Synchronous matrix execution: completes the entire matrix then returns.  Used as 

the baseline for comparisons for other execution types. 

• Just-in-time execution: does not create any additional threads and only does work 

when an element from the matrix is requested.   

• Asynchronous execution: creates one or more threads to do work in the 
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background in addition to using the just-in-time idiom when an element is 

requested.  

Unless otherwise noted, all timings are in seconds and all matrix elements are computed.  

The following results include asynchronous results for more than one thread to present 

how this framework scales but direct comparisons should be drawn only between 

synchronous and single threads. 

4.1 Overhead 

 

 In order to reveal the overhead introduced by moving from a synchronous 

execution to an asynchronous model, synchronous, just-in-time, and asynchronous matrix 

operations were all tested using one thread of execution with matrices of various sizes.  

 

Size Synchronous Just In Time Asynchronous 

   ( 1 thread ) 

1,000 x 1,000 3 5 5 

    

2,000 x 2,000 20 29 31 

    

5,000 x 5,000 303 375 374 

Table 2: A*B+C (seconds) 

 

Using one thread of execution, it is not surprising that there is an increase in overhead.  

There are many different reasons why this overhead accumulates from the asynchronous 

framework.  The synchronous version does not have to keep any extra objects or other 

data that is associated with completing parts of the matrix after the initial matrix 

operations are defined.  Some of the sources of overhead come from creating jobs and 

tracking the dependencies between jobs in order to ensure asynchronous operation.  

Another reason overhead is introduced is due to the corresponding array which keeps 

track of what elements have been completed in the matrix data. 
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While the synchronous matrix scales almost exactly with the increase in area and 

execution complexity, where a doubling in size should increase by eight times and an 

increase of two and half should increase by 15.625, the asynchronous matrices scale 

better moving to larger sizes.  The overhead has less of an impact with the asynchronous 

version increasing only 6.2 times when doubling and 12.1 times with a 2.5 increase.  This 

shows that the overhead is not completely dependent on the size of the matrix. 

When comparing the just-in-time and the asynchronous, the differences in speed 

are not due to object creation or bookkeeping because the same amount of work is being 

done.  Instead, context switches between the main thread and the asynchronous thread 

and contention for execution resources introduces enough variability to explain the result.  

Because the results are so similar and because the just-in-time solution is not scalable, the 

rest of the testing is performed using synchronous and asynchronous matrices. 

4.2 Operations 

 

 The type of operation and size of matrices affects the time that an operation will 

take to complete.  Consider comparing a matrix multiply to a matrix addition, instead of 

just a single addition per element, for a matrix multiply there are n multiplications and n-

1 additions where n is the inner matrix dimensions.  Obviously, the multiplication is 

much slower and testing was done to determine how much each operation contributes to 

the overall execution time.  Also examined were how well matrix operations scale when 

strung together and the effects of different size matrices on how long matrix 

computations take to execute. 
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4.2.1 Individual Operation Comparison 

 

 Synchronous Asynchronous 

  (1 thread) (2 threads) 

    

Matrix Multiply 3586 3652 2101 

    

Matrix Addition 4 6 6 

    

Matrix Subtraction 4 6 6 

    

Matrix Scalar 

Multiplicaiton 0* 6 6 

    

Matrix Scalar 

Division 0* 6 6 

Table 3: All operations performed on 10,000 x 10,000 matrices (seconds) 

*operations took less than 1 second 

 

Using significantly larger matrices allowed operations to be tested individually to 

see how much time each type of operation takes.  Until matrix sizes are well above 5,000, 

performing a synchronous matrix addition, subtraction or any scalar-matrix operation 

takes less then one second.  In fact, a synchronous matrix performing a scalar-matrix 

operation on a 10,000 x 10,000 matrix still finishes its operation in less than one second.  

In terms of execution power differences in scalar-matrix and matrix operations, excluding 

multiplication, the amount of computation is about the same between a single add, 

subtract, multiply, or divide per element.  Matrix multiplication on a matrix of this size 

uses approximately 10,000 times as many multiplies and adds per element. 

One might ask, if scalar-matrix and non-multiply matrix operations perform equal 

amounts of arithmetic operations, why are the scalar-matrix operations so much faster on 

the synchronous version?  One possible explanation is that the matrix operations have to 

work with twice the amount of data and pull that data into the processor before it can 
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perform its work.  This could be one reason that the matrix multiply does not take a full 

10,000 times longer to execute compared to the other matrix operations since parts of the 

matrix are fresh in memory and do not have to be retrieved again.  Our testing did not 

account for any possible caching of matrix data elements between operations.  

Asynchronous matrices have a fixed overhead, no matter which operation, as jobs 

need to be made to ensure the matrix completes and need to check if certain parts of the 

matrix are completed.  This can be seen in the matrix-scalar operation compared to the 

simple matrix operations as the times are all exactly the same.  Because the majority of 

the execution time for non-multiply operations in the asynchronous version is spent 

fetching data to perform operations, adding additional threads does not help in those 

cases and as seen above, slightly slows down computation as there is contention for 

memory and synchronization objects in the program.  The matrix multiply performed on 

large matrices shows a very good speed up when more threads are allowed to execute as 

opposed to the simpler operations. 

4.2.2 Composite Operations (Matrix Multiplication Only) 

 

  Synchronous Asynchronous 

  (1 thread) (2 threads) 

    

A*B 29 38 21 

    

A*B*C 57 75 42 

    

A*B*C*D 85 114 62 

    

A*B*C*D*E 113 154 84 

    

Average per Multiply 28.4 38.1 20.9 

Table 4: Multiplication scaling on 2,000 x 2,000 matrices (seconds) 

When chaining multiplication operations, our asynchronous framework always 

performs faster then synchronous when using two threads.  When performing multiple 
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operations on matrices there is a memory overhead and an execution overhead.  When 

stringing matrix multiplies together the typical amount of time for execution of a single 

operation can be seen.  Using a single thread of execution, it is always faster to complete 

the entire matrix with the synchronous version.  The matrix multiplications are not 

dependent on the total number of operations that have been issued but only on the size 

and for the asynchronous version, the amount of bookkeeping overhead and 

synchronization that is happening.  For 2,000 x 2,000 matrices, the amount of overhead 

that is added to each operation is an additional 30% compared to the synchronous version 

for matrix multiplies.  Using two threads, if the threading was completely independent 

and there were no additional overhead because of thread interaction, the total execution 

time would drop to 66% of the synchronous time.  Instead because of the interaction 

between just two threads the total execution time is about 72% of the synchronous 

version. 

4.2.3 Composite Operations (Various Operands) 

 

 Synchronous Asynchronous 

  ( 1 thread ) ( 2 threads ) 

    

A*B+C*D-E 57 76 42 

Table 5: Composite operations performed on 2,000 x 2,000 matrices (seconds) 

 

This test uses the same size matrices as before but adds in additional matrices being 

added and subtracted.  The additions and subtractions have no appreciable effect on the 

total execution time compared to the same operation without those operations.  We again 

see that our asynchronous framework with two threads performs faster then the 

synchronous.  This is not entirely surprising as the number of additions is comparable to 

the combined additions and multiplications in half of one row of a matrix multiplication. 
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This test also shows that creating the additional storage to house the intermediate 

matrices and create jobs for additions and subtractions is trivial compared to matrix 

multiplication. 

4.2.4 Composite Operations, Smaller Matrices (Various Operands) 

 

 Synchronous Asynchronous 

  ( 1 thread ) ( 2 threads ) 

    

A*B+C*D-E*F+G*H-I 14 26 14 

Table 6: Composite operations performed on 1,000 x 1,000 matrices (seconds) 

 

This test strings together many smaller matrices to see how size and number of matrices 

affects the framework.  Because of the overhead that the asynchronous matrices introduce 

per job compared to the total amount of execution to be done to complete the matrix is 

higher per element, the asynchronous matrices do not perform as well on smaller 

matrices.  Likewise the reverse is true; larger matrix operations have a lower amount of 

overhead compared to computational work so they perform better relative to the 

synchronous matrices.  Threads can make up for some of the overhead when using 

asynchronous matrices but with sufficiently small matrices the threads cannot make up 

for the overhead. 

4.2.5 Same Operation on Different Size Matrices 

 

Size Synchronous Asynchronous 

  ( 1 thread ) ( 2 threads ) 

    

2,000 x 2,000 29 38 21 

 100% 131% 72% 

    

5,000 x 5,000 447 493 282 

 100% 110% 63% 

Table 7: A*B+C Effects of size on relative computation time (seconds) 

As shown in the above table, when the size of the matrix is smaller, the percent of 
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execution that is overhead compared to actual work is larger.  While with size 2,000 x 

2,000 matrices the overhead is about 30% as mentioned before, size 5,000 x 5,000 

matrices have an additional overhead of only 10%.  This shows that larger matrices are 

the ideal case for asynchronous matrices as the overhead is very negligible while with 

very small matrices the overhead can climb to 100% or more extra work.  Also of note is 

that with all sizes, the increase in speed moving from one to two threads is between 55% 

and 75% with smaller matrices seeing better scaling. 

4.3 GPU 

 

This matrix framework supports multiple execution strategies and to show how 

this functionality works, a GPU execution strategy was implemented.  Testing was done 

to figure out how fast this form of execution is and what the drawbacks and benefits of 

this approach are.  This implementation was thought to be a good source of extra 

execution units for computation as GPU accelerated matrices have shown good 

performance improvements in the past. 

Size 

GPU Execution 

(seconds) 

GPU Memory 

Reads 

GPU Memory 

Writes 

    

500 x 500 51 501000 250500 

    

1,000 x 1,000 218 2002000 1001000 

    

2,000 x 2,000 1001 8004000 4002000 

Table 8: A*B+C GPU Execution 

As can be seen with the above numbers, GPU execution is far slower when used with this 

framework instead of performing the computations on the CPU.  The asynchronous 

matrix framework’s main objective is to minimize the amount of work that is done at one 

time to the point where matrix multiplies compute every element in the matrix 

independently of all the other elements.  This leads to a very poor fit for use with the 
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GPU at least in the current general purpose GPU climate.  Because of how the matrices 

are implemented and their general independence between elements, there ends up being a 

very large number of GPU memory reads and writes which was tested in tuning suites to 

be the source of the long execution times.  Other frameworks are able to minimize the 

number of GPU memory reads and writes because they can make assumptions that the 

matrix will go through the entire execute before being returned and that all the matrices 

that are being used as input are completed before being passed into another matrix 

operation. 

With the current execution strategy used in the asynchronous matrices, the basic 

operations that are computed on the GPU spend far less time executing than loading data 

into graphics memory.  This can be seen in the comparison between the CPU and GPU 

versions and how they scale with matrix size.  The expectation is that if a resource is 

being fully utilized by a matrix multiply then the execution time would be eight times as 

much as a matrix of half the size seeing as there is a quadrupling of matrix elements and 

doubling of execution per element.  In the CPU versions, the scaling is in the expected 

range increasing by about 8x but the GPU seems to scale fairly closely to the number of 

elements and GPU memory operations. The additional increase makes sense as accessing 

more memory and writing and reading larger sections of GPU memory would take a bit 

longer. 

In the future, if graphics cards can have an open path to and from main memory 

instead of requiring dedicated GPU memory manipulation, the execution could benefit 

from the additional computational resources.  In the newer graphics cards, CUDA [14] 

from nVidia and stream processing [2] from AMD/ATI could solve some of the problems 
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that currently limit this framework, though if these new execution paths that graphics 

venders have recently opened rely on execution from GPU memory or other expensive 

memory operations this framework will have to wait for different advances or change 

from a completely asynchronous model per element to a block based system. 

4.4 Multi-threading 

 

This framework aims to be a simple solution to exploit hardware advances to 

automatically increase the execution speed by utilizing all of the resources that are given 

to the program.  The framework allows the number of threads to be chosen at runtime so 

a program can be tuned based on the system it is running on.  Three different systems 

with different numbers of processor cores performed the same operations with the 

synchronous as a baseline and a number of threads created for the asynchronous version.  

The single core version was executed on Windows XP, the dual core on Mac OS X 

10.4.8, and the quad core was run on Fedora Core 5. 

 Synchronous Asynchronous 

  ( 1 thread ) ( 2 threads ) ( 4 threads ) ( 8 threads ) 

      

single core 20 31 30 28 28 

      

dual core 28 38 21 24 43 

      

quad core 34 45 24 21 21 

Table 9: A*B+C on 2,000 x 2,000 matrices using 3 different platforms (seconds) 

 

The assumption before performing this test was that, when the number of threads of 

execution matched the number of physical cores, the execution time would be the lowest 

compared to all other possibly combinations.  This was only the case on the dual core 

system and the other systems managed to continue to decrease execution time for at least 

double the number of threads compared to cores.  Moving from one thread to two threads 
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on the dual and quad core machines decreases the total execution time compared to a 

single thread to 55% on the dual core and 53% on the quad core and in both cases made 

the execution time less than the synchronous version.  For the quad core moving from 

two to four threads increased the speed of execution by 3 seconds and lowered the total 

execution time to 47% compared to one thread.  This shows that synchronization starts to 

play a large part in terms of how much speedup can be obtained with this framework in 

its current state.  In all multi-processor cases, when the asynchronous version is running 

the same number of threads as physical cores, the asynchronous version is faster than the 

synchronous version.  Differences in physical hardware and operating system differences 

account for the differing timings for the single-threaded versions. 

It is interesting to note that both the Windows and Fedora systems allow for a 

difference between the number of threads and the number of cores without any 

immediate loss in execution speed.  With the exact same underlying implementation, the 

Macintosh saw an immediate and non-trivial increase in execution time as soon as the 

number of threads exceeded the number of physical cores in the machine.  Because of 

this the ability to specify the number of threads at runtime could be critical on machines 

that exhibit the same characteristics as the Macintosh. 

4.5 Partial Completion 

Up until this point of the testing the only way asynchronous matrices have been 

able to compete is by using multiple threads, but being able to return results before the 

matrix is fully complete or not calculating parts of the matrix are important features of 

our system.  Being able to process only part of a matrix and use the information in that 

matrix to either start other paths of execution or decide that the rest of the matrix does not 
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need to be finished is only possible with our asynchronous matrix framework.  Testing 

was preformed with various amounts of the matrix requested and different numbers of 

threads on the quad core system. 

 Synchronous Asynchronous 

  ( 1 thread ) ( 2 threads ) ( 4 threads ) ( 8 threads ) 

% Complete      

25 34 12 7 6 6 

50 34 24 12 11 11 

75 34 35 18 16 16 

100 34 45 24 21 21 

Table 10: A*B+C on 2,000 x 2,000 matrix.  Different completion percentages. (seconds) 

 

As seen in table 10, the time to retrieve even a single element from the synchronous 

matrix is 34 seconds.  The asynchronous matrices are able the retrieve close to 75% of 

the matrix when using a single thread in about the same amount of time and are faster for 

all amounts lower than that percentage or when using more threads.  Using a single 

asynchronous thread, pulling 50% of the matrix is completed 10 seconds faster and 25% 

is 22 seconds faster than the synchronous version providing a 42% and 183% increase in 

speed respectively.  The amount of time to retrieve a certain number of elements is linear 

compared to retrieving all of the elements showing there is not a penalty for retrieving a 

small number of elements from the matrix compared to the entire matrix. 

Asynchronous 

( 1 thread ) ( 2 threads ) ( 4 threads ) 

   

104000 218000 282000 

Table 11: A*B+C on 2,000 x 2,000 matrix. Elements complete after one second 

 

In just one second of execution, there are a number of elements that are ready and can be 

used to start other tasks or make decisions.  One possible use could be if all the elements 

in the matrix need to be post processed and can be streamed to that other process as they 
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complete. 

 Synchronous Asynchronous 

  ( 1 thread ) ( 2 threads ) ( 4 threads ) ( 8 threads ) 

% 

Complete      

25 1067 297 164 144 143 

50 1067 595 325 284 284 

75 1067 890 484 424 428 

100 1067 1188 640 562 564 

Table 12: A*B*C on 5,000 x 5,000 matrix.  Different completion percentages. (seconds) 

 

This larger matrix, performing two matrix multiplies shows how asynchronous matrices 

have the advantage in every multi-threaded test and tests where 75% or less of the 

elements are requested.  When only 25% of the elements are requested and 4 threads are 

used, the computation time takes only 13% of the time the synchronous matrix takes and 

all before even a single element is available in the synchronous matrix.  When comparing 

synchronous to asynchronous with a single thread, pulling 90% or fewer matrix elements 

would be as fast or faster using the asynchronous framework.  Pulling 75% of the 

elements only takes 83% compared to synchronous, pulling 50% takes 56% compared to 

synchronous, and pulling 25% takes 28% compared to synchronous.  This shows how 

asynchronous matrices benefit even without multi-threading.
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CHAPTER 5 

Conclusion 

 

Asynchronous matrices provide a framework that allows a very similar 

representation to how synchronous matrices would be represented and therefore allows it 

to be used with almost no additional knowledge on the user’s part.  In order to support 

prioritizing matrix elements, one additional function needed to be added though this is 

only necessary to force certain matrix sections to be completed sooner than normal.  

Asynchronous matrices allow for each individual element to be completed independently 

from all the other elements in the matrix allowing for the sections of the matrix to be 

completed while others have not been computed at all.  Applied to a graphical simulation, 

only the matrix elements necessary for a given frame of a simulation can be computed 

quickly without waiting for the rest of the matrix elements to be done. 

Multithreading is easily accomplished using this framework and can be set at 

runtime to match the host machine’s capabilities. This allows using this framework to 

take advantage of parallel execution and additional processing units using a very simple 

programming model without the user needing to understand parallel programming.  

Multithreading produced between a 33% to a 85% increase in speed moving from one to 

two threads depending on matrix dimensions when there were two of more physical cores 

but the current implementation does not scale as well moving from two to four threads as 

it has too much high level synchronization, though this could be fixed using locking 

based on the matrices involved or by making a single thread responsible for job 

scheduling. 



 

42 

As matrix operations are performed on larger matrices, the execution time of the 

asynchronous version becomes comparable to the synchronous version.  With the largest 

matrices tested the overhead of the asynchronous matrix was only 1.8% though with 

smaller matrices tested the overhead could be up to 85% additional execution time.  

When paired with multi-threading, the framework performed well on completing faster 

than the synchronous version in most cases. 

A clear win of our system is its ability to compute parts of the matrix as opposed 

to the entire matrix.  This system consistently returns 50% of the elements faster than the 

synchronous framework while only using a single thread.  In most cases, 75% or more of 

the matrix elements can be computed faster than the synchronous framework depending 

on matrix size.  When it is known that a problem will only need a subset of the elements 

in a matrix, the asynchronous framework provides a significant advantage over 

synchronous matrices. 

Overall, asynchronous matrices perform well on large matrices, are able to 

leverage multithreading and different execution strategies as they come available, and 

perform faster in cases where the entire matrix is not needed.  With some additional 

work, overhead could be reduced bringing the speed to a much more comparable level 

without the need for threading and threading benefits could be extended even further in a 

more linear manner. 
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CHAPTER 6 

Future Work 

 

One obvious extension to this work is to implement more execution strategies.  

There are numerous different strategies that could be tried such as implementing 

execution on a new device such as a physics card or changing how individual jobs were 

handled by an execution engine.  Different instruction set advances in future processors 

could be useful such as a hardware optimized dot product.  Another clear extension to 

enhance the framework is to implement additional matrix operations such as inversion. 

Grouping jobs that are similar in order to reduce memory access by lowering how 

many times a set of numbers is iterated over could increase the total speed of the matrix 

multiply.  This could be accomplished by having a row and finding other columns that 

are ready to execute and performing operations on all available data at the same time.  

Another quick extension would be to store what operands and operations occurred so that 

in the case where an operation like (A*B) happened in multiple places, the same end 

matrix would be used in order to save processing where duplication is hidden or the 

program was computing similar matrices in different areas. 

In order to increase thread throughput and decrease locking contention, finer grain 

locking of matrices and job storage locations could make the increase moving to more 

threads closer to a linear increase. 

 An additional extension that could be possible is to allow load sharing between 

threads.  Currently, once a thread acquires a job, it has to execute all of that job’s 

dependencies.  It should be possible to allow threads to acquire jobs from other threads so 
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that if there were no other jobs available in the main job queue, a thread would be able to 

take a job from a thread that still had work to do. 

Another possible and perhaps most promising direction is to set a minimum block 

size and perform all operations using blocks of data rather than individual matrix 

elements.  While this means that there is not quite the same fine grain control over which 

elements execute and which do not, this lowers the overhead in checking whether parts of 

the matrix are ready, removes a good amount of the storage overhead, and reduces the 

overall job overhead.  If the block sizes correspond to a good GPU memory size for 

graphics cards, the ability to use the GPU as a resource would be greatly enhanced as the 

number of GPU memory operations would drop and the amount of work per section of 

GPU memory would increase. 
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