

GLozart: A 3D Graphics Piano Aid

James Delos Reyes

CSC 491

Project Advisor: Zoë Wood

Spring Quarter 2007

Introduction

GLozart is a three-dimensional graphics program that graphically simulates hands

playing a piano. It can be thought of as a virtual player piano with the addition of hand

simulation. The program works as an educational tool for amateur pianists to learn how

to play piano by hearing and seeing a demonstration of how a piece is played. The

application is written in C++ and combines the utilities of OpenGL, GLUT, Qt,

MusicXML, and MIDI. Some of the challenges addressed during the implementation

process include how to show a real-time animation sequence with graphic and sound

synchronization, parsing a given music file into animation frames, how to dynamically

select finger positioning, and supply an easy-to-use user interface.

Figure 1.1: GLozart Screenshot

Application Features

GLozart features a full 88-key keyboard which can be rotated for the user to see

the simulation from different angles (Figure 1.1). It has typical keyboard functionality

including volume controls, tempo controls, pitch modulation effects, pitch sustain,

transposition control, timbre control, and play, pause, fast forward, and stop functions for

playback. It also features a dynamic side-by-side notation allowing users to see the

standard music notation associated with the current chord positioning. In addition, a

chord constructor is in place so that users can construct their own chords and inspect how

they are positioned.

The 3D Component Using OpenGL

The 3D graphics component of this program was written with OpenGL and

GLUT. OpenGL is a cross-platform open graphics API developed by Silicon Graphics

Inc. in 1992. GLUT is a utility toolkit built on top of OpenGL to supply useful function

calls including drawing graphics primitives and window management. Both OpenGL and

GLUT are widely used in many 3D applications and became the immediate graphics

library candidate for the program thus providing the name, GLozart (pronounced

gl t'särt), a combination of OpenGL and the Classical pianist Mozart.

The keyboard and hands are drawn using simple GLUT polygon primitives

(Figure 1.2). Each key of the keyboard is a GLUT cube scaled into a rectangular key.

Display lists are used to improve rendering performance when drawing each key. Display

lists store and precompile the commands used to draw the key. Each key is then drawn

simply by calling the display list and applying the correct translations and rotations. This

improves performance since there are many keys to draw (88 in all) and less code. The

code is stored in the graphics card if the graphics card allows avoiding the performance

bottleneck of pushing vertices from the CPU to the GPU. As keys are drawn, they are

rotated vertically according to which notes are currently stored in the animation frame to

simulate being pressed and unpressed.

Figure 1.2: Hands and Keyboards drawn using GLUT primitives

To draw the hands, each section of the fingers is a GLUT cylinder. The palm and

joints are made using GLUT spheres. The finger animation uses a hierarchical modeling

design in order to bend and behave similar to human movement. Each section of the

finger is attached at pivot joints such that when one section of the finger is translated or

rotated that the other sections of the finger are translated and rotated appropriately and

remain attached. Hierarchical modeling along with complex trigonometry is ideal for the

hand animation since the fingers need to be told which keys to play and where those keys

are. The fingers are implemented such that the developer can specify any coordinate in

world coordinates, and the tip of the finger will try to “touch” the specified point. This, of

course, is based on wherever the hand is located. Therefore, if a finger is told to touch a

point it cannot reach, it will disappear graphically due to non-defined trigonometric

values. This is a limitation to GLozart since if two notes are spread too far apart, there are

fractures in the animation sequence. To address this issue, the fingers are given default

value points based on where the fingers currently are in the animation frame. If the note

is too far away for a finger, the finger does not attempt to play it. This is a modest way of

hiding a hard problem. At the same time, there are many pieces composed by people with

larger hands than others, and not every piece is playable to those with small and even

average hand spans. For now, GLozart can be thought of as someone with an average

hand span.

GLozart also features a wired meshed view which uses wired meshed polygons to

draw the hands (Figure 1.3). This allows users to see which keys are being played

through the hands in case the user does not prefer to rotate around the hands to see what

the fingers are pressing. The user can also choose for the hands not to be drawn leaving

only the piano to be animated.

Figure 1.3: Wired mesh view

Lighting in GLozart is done in OpenGL via the Phong model—a combination of

ambient, diffuse, and specular light. A spotlight is used to bring out the hand’s specular

components to give more definition to the hand’s depth and shape.

To improve runtime performance, backface culling was implemented. Backface

culling removes vertices not drawn in the viewing frustrum. Because of this, fewer

vertices get pushed down the graphics pipeline greatly improving performance.

GLozart’s main viewing widget also displays the name of the composition piece

and composer using GLUT’s bitmap text capabilities. The text is written using OpenGL’s

raster positioning calls so that it does not rotate, scale, or translate along with the rest of

the viewer.

Importing Music Using MusicXML

Users can import music into GLozart using MusicXML. The MusicXML format

file was developed by Recordare LLC (http://www.recordare.com/) as a bridge to

translate Western musical notation between various program applications. The first

version was released in 2004 and although it is still a new file format exchange, it is used

by over 75 different commercial products today. This includes leading programs for

score-writing such as Finale and Sibelius.

One might expect GLozart to read in MIDI files to follow suit of most music

applications. MIDI (Music Instrumental Digital Interface) and MidiXML are industry

standard music exchange formats. MIDI is widely popular among music applications and

digital music instruments and has remained nearly unchanged since its release in the early

80’s. The decision to read MusicXML, a comparably younger format exchange, versus

MIDI is based on the fact that MusicXML and MIDI are not necessarily competing

format exchanges. This is because MIDI specializes specifically with music while

MusicXML specializes specifically with music notation. MIDI ignores standard notation

since it is verbose and unnecessary to play a piece. Instead, MIDI is merely made of

music events. This is where MIDI does not fulfill GLozart’s requirement to parse and

devise an animation sequence for piano. For example, MIDI cannot tell whether an

instrument is a piano or not. Although during playback MIDI can generate piano sounds,

it only has knowledge on the timbre of the instrument and not the instrument itself. MIDI

may specify a note to play outside the typical 88-key spectrum pianos are limited to. This

is because MIDI does not consider physical limitations of instruments. For example,

GLozart would have a hard time parsing a MIDI file with more than ten notes at a time

since most piano players only have ten fingers. The core reason why MIDI is not read,

assuming the file was playable by a pianist, is that a very complex algorithm would be

needed to decide which hand should play which notes since there are no strong

restrictions without notation. This is not a practical problem to solve since users would

want to play pieces where notation and hence hand position is already provided. Also, it

is not necessarily solvable since most composers divide hand position based on melody in

one hand and rhythm in the other, and there are many pieces where this overlaps.

Furthermore, rhythm and melody can be intertwined where distinction between the two is

often debated philosophically not algorithmically. Thankfully, MusicXML does tell

GLozart which hand plays which notes by denoting staffs in the music notation.

MusicXML also has knowledge of whether a piece is specifically for piano. If the

MusicXML specifies more than one piano, GLozart simply parses the first piano in the

file (although allowing the user the ability to choose does sound like a possible future

direction). This is true even if there are other instruments specified in the piece (e.g. voice

or guitar). For now, GLozart plays MusicXML pieces written with at least one "Piano,"

"Grand Piano," or "Acoustic Grand Piano" as specified by the Part ID of the MusicXML,

although other types of instruments are not out of the question for future releases. MIDI

is reserved for the audio component of GLozart which will be discussed later.

Parsing a MusicXML File

The XML is parsed using Microsoft’s XML API. MusicXML is formatted such

that each musical measure is divided into divisions. The divisions are as small as the

shortest note duration throughout the piece. A piece where the shortest duration is a

quarter note will have less divisions per measure versus a piece where the shortest

duration is a sixteenth note (i.e. four versus sixteen divisions respectively). In GLozart,

each division is parsed into its own animation frame. This is a performance bottleneck

since the animation sequence can only be as fast as the number of divisions per measure.

For example, if there is only one sixteenth in a very large piece while every other note is

a quarter note, GLozart will spend most of its frames doing nothing but waiting for every

sixteenth frame where the next quarter note begins. Despite this limitation, MusicXML

divisions work well as animation frames where each frame in GLozart is simply stored as

a collection of pitches and on/off flags. Frames are also precomputed before the actual

animation sequence so that parsing does not affect the runtime performance of the

animation sequence.

Due to time constraints, GLozart is limited as to what information is parsed from

the MusicXML. Certain elements when parsing are completely ignored due to the fact

that GLozart would have to perform extra computation just to translate them into frames.

Piano articulations (e.g. trills, glissandos, grace notes), dynamics (e.g. crescendos,

fortissimos), repeats, and codas are completely ignored by GLozart.

Some files cannot be parsed at all by GLozart. The first obvious MusicXML that

cannot be parsed is pieces that have no piano instrument. For now, hand position is

specified by whether a note is played in the bass clef or treble clef. For this reason, pieces

that have multiple clefs (e.g. two treble clef's, or a bass clef that changes in the middle of

a piece to treble) cannot be parsed including voices that cross over staffs. To prevent

fingers from playing notes it cannot reach, any chord for one hand that spans over an

octave cannot be parsed.

Despite its limitations, MusicXML is a still a great format exchange to read in

GLozart. There are many MusicXML pieces and resources online. This means there is a

lot of music available for sale and for free. Users can even create their own MusicXML

using commercial programs like Finale and then import them into GLozart. This allows a

great deal of flexibility over what pieces users can import into the application.

Finger Positioning Importance and Implementation

GLozart provides users an angle at reading music that standard notation often

does not provide—finger positioning. Most of the time finger positioning is not specified

in standard notation for many reasons. It can make notation too busy and hard to read if

there are many notes. Also, advanced players are expected to show enough discipline to

choose their own finger positioning. There is hardly ever one way to play any piece, since

finger positioning is mostly based on what is comfortable to the player. However, bad

fingering at an early level in the learning stage can lead to bad fingering habits for the

future. GLozart merely provides users one acceptable solution for finger positioning

though there can be many. The difference between this and deciding hand position is that

there are many acceptable fingering positions with the exception of a few business rules.

GLozart’s algorithm for choosing fingers is based on the closest note to a finger. One

limitation is that it does not accurately define how humans prioritize certain fingers over

others based on finger strength. For example, the pinky is the least used for any

instrument simple because it is the weakest finger and hardest to control. Humans usually

pick a more comfortable position based on finger strength rather than pure range

approximations. GLozart might pick finger positions that would be seen as uncomfortable

to most people. This can, however, encourage users to exercise finger strength and

distribute finger positioning among all fingers. Another limitation is that there are certain

business rules that classically trained pianists follow. For example, pianists are not

“supposed” to use their thumbs on black keys when ascending and descending scales.

This behavior is not featured in this version of GLozart but does not necessarily mean it

cannot show up in future releases.

A greedy algorithm approach is used to determine finger positions. The algorithm

is inspired in part by how advanced pianists sight-read music notation. To sight-read, a

player plays a piece that they for the most part have never played before. As they play the

piece, they are constantly looking ahead to see what the notes are. This in turn determines

their finger positioning based on where their hands are currently. GLozart emulates this

behavior by reading ahead a designated amount of frames before choosing the finger

positions. This makes sense since notes will be distributed to all fingers in a succession of

notes. For example, a scale is an ordered succession of single notes. (The first melody,

“Joy to the world/The Lord has come” in the Christmas Carol, “Joy to the World,” is a

scale.) If GLozart did not read ahead when determining finger position, it might pick the

thumb to play every single note in the scale since no two note overlaps. Ideally, this does

not make sense since the other fingers are closer to the other notes than the thumb. By

looking ahead like sight-reading, GLozart is able to distribute the keys to all the fingers.

The algorithm starts by reading ahead a fixed amount of frames. The minimum

pitch for those frames is then stored. For each frame, the minimum and maximum pitch is

calculated to obtain the span of the notes updating the minimum pitch if necessary. The

fingers are then given a minimum and maximum pitch to cover. If a pitch in the frame

appears within a certain finger’s span, the finger is assigned the pitch and the span for the

other fingers are recomputed. Figure 1.4 shows a full iteration through a frame assigning

notes to each finger in ascending order.

Step 1: Spans assigned for each finger

Step 2: After iterating for the first note, the pinky is assigned

the pitch and the ring span is adjusted.

Step 3: After iterating for the second note, the ring is

assigned the pitch and the middle span is adjusted.

Step 4: After iterating for the third note, the middle is

assigned the pitch and the index span is adjusted.

Step 5: After iterating for the fourth note, the index is

assigned the pitch and the thumb span is adjusted.

Step 6: After iterating for the fifth note, the thumb is assigned

the pitch.

Figure 1.4: Applying the finger algorithm to a frame for the left hand.

Here is a more detailed explanation of the greedy algorithm used to obtain finger

positions for the right hand in pseudo-code:

// Iterate through each scan in the animation sequence

for each sightReadScan in AnimationSequence

 // Store the minimum pitch for the division scan

 int minPitch = getMinPitchForScan(sightReadScan);

 //Store current low

 currentLow = minPitch;

 // Iterate through each frame in the scan

 for each frame in sightReadScan

 // Get the frame’s minimum pitch

 int minFramePitch = getMinPitchForFrame(frame);

 // Update the current low if the mainframe

 // is lower

 currentLow = min(minFramePitch, currentLow);

 // Get the frame’s maximum pitch

 int maxFramePitch = getMaxPitchForFrame(frame);

 // Center the hand between the currentLow and high

 centerHand(currentLow, maxFramePitch);

 // Dynamically assign spans for each finger based

 // on the currentLow and high

 fingerSpan thumbSpan = getThumbSpan(currentLow, maxFramePitch);

 fingerSpan indexSpan = getIndexSpan(currentLow, maxFramePitch);

 fingerSpan middlSpan = getMiddlSpan(currentLow, maxFramePitch);

 fingerSpan ringSpan = getRingSpan(currentLow, maxFramePitch);

 fingerSpan pinkySpan = getPinkySpan(currentLow, maxFramePitch);

 // Iterate through each pitch in the frame in

 // ascending order and assign them greedily to

 // whichever fingerspan it fits in.

 for each pitch in frame order by asc

 // Check if the thumb is used and see if

 // the pitch fits in the thumbSpan

 if(thumb.getPitch() == -1 &&

 thumbSpan.containsPitch(pitch)){

 // Set the thumbs pitch

 thumb.setPitch(pitch);

 // Adjust the index now that the thumb is taken

 indexSpan.adjustSpan();

 }

 // Check if the index is used and see if

 // the pitch fits in the index Span

 else if(index.getPitch() == -1 &&

 indexSpan.containsPitch(pitch)){

 // Set the index pitch

 index.setPitch(pitch);

 // Adjust the index now that the index is taken

 middleSpan.adjustSpan();

 }

 ...

 // if there are still notes left over, shift the pitches

 // down a finger and let the last finger get the leftover pitch

 else{

 // Shift the pitches down a finger

 swapPitches(thumb, index);

 swapPitches(index, middle);

 swapPitches(middle, ring);

 swapPitches(ring, pinky);

 // Let the last finger get the left over note

 pinky.setPitch(pitch);

 }

 } // end frame loop

 } // end sightReadScan loop

} // end animation loop

It is important to note that finger positioning is precomputed before the actual animation

sequence. This prevents the position processing from interrupting the synchronization

and timing of the sequence.

Dynamically Computing the Animation Sequence

 Not all the properties of a rendered frame are precomputed. The actual animation

sequence takes the current division frame and next division frame and dynamically

generates animation subframes in between them to give smoother finger and key

movements. The benefit of this is that less memory is needed to store the sequence. Its

major drawback is that it forfeits the ability to rewind during playback since the

implementation only traces forwards. Also, dynamic computation is a bit of a

performance dragger. GLozart might have benefited from full precomputation but the

implementation was avoided since the architecture was already deeply embedded and

would require a time-consuming, full-scale refactoring of code.

The Qt GUI Component

 The GUI component of GLozart was implemented with Qt, a cross-platform API

developed by TrollTech. Qt is widely used in numerous applications including Google

Earth and Skype. The biggest advantage of using Qt in GLozart is that it integrates well

with OpenGL using QGLWidgets. The other feature of Qt is how it handles GUI events.

This is done through signals and slots. Each GUI component with an action (e.g. buttons,

sliders, menu items) can be registered as signals. Developers then associate those signals

to slots where the code is implemented to react to the signal. In GLozart, each menu item

and tool bar action is registered as a signal. The associated slots are registered in the

QGLWidget where the piano and hands then react to each registered signal. Besides the

easy interface, Qt also has great documentation and numerous forums where developers

can discuss challenges, address bugs, and advise tips. The major drawback using Qt is

that Microsoft Visual Studio developers have to engage in a large amount of

configuration details in order to get Qt to compile. The steps are recorded in a tutorial at

http://qtnode.net/wiki/Qt4_with_Visual_Studio. Even after Qt is integrated, there is a

significantly larger amount of compile time. This makes the application harder to debug

if the developer wants to go back and forth between running the application and coding.

There is a little speed improvement if the developer addresses all warnings immediately.

Qt is also limited since the OpenGL timer callback QTTimer is a large performance

bottleneck. This is the standard way of calling the updateGL calls needed to repaint the

OpenGL viewing component. However, the smallest time increment is one millisecond

when GLozart could benefit from a smaller time unit. Other GUI API’s were used but

proved much more inferior to Qt’s capabilities. MFC can be very complex and has a

steep learning curve that GLozart’s development cycle could not afford. GLUI, a GUI

API made just for OpenGL applications, had many configuration issues and was not very

flexible to begin with.

The MIDI Audio Component

 The audio component of GLozart was implemented using MIDI (Musical Digital

Instrument Interface). MIDI works by inputting and outputting MIDI event messages.

The audio signals are not generated by MIDI directly. MIDI merely sends the event

messages to an output device that generates the sound. The output device can vary

between a musical instrument or MIDI device driver and might not even be an audio

component but a visual output like a laser light show. GLozart takes advantage of the fact

that almost all of today’s PC’s include a default MIDI device driver. GLozart sends MIDI

event messages to the PC’s device driver where the audio is generated and pushed

through the speakers.

 A short MIDI event message is only 8 bytes long so setting parameters is

implemented using bit operators. To send simultaneous messages, short messages are

queued into one long event message. The messages can tell the driver to turn a note on or

off and may set other parameter controls including volume, modulation, timbre, etc.

To synchronize the audio with the animation sequence, GLozart streams the event

messages to the output device using the MIDI Stream API. The API works first by

opening the MIDI stream device in the default driver before GLozart’s animation

sequence. As the sequence runs, the application checks for keys that have been pressed

down all the way and sends “Note on” event messages for those pitches. As keys are

unpressed, GLozart sends “Note off” messages for those pitches. In one animation

rendering pass, the messages are queued in one long message for playback and then sent

to the driver. This approach gets rid of synchronization issues whereby the device driver

messages are triggered by what the user sees graphically. Another approach might have

been to queue MIDI event messages for the entire animation and start playback at the

beginning of the animation sequence using the MIDI Sequencer. However, this does not

synch with the animation well since the OpenGL component has limited timing control

with rendering passes. If multiple processes are open, then the animation sequence may

slow down in the middle of a song and it would be hard for the MIDI Sequencer to be on

time. This would also limit playback since pause and fast forwarding would trip the

sequencer up. By using MIDI Stream API, GLozart also does not have to deal with

memory management of long message queues that would result from the previous

approach. Developers should take caution as the default driver gets left open for a long

period of time. This means that every note turned on by an event message should be

followed with an event message to turn the note off. Otherwise, too many notes left open

can build up and be ear splitting to the developer.

The MIDI Mapper allows GLozart to have control on where to send event

messages within the device output driver. The mapper can map messages to either a

channel, a patch, or a key. The “Note on” and “Note off” messages triggered by the

animated keys are event messages sent to the key map. This is how GLozart is able to

turn some notes on while leaving other ones on at the same time. Messages sent to a

patch affect a certain instrument although this is not explored much in GLozart since it

only works with one MIDI instrument number at a time. Events sent to a channel map

can affect all the notes within the specified channel. Since all the audio in GLozart only

uses one channel, certain events like volume, sustain, and modulation are applied to that

channel affecting all the notes in play.

The diagram below (Figure 1.5) shows how GLozart uses all the above-mentioned

MIDI components to communicate with the output device driver using Window’s

Multimedia Software Extension. GLozart lies in the top Application Level. Since it is

using the Stream API, the MIDI sequence driver is not used at all. The sequence driver

would be used to playback a long sequence of MIDI events whereby every message is

queued before the output device driver is opened. Instead, GLozart can stream messages

to the device driver via the MIDI API function calls. It can send messages directly to the

driver in order to open and close it, or it can map event messages to certain channels,

patches, or keys through the MIDI mapper. Each message is finally output by the default

MIDI device driver where the actual sound is generated into the computer’s speakers.

Figure 1.5: Application level using MIDI services

Timbre Controls

Timbre in GLozart can also be controlled through MIDI channel messages. This

allows us to pick different sounds that the piano will generate. The user can select other

piano timbres like a Rhodes piano and a Honky-Tonk piano or non-piano timbres like a

guitar, synthesizer, brass, bird tweets, and even helicopters. GLozart accesses 128 default

timbres that are in all MIDI device drivers. It should be noted that the quality of the

timbre can be affected by the quality of the MIDI device driver. In the early 80’s, MIDI

was synonymous with cheesy blip noises, but that was because all that was available at

the time were poor quality MIDI drivers.

Tempo Controls

Tempo in GLozart is controlled by how fast the animation sequence is rendered.

This is done by associating the OpenGL component with the QtTimer class. Every time

the associated QtTimer finishes a specified time interval, the OpenGL viewing frustrum

is queued to be drawn. The tempo controls in the tool bar essentially sets the specified

time interval in QtTimer. Tempo can vary between sessions based on how many

processes are fighting for CPU time and how fast the combination of the computer and its

graphics card is in the first place. This creates a problem since it is hard to control

consitency of tempo between computers. Tempo is therefore relative to how fast GLozart

can render each frame and not based on any actual tempo measurement like beats per

minute (bpm). GLozart defaults to the fastest tempo possible so that the user immediately

hears the application’s maximum tempo capacity.

Transposition Controls

The transpose tool in GLozart is not a direct MIDI event message. The transpose

function simply increments or decrements a class variable that is added to the pitch when

generating “Note on” and “Note off” events in the animation sequence. The problem with

this is that if a pitch is transposed after the note is turned on then the next “Note off”

message will be sent to a entirely different pitch. This will leave many notes orphaned

where some pitches may trail until the application is closed. To fix this, the function also

sends an event message to turn all the notes off to the channel. This makes sense audibly

as well since the old transposition might conflict with the new one throwing off the user’s

sense of tonality (assuming the piece is not atonal).

Dyanamic Side-by-side Notation

 GLozart also features dynamic side-by-side notation in a separate Qt widget

during the animation sequence (Figure 1.6). This feature is based on an LCD version

offered by many of today’s keyboards targeted towards amateurs. This helps users

quickly establish the correlation between the notes being played on the virtual piano and

the actual music notation. The notation is displayed in a staff while notes are displayed

corresponding to notes that are pressed on the virtual piano.

Figure 1.6: Side-by-side dynamic notation.

GLozart is limited in that the notation does not display exactly the same notation as the

input MusicXML. GLozart’s notation does not include any information on timing and

only displays pitch. Also, enharmonic notation is not used. Instead, every black piano

note is denoted by a sharp note instead of its flat spelling. This limitation also appears in

many keyboards with the LCD feature. This is because choosing enharmonic spelling is

usually based on key signature. Since the current version of GLozart only parses pitches

and divisions from the MusicXML, certain data like key signature are not stored. Hence,

GLozart is unable to distinguish the correct enharmonic spelling although this is a

possibility for future versions. Also, because of timing constraints and bugs with reading

in TGA textures, a sharp note is not denoted with its typical ‘#’ symbol. Instead, it is

denoted by the color red.

Chord Constructor

 A chord constructor is also supplied by GLozart to allow users to choose their

own chords to be played directly from the interface (Figure 1.7). This is much quicker,

convenient, and practical method than creating and importing a MusicXML with only

one chord for the entire piece. This feature seemed necessary since keyboardists often

stumble over finger positioning over specific chords. The constructor works by allowing

the user to add notes to a typical staff with treble and bass clef. Due to time constraints,

the constructor does not feature enharmonic spelling. Users may only choose between

natural and sharp notes. This is reasonable since enharmonic spelling does not change

how chords are played on the piano. Users may also delete notes currently on the staff.

GLozart takes a beginner’s approach to deciding whether a note is for the left or right

hand by checking if the note is drawn in the tremble or bass clef. Notes below Middle C

are played by the left hand while notes above are played by the right hand. Middle C

itself is played by whichever hand is free with prioity given to the left hand.

Figure 1.7: Chord constructor.

The chord constructor also enforces that the chord be playable in GLozart. This

means that only a maximum of five notes can be constructed per hand (one note per

finger). The minimum and maximum span per hand cannot be wider than an octave. If

the user tries to add a note that invalidates a chord’s playability, the note is not added to

the staff. Once a proper chord is constructed, the user can playback the chord with the

same play and stop functions in the tool bar and can apply the same controls allowed

during regular MusicXML playback.

Application Potential

Future, more complete versions of GLozart may have a large potential for

dissemination. In reference to an earlier prototype version of GLozart, the developers of

MusicXML, Recordare, commented, “We hope this is the first of many programs that use

MusicXML data to create interesting and useful animations and visualizations.” GLozart

is listed on Recordare’s web page along with several commercial and prototype products

at http://www.recordare.com/xml/software.html. The link contains a bio of GLozart and a

table (Figure 1.8) of both shipping and prototype software that uses MusicXML including

GLozart on the bottom right of the table under the Beta/Prototype Software.

Figure 1.8: Recordare’s listing for MusicXML software

Today, in a globalized environment via Internet technologies, there is more of a

demand for people to learn things on their own. This can stem from people’s inflexibility

with time schedules. Also, it is much cheaper to learn on one’s own than hire private

tutors. GLozart addresses those needs by supplying a different angle to learning than your

typical “how to” online tutorial. GLozart is a great tool for amateur pianists who want to

play challenging pieces in limited amount of time. This is true especially because reading

standard notation can be very time-consuming and difficult. With GLozart, some users

might even be able to ignore the standard notation entirely and rely just on imitating the

graphics. Experienced pianists and even non-musicians can use GLozart for

entertainment purposes like watching a player piano. Furthermore, the application logic

of GLozart can be extended to future applications for other musical instruments. This

leaves room for a possible guitar application (GLendrix?) or even a saxiphone application

(Kenny GL?).

Music Glossary

Articulation—The manner in which notes are performed (Harnsberger 14).

Atonal—Music without a tonal center or key (Harnsberger 14).

Bass Clef—The F clef on the fourth line of the staff (Harnsberger 18).

Chord—Three or more notes sounded simultaneously (Harnsberger 31).

Clef—The symbol written at the beginning of a staff that indicates which notes are

represented by which lines and spaces (Harnsberger 33).

Coda—An ending section of a movement or piece (Harnsberger 33).

Crescendo—Gradually becoming louder (Harnsberger 38).

Dynamics—Symbols that indicate varying degrees of volume (Harnsberger 47).

Enharmonic—Two notes that sound the same, but are spelled differently. For example,

B-flat and A-sharp are enharmonically the same (Harnsberger 49).

Flat—The symbol ‘b’ that indicates a note to be lowered by one pitch (Harnsberger 55).

Fortissimo—Very loud (Harnsberger 56).

Glissando—To slide from one note to another; on a piano, a rapid scale produced by

sliding fingers over the desired keys (Harnsberger 60).

Grace Note—A small note played quickly before the beat (Harnsberger 61).

Key—The tonal center of a composition (Harnsberger 72).

Key Signature—The groups of sharps or flats that appear at the beginning of a staff

which indicate the key (Harnsberger 73).

Measure—The notes and rests between two bar lines in notation (Harnsberger 81).

Melody—A succession of single notes (Harnsberger 81).

Middle C—The note C that is near the middle of the piano keyboard. It is notated

between the treble and bass clef of a staff (Harnsberger 83).

Modulation—To change key within a composition (Harnsberger 84); attuning to a

certain pitch or key; varying in volume of tone (Dictionary.com)

Natural—A note that is neither sharp or flat (Harnsberger 87).

Octave—Distance from one note to its nearest note above or below it with the same

name (Harnsberger 90).

Pitch—The location of a note related to its highness or lowness (Harnsberger 99).

Quarter Note—Note that specifies duration is a fourth of the measure.

Repeat—Signs that indicate a musical section should be repeated (Harnsberger 108).

Rhythm—The organization of music in time using long and short note values

(Harnsberger 109).

Scale—The arrangement of notes in a specific order (Harnsberger 113).

Sharp—The symbol ‘#’ that indicates a note to be raised by one pitch (Harnsberger 117).

Sixteenth Note— Note that specifies duration is a sixteenth of the measure.

Staff—The horizontal lines on and between which notes are written. Normally there are

five lines (Harnsberger 124).

Sustain—The amount of time the strings of the piano are allowed to vibrate (Harnsberger

127).

Tempo—The speed of a section of a composition or the speed of a complete composition

(Harnsberger 130).

Timbre—Quality of sound of a voice or instrument (Harnsberger 132).

Tonal—Pertaining to a key (Harnsberger 133).

Tonality—Having a tonal center to a composition (Harnsberger 133).

Transposition—To change a composition from one key to another (Harnsberger 135).

Treble Clef—The G clef on the second line of the staff (Harnsberger 135).

Tremolo—Alternating rapidly between two notes or chords (Harnsberger 135).

Voice—A part or melody line of a piece (Harnsberger 144).

Resources

Music Glossary Resources

http://www.dictionary.com.

HarnsBerger, Lindsey C. Essential Dictionary of Music. Los Angeles, Ca: Alfred

Publishing Co., Inc., 1997

GUI Resources

http://trolltech.com. (Qt’s Developers’ Official Site)

http://doc.trolltech.com/4.3/tutorial.html. (Qt 4.3 Tutorial)

http://doc.trolltech.com/4.3/classes.html (Qt 4.3 Class API Reference)

http://qtnode.net/wiki/Qt4_with_Visual_Studio. (Configuration Turtorial for Qt

Integration with Visual Studios)

MusicXML Resources

http://www.recordare.com. (MusicXML Developers’ Official Site)

http://www.recordare.com/xml/software.html. (Recordare’s Listing With Link to

Previous Version of GLozart).

MIDI Resources

http://msdn.microsoft.com/library/. (Microsoft’s MSDN Library including MIDI API)

http://www.midi.org/ (MIDI’s Official Website)

http://www.borg.com/~jglatt/tech/stream.htm. Glatt, Jeff. (MIDI Stream API Tutorial)

http://www.borg.com/~jglatt/tutr/miditutr.htm. Glatt, Jeff. (MIDI Tutorials)

http://www.skytopia.com/project/articles/midi.html. White, Daniel. 2005 (MIDI Byte

Layout)

http://www.cs.uccs.edu/~cs525/midi/midi.html. Chow, Edward. (MIDI Tutorials)

Miscellaneous Resources

http://www.csc.calpoly.edu/~zwood/teaching/csc471/finalproj26/jdelosre/. (Previous

Version of GLozart).

http://www.csc.calpoly.edu/~zwood/teaching/csc471/finalproj24/cpasilla/ (A similar

project without hand animation)

