| Fall 2015 | Computational Art | Zoë Wood |
| :--- | :--- | ---: |

## 1 Lab 5-Animation via Parametric Curves

## Goals

The goals for this lab are:

1. Practice using a loop control structure to create and animate along a parametric curves.
2. Practice using animation to control how much of a curve you draw for each frame

## Modality

Pair or Individual (you may choose - partners of your own choosing)

## Overview

This sketch takes its inspiration from Celtic knots - consider looking at images of Celtic knots to see if any of them look similar to the parametric curves defined in the resources.

## Details

Task: You must create a Processing sketch which animates a $n$ expanding knot in the shape of a complex parametric curve. As the sketch animates the knot (ie the parameter controlling how much of the curve to draw) must increase. Coding your parametric curve may involve creating a curve using polar coordinates ( r , theta) that are converted into Cartesian ( $\mathrm{x}, \mathrm{y}$ ) coordinates.

The sketch should plot an interesting parametric curve. See Resources for some examples. The curve must be more complex then just a sprial or circle - see the examples in Figure 1 and the resources from mathworld.

The sketch must be animated to have more and more of the curve appear over time.


Figure 1: Examples of copies of various parametric curves adjusting the parameters for different sizes, colors, ect.

Your lab must:

- use a complex parametric curve
- include a representation of a Celtic Knot plotted using a parametric curve
- must animate by having the knot expand along the curve over time
- the animation must stop at a certain point
- be at least $400 \times 400$
- be in color


## Demo:

In order to receive credit for this lab, you must demo your sketch to your instructor or TA. For every lab, your score will be broken down $75 \%$ for meeting the technical requirements and $25 \%$ for aesthetics.


Figure 2: Examples of frames of an animation of a celtic knot like parametric shape created in Processing.

## Submitting your sketch

You must post an image of your sketch to your pinterest Computational Art board. If you use a reference image for inspiration for the creature's head or shape, please also pin those reference images to your pinterest board as well.

## Resources:

- Parametric Rose: http://mathworld.wolfram.com/Rose.html

$$
\begin{aligned}
& \mathrm{x}=\cos (\mathrm{n} * \mathrm{t} / \mathrm{d}) * \cos (\mathrm{t}) \\
& \mathrm{y}=\cos (\mathrm{n} * \mathrm{t} / \mathrm{d}) * \sin (\mathrm{t})
\end{aligned}
$$



- Parametric Teardrop: http://mathworld.wolfram.com/TeardropCurve.html
- Parametric Butterfly: http://mathworld.wolfram.com/ButterflyCurve.html
- Parametric Astroid: http://mathworld.wolfram.com/Astroid.html

