
CPE 471 - Program 2
Practice with OpenGL, GLSL data, implicit equations, vectors and data

This program is due Friday 10/14 at 11:59pm – 7% of your final grade

The goal of this program is to practice using OpenGL and GLSL in order to
simulate random points in space converging on a circle. You will need to
manage the data and computations on both the CPU and GPU to create the
specific animation and rendering. You will need to apply your knowledge about
the representation of points in space (relative to a circle) and vectors used to
travel in a given direction. In general, the vertex shader will be used to reposition
the points and the fragment shader will be used to control render attributes of
your program.

Your task is to make a simple simulation of random points that are attracted to
the boundary of an implicit circle. The implicit equation for a circle is:
f (x, y) = (x − xc)

2 + (y− yc)
2 − r2

where {xc, yc} are the center of the circle and r is the radius of the circle.

To start with

Figure 1: At the program start all the
points will be randomly distributed

Figure 2: As the program runs, the dots
will move toward the center but then
stick to the outside of a circle (yellow)

Figure 3: The final configuration of all
the points

Figure 4: Finally, add complex
rendering effects to display a gradient
for each pixel depending on its
distance to the center.

To complete this task:

• Make an array of point locations that are randomly distributed in the 2D
world currently in view (ie in the range {-1, -1} to {1, 1}). Make 40 points
total. See Figure 1 for examples of an initial configurations of the points. (If
you are feeling adventurous you can support more points).

• First get your code to work with normal “point” drawing, ie use
“glDrawArrays(GL_POINTS, 0, g_numP);” assuming	you’ve	created	
a	buffer	object	that	holds	the	points	that	you	have	bound) (You will need to
set glPointSize to something large – I used 34 – your points will not look
beautiful).. Specifically, once you get the points behaving as you’d like you
need to have each point colored using a gradient (color ramp) using the
distance of a given fragment to the center of the point.

• In the vertex shader write code to update the point’s positions based on
moving toward the center of the circle:

o You will need to think about this carefully and add enough data and
computation to the vertex shader to update where the points draw.
Note that the data in the buffer will not actually change, you will just
modify the position sent to gl_Position using a vector to represent
the direction of travel and a coefficient to represent how far to travel
along that vector in order to reach the circle for each frame
rendered.

o When the points reach the circle, they should stop moving.

Finally modify the fragment shader in order to make the rendering of your
animation more interesting (read about gl_FragCoord). You must do several
things:

• Each point should be colored with a gradient as stated above. “have each
point colored using a gradient (color ramp) using the distance of a given
fragment to the center of the point. “

• Color any fragments that are a part of each point that are on the inside of
the circle one color, while fragments for a point that are outside the circle
are another color.

• Create a large “background” polygon that when rasterized has each of its
fragments colored based on where that fragment is relative to the circle
(see Figure 4). i.e. a gradient based on distance to large background
circle.

• Play with transparency to have the colors of the background and
foreground blend together in a pleasing way

Some general comments:
• Consider choosing colors that look good together. Use Abode Kuler to

choose colors: https://color.adobe.com/create/color-wheel/
• You will likely need to use a uniform variable to represent time, which

changes for every frame.
• You will need to set up two different shaders (each with a pair, vertex and

fragment shader) – one for the points and one for the large quad in the
background – this is good practice for later on when you will want different
shaders for different elements in your scene.

• You will need to figure out how to complete this assignment using the
math we learn. Enjoy the puzzle.

• For those with retina displays – you will need to make sure your program
works on the lab machines. This means you will likely also need to specify
uniforms for width and height. As gl_FragCoord will be relative to your
retina display (and thus too large/out of bounds on the lab machines).

Percentage point break down:

• 10% points as circular gradients
• 30% working simulation of points that move towards the boundary

of an implicit circle and stop on the boundary
• 30% rendering effects for background
• 10% rendering effects of points on the boundary (inside colored

one color, outside colored another)
• 20% general sanity of your code and program execution

