
Lab	#4	–	cpe471	
Further	introduction	to	OpenGL	and	GLSL		-	playing	with	color	in	the	fragment	shader	
	
Today	we	will	practice	controlling	the	appearance	of	our	geometry	via	a	fragment	
shader.		In	addition,	this	will	require	practicing	transferring	data	from	the	CPU	to	the	
GPU	and	between	shaders.	
	
Starting	with	your	Lab	3	code	work	through	these	tasks	–	you	only	need	to	demo	task	3	
and	4.	
	
Task	1:	
Modify	the	fragment	shader	so	that	any	fragments	having		y	values	greater	then	half	the	
window	size	are	drawn	as		blue	instead	of	mixed	colors	colors	(use	GLSL	gl_FragCoord.x	
and	gl_FragCoord.y	to	test	the	position,	which	are	in	window	coordinates!)	and	then	set	
gl_FragColor.	Your	output	should	look	something	like:	
	

	
	

	

To	start,	you	can	hard	code	the	height	of	the	window,	but	once	you	get	it	to	work,	you	
should	pass	the	height	of	the	window	as	a	uniform	variable,	by	calling	glUniform1i().	
(The	i	implies	an	integer	uniform	variable.)	Hint:	copy	and	paste	the	code	for	the	
uniform	variable	P.	Also,	take	a	look	
at:the	https://www.opengl.org/sdk/docs/man/html/glUniform.xhtml	

Another	hint:	Call	GLSL::checkError(GET_FILE_LINE)	to	help	find	GL	problems.	When	
debugging,	you	can	put	this	function	after	every	single	GL	call.	For	example,	

glSomething();		
GLSL::checkError(GET_FILE_LINE);		
glSomethingElse();		
GLSL::checkError(GET_FILE_LINE);	...	

It	will	exit	the	program	when	the	previous	GL	call	threw	an	error	and	indicate	the	line	
number	of	the	offending	GL	call.	Then,	google	the	GL	function	and	the	error	to	get	more	
information.		Or	if	you	are	using	glee,	it	will	automatically	catch	errors	and	report	them	
for	you!	

Task	2:	
Modify	the	program	and	shader	so	that	for	the	center	triangle,	any	pixels	that	are	less	
then	20	pixels	away	from	the	center	of	the	window	are	discarded.	You	can	use	the	
following	GLSL	calls:	‘discard’	and	‘distance’.		Your	results	should	look	something	like	
this:	

	
	
	
Task	3:	
Next,	modify	the	fragment	shader,	such	that	all	other	pixels	fade	into	white	in	a	circular	
pattern	around	this	central	point	(hint	think	about	“adding”	a	white	color	to	the	
fragment	color	as	it	gets	further	away	from	the	center	of	the	triangle).	Your	result	
should	look	something	like	this:	

	
Task	4:	
Finally, using the glfwGetTime() function to get the current time (in
seconds), move the center point around the window over time. Using
sines and cosines, move this center point in a circular motion centered
around the middle of the window. The center point will need to be passed

into the fragment shader as a uniform variable. Below are three different
frames from the program as the center point moves around:
		

 	 	
The center near the top of the middle
triangle

The	center	has	rotated	around	

	

	

A further rotation of the center 	
	

