

John Twedt
CPE 471
Dr. Zoe Wood
23 January 2020

Final Project Overview

My ultimate goal is to create a game in the same vein as Pokemon Go!, but with
significant differences. I envision an alternate reality—where players hiking up a
mountain see themselves as characters running up the back of a colossal kaiju, a city
skyline transformed to alien corals swaying in atmospheric tides, and carnival rides
transformed into giant octopi spinning about with players in their tendrils.

This is easier said than done, and I hold no illusions as to the difficulties (technical,
legal, and otherwise) that will have to be addressed. With that in mind, I believe these
problems can be overcome; with this project I hope to start addressing some of the
technical difficulties by breaking the task into manageable steps.

It is difficult to skin a large mob, let alone animate them. How much more so will
it be when I try to create a life-sized kaiju out of a mountain? In order to start along this
path, I propose a project where I take a 3D object file, then render it into a sort of
“skeleton” with primitive bounding shapes. This file (or files) will have several levels of
“rendering” (or “unrendering”)—from level 0: a point in space, to level 1: a line describing
the central axis of its bounding shape (if irregular), to level 2: a collection of two or less
shapes and their central axis, so on and so forth. This description will hopefully be useful
for a number of things:

1. I could use it as a basis for an armature in animating the object
2. I could possibly store it in a database for comparison to other skeleton files
With regards to #2, if I can manage to find an efficient way to describe these

objects, I might be able to use them for comparison to others in order to find similarities.
For instance—fractals show up throughout nature; if I can manage to describe objects in
those terms, I might be able to find other objects that share the same patterns and use
them in unexpected places. Similarly, architecture tends to be similar across various
regions—a skin that works well for one tract home might provide a great starting point
for another in the same neighborhood, or perhaps be shared among everyone in the
neighborhood to form the basis of something that, from afar, would look like a garden of
anemones. A parking lot full of mail trucks might be made to look like a herd of giant box
turtles.

This is the (very underdeveloped) algorithm I have in mind—except I need to adapt it to
capsules instead of bounding boxes

1. Function GET_MARIONNETTE { int n, string obj_file, string outfile}
a. n is a number representing max iterations (precision)
b. obj_file is a *.obj file
c. outfile is the name of a series of *.obj output files:

i. outfile_0.obj though outfile_n.obj
2. Ignore everything except point data

a. (Faces and face normals will be considered as algo is refined)
3. Allocate: i <- 0
4. Allocate: joints <- a vector to hold points
5. Allocate: points <- obj_file vertices
6. joints.add:

Function ENCAPSULATE { i, n, points }:
a. Returns a vector of points

7. If i < n or points.size < 2
8. Find the bounding box
9. Find the center of mass pCi
10. Add pCi to a new vector of points called joints
11. Divide the points into two sets, divided along the longest axis, above and

below pCi
12. Function ENCAPSULATE {i, n, pCi-1, points/2 (upper)}
13. Function ENCAPSULATE {i, n, pCi-1, points/2 (lower)}

I’m still not sure how I’m going to record the centers of mass, but when connected they
should form a “skeleton” of sorts, which I should be able to use to draw cylinders. I’ve
drawn up a set of images that show the iterative process using boxes:

The preceding sequence represents 5 iterations of finding the bounding box,
finding the center of mass, then dividing the box through a plane perpendicular to the
long axis and recursing. If you imagine a point stored at the center of every pair of split
boxes, upon connecting those points you should have a workable skeleton.

 Once I’ve reworked the algorithm to use capsules, it should be even better—for
every step I can store the points and the vector to the next point as nodes in a tree, with
or without the radius of the cylinder. I believe(?) that, with some work, it would be a
good format for quick comparisons—you could compare the “skeleton” of your object with
objects in the database and bring up the ones that were the most similar.

