
 CORE 13

Jereis Zaatri
CSC 491

Project Advisor: Zoë Wood
Spring Quarter 2011

1

Table of
Contents

Introduction 003

Project Overview 004

Related Works 005

Algorithm Overview 007

Algorithm Details / Design 008

Results & Future Plans 011

Screen Shots 012

2

Introduction:

In the past, starting any company was a costly ordeal as all

aspects of business involved a great deal of cost from production to

sale. For instance an author would need the equipment to write the

book, an editor to proof read the book and a publisher to distribute the

book. With the advent of the digital age, getting content out can all be

done behind a computer with little to no cost.

Among the many forms of entertainment, the gaming industry is becoming a prominent industry

rivaling that of the movie industry. Today, prominent publishers like Electronic Arts (EA) are making

headlines with game titles such as Dragon Age and the Battle Field series. Working with such

prominent firms has its conveniences, but as an independent developer, there is a lot more control over

the production and ownership of the intellectual property. Plus, as an independent developer, name

recognition isn't a necessity like other studios that need financing from such publishers. As leader of the

Core 13 project, pursuing this entrepreneurial spirit is at the root of this project. During the production

of Core 13, every element of game design, from editor to game physics was explored, leaving no

element outsourced to an external library or application.

The Core 13 project is composed of a 3 member, Seth Black, Josh Maass and Jereis Zaatri. The

project is led by Jereis Zaatri and was produced in the span of two quarters. The objective of the project

is to produce a game from scratch with the possibility of marketing the game through on-line retailers.

Progress of the project, oversight and approval of the project was done by the magnificent and all

powerful, professor Zoë Wood.

3

Project Overview:

Core 13 is an arcade styled mech battle game. Unlike other mech games, rather than emphasize

realism with a slow and clunky metallic giants, the player is provided a fast paced battle that leaves no

time to idle around. As fun as it sounds to pilot a giant robot tearing down its surroundings, such games

fall short when the players patience is tested. At heart, such games are just first person shooters which

requires a fast paced game play. On a more technical side, the Core 13 project is as much a game as it is

a technique for making a game. The project includes a level editor and model builder built from

scratch. Everything down to the texture was built from scratch with audio being the only exception.

This project was done with cross platformed libraries (GLUT, freeGlut, SDL, etc), allowing the game

to be built for mac, Windows and Linux.

As for the people behind the Core 13 project, a team composed of two computer engineers,

Jereis Zaatri and Seth Black and a computer science major, Josh Maass started the project. The origin

of the game title comes from the fact that the player needs to manage energy cores as means for the

player to choose between being powerful yet vulnerable by enabling all core or slow and safe, by

enabling a few cores. As for the number 13, the F-keys were going to serve as a means to toggle the

cores and at the time of the title creation, the team leader Jereis Zaatri thought there was an F13 key.

The idea for the game stems from a child hood interest in huge battling robots and seeing large

explosions. Unfortunately the ideal mech battle hasn't

been made yet. Most end up being too slow or too short

of a game. As for the story line behind the game; you, an

average guy from the future, a future where the old cities

are no long inhabitable, wars are thing of the past, the

entertainment industry is booming and a new form of

4

entertainment has emerged. In the future, people entertain themselves by battling it out with remote

controlled decommissioned military hardware like drones and mechs. Rather than play in some virtual

world with virtual characters, players duke it out in these uninhabitable cities that need to be leveled for

new development and what better way to tear down a decrepit city than with giant military hardware.

For now the game will focus on the game play, but as this project is furthered outside of the academic

realm, the story line will be emphasized.

As for the gameplay, power

management is the driving theme of the

game play. Players can choose to to go all

out and enable all cores, which leaves the

player more susceptible to damage or few to

be slow and protected. In addition, the cores

can be turned into weapons by launching

them at you enemies for massive damage.

Related Works:

Mech games aren't new, but they haven't reached a mainstream status as

other genre of games like role playing games like Final Fantasy from Square

Enix or first person shooters like the Halo sereis from Microsoft. As

mentioned in the overview, mech games often fall short for one reason or

another. For instance Steel Battalion, published by Capcom is quite the eye

catcher with is HUGE controller (figure 1), but with it's $200 price tag and

simulation like controls, it wasn't a game for the mainstream audience. If

there's anything that'll scare off a mainstream audience, it's a huge price tag

5

Figure 1: Steel Battalion
controller

and a complex controller.

On the flip side, there's games like Phantom Crash by

Genki. Such games are a blast to play. They're fun, a quick game

to pick up and fast paced. Unfortunately Phantom Crash suffers

from one key short fall, it's too short. With only three level and so

many ways to upgrade your mech, eventually the player exhausts

every option in the game.

As for creating the game engine, besides being a course requirement there are benefits over

using an existing engines. In this case, the Torque Game Engine will be used as a comparison as it is a

familiar game engine to the group leader, Jereis Zaatri. Torque uses a scripting language called Torque

Script which is an object oriented language, similar to Java. Unfortunately there are a few short falls to

using a scripting based engine. Overhead is often a short fall of such engines. With so much going on in

between the native machine code and the abstracted scripting language, there is a vast window of error

that can take place. Debugging often becomes a hassle under such platforms as a large gray area exists

between the script language and the machine code where a bug can exist. Particularly in the case of

Torque, the developer is provided both the script level and source code of the engine. Development on

such a platform becomes a juggling act as both sides of the spectrum are managed by the developer. In

the end, using such platforms becomes a trade off between platform independence and control.

In contrast to Torque Script, developing a game engine entirely

in native machine code eliminates the “smoke and mirrors” of a higher

level abstracted language. In addition, no overhead needs addressing

to add functionality from the native level as the entire engine is

developed at that level. With the absence of such abstractions, the

developer has a clearer view of all the components of the game.

6

Phantom Crash (Genki) | Source:
ign.com

Algorithm Overview:

Below is a list of algorithms and relate work done each group member.

• Game Engine Cycle: Jereis Zaatri

• Physics & Spacial Ordering: Seth Black

• Game Structures: Jereis Zaatri

• Fog Design: Josh Maass

• Animation Specifications: Jereis Zaatri

• Mech Leg Animation: Josh Maass

• 3D audio: Jereis Zaatri

• Shaders & Shadows: Seth Black

• View Frustum Culling: Jereis Zaatri & revised by Seth Black

• Display List: Jereis Zaatri

• Alpha 32 bit BMP Image Reader: Jereis Zaatri (modified version 24 bit Bit Reader by Zoe Wood)

• Map Bounds Animation: Josh Maass

• Line of sight: Seth Black

• Map Editor: Jereis Zaatri

• Model Editor: Jereis Zaatri

7

Algorithm Details / Design:

➢ Game Engine Cycle

Looking at figure 2, there's doesn't seem to be a lot

going on and it's often the over looked due to it's simplistic

nature, but there's important things implied by the design.

Notice that the controls are polled, which significantly

effects performance. Storing events and polling them later

prevents the game cycle from being held up by a build up

of redundant events in the event queue. In the early builds, this problem was observed and resolved.

➢ Game Structures

A central design was chosen over a modular design when developing the game engine. There is

both a coding benefit and an organizational benefit to a central design. With only a single global

structure to query information, far few headers have to be included and all game state information

originates from one place.

➢ Animations

Like any other form of content, animations would

have been very time consuming to produce. For this reason,

animations were streamlined to an algorithm. In addition,

since a mech is nothing more than a giant robot, a

mechanical motion best suits the animation of a mech,

which is what an algorithm is ideal for. The origin of this

algorithm originates from looking at the motion of a cyclist.

The feet of a cyclist move along a circular motion around a

8

Figure 2: Game Cycle

 Figure 4: mech leg animation

gear with a diameter less than the distance between the

hip and knee. By calculating the distance produced by

the ankle and hip, and knowing the distance between

ankle to knee and knee to hip, the angles for each

segment of the mech leg can be determined. Such

algorithms can also be applied to arms as well. In

regards to using this algorithm for animation, since a

sine and cosine wave can be used to produce the x and y

position of the circular motion of the ankle; all that's left

is to apply the algorithm to find orientation of each of the leg segments. Figure 3 and 4 is a

visualization of the computation done to calculate the leg position. First, find the position of the ankle

as shown by the green circle using sine and cosine. Next find the distance between the angle and hip as

shown in red. To find the remaining two angles in green, determine the angle the red line produces

with the vertical line and with the two know leg segment lengths (in blue) and a little trigonometry, all

the necessary information is produced.

➢ 3D Audio

3D audio is produced by separating stereo audio to left and right audio streams using an audio

application. To find the appropriate ratio of left to right speaker volume, the horizontal angle between

the source and player is calculated. From the angle, the ratio is determined. From this point the distance

is determined to find out how much the audio is faded. Once these two calculations are done, the SDL

mixer library is called with the needed audio streams and the desired volume levels.

9

Figure 4: leg animation

➢ View Frustum Culling

One of the greatest bottle necks to drawing a

virtual world is drawing geometry that doesn't show

up on screen. By filtering out unnecessary geometry,

the world can be rendered at faster rates. The view

frustum is the volume that your eye sees. Figure 4 is

an illustration of a dot inside (B) and outside (A) of

the view Frustum. The process for producing the

algorithm involves producing the plainer equation of

each of the six sides of the frustum. Once obtained,

points can be applied to the plains to check what side

they're on. Since the normals and the plainer equations are closely related, figure 5 shows view frustum

culling in the context of vectors.

➢ Map Editor

Shown in figure 6 is a map loaded into

the map editor. Editing is done on a plainer

based system. Rather than deal with the

complexity of three axis of motion, the editor

provides greater control with two axis of

motion and three camera orientations to pan the

camera with.

10

Figure 5: view frustum of bottom plain

Figure 6: Map Editor

➢ Pseudo Models

With a limited amount of time, content had to be

generated in a rapid process. The solution was to develop a

“pseudo model,” a very light weight model that only

stored texture points and static geometry. The idea behind

using a pseudo model is that complex geometry can be

reached by means of combining groups of simple

geometry. In addition, the precision of the bounding box

bordering increase as fewer gaps are take up by the

bounding box. Figure 8 demonstrates this advantage, by showing a 3D V composed of one model and

of two models.

Results, Conclusions and Future Plans:

From an implementation stand point, the project is a success. Game content was able to be

streamlined enough for two man team to continue the project. Most of the requested items made it into

the game. Of the items remaining in the project as of the writing of this report, a story line hasn't been

fully established and AIs still lacks a personality.

As for the outlook from a group cohesion standpoint, things haven't gone as planned. A few

lessons learned from this project are not to assume your team mates will come into the project with the

same level of enthusiasm for the project and that your team mates may not be the most social people on

earth. For anyone planning to take the role of leader, be prepared to be a bit forceful as some members

will likely not speak up when tasks are assigned. When the project was started, the project was left

open for team members to provide their own input. Ultimately as team leader, gaging the social nature

11

Figure 8: advantage of simple models

of the team and accommodating to it is key for success. If the team is too passive, a more aggressive

and rigid approach must be taken, on the flip side, if everyone comes to the table with their own ideas,

be prepared for some flexibility as disenfranchising team members is a formula for failure.

In regards to future plans, the game is going to be improved and the code will eventually be

adapted to serve as a game engine for future games. Among the improvement, the AI will be upgraded

to react to the current game state as well as interact with the player though preset dialogs. Graphically,

more details will be worked into the mech and world design. An on-line component will be added and

lastly a custom controller will be added to the game (see screen shots).

Screen Shots:

Enjoy the screen shot of the game.

12

Logo Screen Main Menu

Level Select MenuExploding Core

13

Enemy Mech

Enemy Hover Drone
Enemy Turret

Custom Game Controller

