
Zombs

Jordan Gasch Senior Project 2011

Team Zombs
Alan DeLonga, Evan Klein, Jordan, Gasch, Reece Engle

Introduction
The Zombs project was initially conceived

as a proposal in our CPE476++ class, of a

game that would be a mix between

bomber-man and Diablo II, using cell

shading. As the project progressed we

chose to follow a more ominous ambiance

with our models, lighting, camera angle

and background sounds. By having a

democratic atmosphere, where all

members gave input, our project became

a cohesive culmination of our ideas. Our

team was initially 5 members but due to the inabilities of one of the members we only had 4

for the second phase of implementation. Our members are Alan DeLonga, Evan Kleist,

Jordan Gasch, and Reece Engle. As we started the project we were given a list of

technologies that were mandatory to incorporate into the game in particular:

Technology Authors Technology Authors

Real-time
movement/update

(All) Level Editor Reece Engle

View frustrum culling Evan Kliest Smart Camera Evan Kliest
Particle generation Alan DeLonga

Jordan Gasch
Bomb Throwing Evan Kliest,

Alan DeLonga
Spatial data
structures

Evan Kliest HUD Alan D., Reece E.,
Evan K.

Per Pixel Shading Jordan Gasch Inventory Alan DeLonga

Collision detection Evan Kliest Wall Transparency Evan Kliest
Models Alan DeLonga Model Animations Alan DeLonga
Artificial Inteligence Jordan Gasch Shadows Jordan Gasch
Sounds Alan DeLonga,

Evan Kliest
Bomb Particles Jordan Gasch

Along with these technologies we had to create a cohesive gaming experience. Since each

Start Screen for Zombs

member incorporated different aspects I will only go into detail on the parts I helped integrate.

The game was coded the project using C++and used the libraries; SDL, libSDL_mixer (for

sounds), libSDL_ttf (for text), libfreetype, libGLEW(for models, and shading). Our game was

inspired by Diablo II’s camera view and model interaction. We then altered it by locking the

camera behind the player, dropping the angle, and pulling the camera in (instead of above)

when the camera collides with walls.

With the recent boom in the video game industry, the design and development of games has

become an extremely competitive and sought-after job market for software developers. In

2009 the video game industry generated over 19.6 billion dollars, this overwhelming revenue

surpassed both music and movies. With this large market hardware is constantly being

optimized to handle the growing needs of ‘cutting-edge’ video game systems.

A modern computer is capable of performing billions of computations per second. However,

video games are made to represent entire worlds and sometimes can be expected to

represent large sets of data that goes around. Performing operations without concern for

efficiency can easily bog down a computer’s processor and create an unplayable game. This

makes it more important to optimize solutions than in typical programming applications.

The Zombs project was an appealing choice for our group with the present popularity and

demand for video games, and the opportunity to put to practice many essential elements of

Computer Science such as design, teamwork, and implementation. Zombies have been

increasingly appearing in all forms of popular culture. Regularly depicted in horror and fantasy

based entertainment, zombies have captured the

interest of millions of people world wide.

Software projects have grown in significantly in

size over the past decades, and as a result

applications are rarely worked on individually in

practice. This makes being productive in groups a

critical skill exercised regularly while working in

industry as a software developer. Our ideas were

inspired by popular video games (in particular

Diablo II Blizzard 2000

Diablo II) and other forms entertainment as a reference for the look and feel we wanted for

our game. The overwhelming workload made task prioritization and assignment an essential

dynamic that continually evolved over the 20 week implementation to suit the needs of each

particular milestone.

The zombie genre has become extremely popular in the current generation and this theme

initially made our group very excited to begin work. However, incorporating the Zombs story-

line into the game mechanics turned out to be more of a challenge than any of us had

anticipated. The main issue was that each team member had a unique idea for what the

game should be and these discrepancies led to a slower democratic design process.

Our main method of introducing story into the game was by adding objectives to our levels. In

addition objectives also helped give the player a sense of direction. We also were able to

introduce key game play concepts like how to run, fight, and navigate through the levels.

Although, during play testing we did notice that our objective based system was ignored by

some users. Ignoring objectives resulted in confusion and eventually detracted from the

player’s interest in the experience. Yet, user’s that played through the levels by following the

objectives, as intended, yielded more favorable feedback about the game play.

Game Play
The story of our game is that the player is a survivor in a zombie apocalypse. The player

wakes up in a hospital after being in an accident, the player's main objective is to find his wife

who was also in the car. The player's walking is labored so he can only sprint for short

distances. As the player progresses through the level the story unfolds and the player finds

himself in a zombie infested hospital. Throughout the game the player view the inner thoughts

of his character which help lay out this story line and give hints to game play aspects. The key

game controls are “wasd” to move, mouse for camera rotation, left click melee and space bar

weapon use

Since our team is creating a zombie oriented game in the horror genre the aesthetics were a

very important component of our game. This includes choosing the right models, textures,

and atmospheric lighting in our game. We wanted our game to give the player the feeling that

they were trapped searching through an “abandoned” hospital.

Shadows

In order to create this atmosphere shadows needed to be implemented in a way which looked

realistic and natural. In order to produce this effect our team originally worked with shadow

volumes. This was previously implemented in Doom 3 using Carmack's stencil shadowing

algorithm.

We created a system for shadow volumes which is the process of using the stencil buffer to

render shadows quickly enough to be used real time. For this technique for each light source

it is necessary to make multiple passes for each light which fill the stencil buffer with values

depending on how far into shadow an object is. Lit objects have a value of 0, unlit objects

have a value of +1 for each shadow cast upon them. This approach was created by John

Carmack of id Software and used in the development of Doom 3

(http://en.wikipedia.org/wiki/Shadow_volume) However because of the way our geometrical

data was stored using our md2 loader it was nearly impossible to integrate with our project

which required us to take a different approach.

In the final version of our project shadows are created

using plane projected shadows. This creates a shadow

matrix by taking the cross product of the light position and

the ground plane and multiplying it by the dot product of

the ground plane. This causes geometry to be drawn from

the angle of the light allowing us to cast shadows on the

floor which change based on the angle of the light.

Visual representation of shadow volumes
Example of Carmak's stencil shadow
Doom 3

Projected Lighting Equation

http://en.wikipedia.org/wiki/Shadow_volume

Before shadows are drawn the depth buffer is disabled so that the shadow is drawn flat on the

floor. The alpha level is then set to .5 and alpha blending is enabled. The color is set to black

so that the shadow draws transparent and black on the floor.

While this technique requires us to

redraw all of our object geometry it

does not require multiple passes which

allows our game to run at higher

speeds on low end computers. Creating

shadows was an extremely difficult task

but the end result was well worth the

time. This also allowed us to use the

old drop shadows we had in place as

enemy health bars which was a much

needed improvement to our game

design.

Given more time to work with the project creating a shadow volume system by rewriting our

model loader would be the next step for shadows in our game. Another option would be to

implement projected textures so that shadows will appear on walls. However these two

approaches would have a negative impact on the speed of the game and would require the

player to use a high end computer to play our game.

Artificial Intelligence
Another part of our game which was important to our team was creating artificial intelligence

for the zombies. Since the enemies in this game are zombies we only needed simple AI which

allows zombies to find the player from any position on the map and head in that direction. The

algorithm we used was a modified A* algorithm which resembles an algorithm used Pacman.

However in Pacman the ghosts are each trying to find different optimal squares where as our

AI only seeks the player.

Projected Shadows on the ground

Our AI system uses an modified A* algorithm. This algorithm is modified in that instead of the

zombie position finding the shortest path to the player, the player finds the shortest path to

every square inside of the players awareness radius. The awareness radius is a value which

changes based on the way the player plays the game. As the player is more aggressive and

uses more powerful weapons the zombies become more aware of his position, increasing the

awareness radius. This allows for AI computations to only be made once per frame for the

player rather than per zombie. In order to account for walls we created a AI map. This map

contains the locations of all the walls and objects is a file of 1's and 0's created by the level

editor. This quick map allows the AI calculations to be made so that the path calculations

include the zombies being unable to walk through walls and other objects.

The way this algorithm works is on every update

the AI handler obtains the players position and

awareness radius. This then populates the 50x50

grid with values depending on how far away the

square is from the player using a breadth first

approach. These values decrease with distance

from the player. Zombies then check the

surrounding grid and choose the space with the

lowest value.

Originally we placed doors in this map and had them disappear when they were opened

however we found it much more interesting for the zombies to be waiting outside the door

clawing at it if the player had high awareness. The zombies also will modify their path if

blocked by other zombies. Originally zombies would stick together because they were all

trying to take the same path if they were near each other. Now zombies will modify their path

if blocked which allows for swarms of zombies without them being stuck together.

By breaking up our grid into a 50x50 grid it simplifies the problem of AI by allowing the zombie

to do a simple check of if a space near it is open and desirable. The zombie does this by

searching the 9 squares around it, choosing the square which leads to the shortest path and

then moving there. This approach allows zombies to move around walls and through doors

easily and find shortest path calculations per frame.

Example of AI Grid

Given more time we would have liked to write the algorithm so that the zombies took into

account each other and objects in the level so that they would not get stuck in doorways

however this was a major undertaking and with our team being only 4 members we decided it

was not the most important issue that needed to be dealt with. Another improvement that can

be made is using a larger grid for the same amount of space and using objects bounding

boxes to create the grid. By using a larger grid and bounding boxes of objects there would be

greater accuracy in the zombies ability to find the shortest path and objects in the level would

be included in finding the shortest path. Currently only walls are shown in the 50x50 grid.

Per Pixel Lighting
Lighting was another point of development that the look and feel of our game was reliant

upon. We were inspired by Diablo II's lighting and the mentality that we didn't want the player

to be able to see everything in our map easily however this type of a system was very difficult

to create in 3D space. To solve this problem our team uses per pixel lighting calculations and

GLSL to create a dark atmosphere for the player to move in.

Lighting was created using GLSL per pixel calculations using the vertex and fragment

shaders. Originally calculations were done using the Opengl fixed function graphics pipeline

however this caused many undesired effects such as our whole level being too bright and

shading being calculated per vertex rather than per pixel. This caused lights on large surfaces

such as walls to be stretched and for ambient lighting to be calculated throughout the level

with no attenuation.

Originally our we wanted our game to have a look and

feel inspired by the comic book the walking dead. We

wrote a shader which used cell shading. This effect

was created by calculating lighting by clamping the

Lambert term to a value of .3, .6, or 1.0 depending on

which value it was closest to. While this was a cool

effect it ruined the atmospheric feel of being in a dark

hospital. As soon as we placed realistic lighting in our

game our team knew that this was the new direction
Cell Shaded Zombs

we wanted our game to go.

The lighting was created by using per pixel lighting calculations using the Phong model for

lighting including attenuation. This allowed our game to have lighting which looked realistic

and dark at the same time. We struggled for a long time as a team on how light or dark our

game should be and after many iterations we found values we were happy with. Working with

shaders and writing our own lighting calculations was extremely satisfying and allowed us to

manipulate the look and feel of the game greatly.

Another problem our team ran into was the

8 light Opengl limitation. Opengl limits the

number of lights in a scene to 8 which was

less lights than our team wanted. This

required us to write a light handling system

which turns lights on and off based on their

distance from the camera. This allowed our

team to go past the 8 light limitation and

create as many lights in our scene as we

wanted so long as less than 8 lights at a

time were visible from the current view point.

This gave Zombs a great deal of personality and allowed for us to easily manipulate the

lighting in our scenes. Given more time to work on this project more effects and shaders

Zombs Multiple lighting

Visual Representation of the Phong Lighting Equation

would be added to allow greater manipulation of the pixel lighting and perhaps make a more

sophisticated shader to attempt cell-shading again.

Works Cited

"Diablo 2." Blizzard Entertainment.

ttp://us.blizzard.com/en-us/games/d2/>.

Garrein, Kris. "DevMaster.net - Real-time Shadowing Techniques."

DevMaster.net - Your Source for Game Development. DevMaster. Web. 31 May 2011.

<http://www.devmaster.net/articles/shadows/>.

"Real Time Stencil Shadows with Multiple Lights." .

<http://www.angelfire.com/games5/duktroa/RealTimeShadowTutorial.htm>.

Sanglard, Fabien. "ShadowMapping with GLUT and GLSL." Fabien Sanglard's Non-blog.

<http://www.fabiensanglard.net/shadowmapping/index.php>.

"Shadows, Reflections, Lighting, Textures. Easy with OpenGL!" OpenGL - The Industry

Standard for High Performance Graphics.

<http://www.opengl.org/resources/code/samples/mjktips/TexShadowReflectLight.html>.

Staff, Inquirer. "Creative Gives Background to Doom Iii Shadow Story- The Inquirer." THE

INQUIRER - News, Reviews and Opinion for Tech Buffs.

<http://www.theinquirer.net/inquirer/news/1019517/creative-background-doom-iii-

shadow-story>.

Tsiombikas, John. "Volume Shadows Tutorial."

Http://nuclear.mutantstargoat.com/articles/volume_shadows_tutorial_nuclear.pdf. Web.

<http://nuclear.mutantstargoat.com/articles/volume_shadows_tutorial_nuclear.pdf>.

