
Third Degree
A Senior Project

presented to

the Faculty of the Computer Science department

California Polytechnic State University, San Luis Obispo

In Partial Fulfillment

of the Requirements for the Degree

Bachelor of Science, Computer Science

by

Joshua Marcelo

June, 2011

Abstract
Advancements in computer graphics have paved the way for creating far richer worlds with even greater

detail than ever thought imaginable. Video games take advantage of this continuous technological growth in

order to create worlds that capture the player's attention and immerse them in a visually intriguing playground.

However, video games still follow the same rules of all other games: to provide a provocative activity through a

playful and fun experience. Third Degree seeks to implement advance graphical technologies while creating a

fun and compelling experience for the player.

i

Acknowledgments
Project Advisor:

Game Programmers:

Differed Rendering Programmer:

Menu/Splash Screen Designer:

Graphic Artists:

Sound/Music Composer:

Writers/Voice-Actors:

Professor Zoë Wood

Tim Biggs

Joshua Marcelo

Jon Moorman

Mark Paddon

Michael Sanchez

Chad Williams

Ryan Schmitt

Hector Zhu

Josh Holland

Ben Funderberg

Tom Funderberg

Mikkel Sandberg

Sam Thorn

Travis Cox

Nora Doane

Mitch Epeneter

Max Sopkin

ii

Table of Contents
Abstract... i

Acknowledgments.. ii

Introduction..1

Why Video Games?..1

Course Structure...1

Project Overview..1

Genre..1

Story...2

Game Mechanics..2

Look and Feel...2

Project Design..3

Editor..3

Engine..3

Game..3

Related Works...4

Trine...4

Maya...4

Doom 3...5

Algorithms Overview...6

Algorithm Details...7

Editor Object Transformations...7

Picking...7

Projection of Axis to Camera Perspective..8

Representing Rotations...9

View Frustum Culling...11

Player Control...14

Enemy AI..15

Combat...16

Skeletal Animation...17

MD5 Structure..17

Building the Model...18

Updating Positions...19

Rendering...20

Results..23

Accomplishments...23

Play-test Feedback..24

Development Analysis..24

Conclusion..25

Future Work..26

References..27

Introduction
Why Video Games?

Video games have been driving hardware and graphics development ever since the rise of the first video

game consoles. Having a senior project that consists of making a substantial video game is an excellent way to

learn about and implement many different types of graphics technologies. Building a video game also provides

more experience in all aspects of real world applications development. From the processes of design to team

management, the process of building a game will build experience in the many aspects of software engineering.

For my senior project, I choose to implement a 3D interactive video game related to the platforming action-

adventure genre.

Course Structure
The Third Degree game began in Cal Poly's Winter 2010, CPE 476++ - Real-Time 3-D Computer

Graphics Software Systems class. The focus of the class was to create a video game based within a 3-D

environment, and course requirements called for us to integrate certain graphical technologies into the game. In

CPE 476++, Mark Paddon, Chad Williams and Michael Sanchez had the initial idea for a side-scrolling

platformer built within a 3-D environment called Third Degree. Various people assisted in the project in order to

provide assets and support by way of music, concept art and models, as well as general story development and

voice acting. Tim Biggs, Jon Moorman and I then joined as programmers to also work on the game throughout

CPE 476++, as well as into the Spring 2011 quarter as a senior project where our work on Third Degree

continued with improvements to graphical technologies while also fleshing out the foundation for the story.

Project Overview
Genre

Third Degree is a 3-D side-scrolling action-adventure game. The game takes place in the mind of the

main character where the player is immersed in story driven gameplay. Third Degree combines story elements,

traditional platforming and interesting game mechanics to provide a unique player experience.

Story
The game follows the story of a convict kept in confinement who is given a chance at redemption

through a special testing program. A recent alien artifact has crash landed on the Earth, and a panel of scientists

are conducting specialized experiments to find out the purpose of this artifact. The convict is one in a line of test

subjects given a chance of freedom through experimentation. When the artifact is fitted on the convict's head, he

is placed in a virtual environment that resembles 1860s England. The convict, though determined to gain his

freedom, soon feels the grasp of insanity closing in around him, and the only way out is to either finish the

virtual simulation, or die trying.

Game Mechanics
The player's health is represented by a Mental Deterioration Bar (MD Bar), representing the player's

sanity level. Over time, the player's mental health slowly deteriorates and the MD Bar increases over time, also

increasing whenever the player takes damage from enemies. As the player traverses a level, they will come

across various enemies that will shoot the player, and the player must kill them by firing back with their own

weapons in order to move on and reach the end of the level. Should the player's MD Bar fill up completely, the

player will die. The player also has access to special abilities that are related to their mental health. These

abilities do not have to be acquired and as of the current release there are two different types of abilities.

The first ability is the “Focus” ability and is used to decrease the player’s MD Bar by holding the ‘f’ key.

In addition to lowering the MD Bar, this ability will also release a shock wave proportional to the amount of MD

that was focused. This ability is very crucial in game play as it is the only ability that will help the player balance

the MD Bar. The second ability is known as “Fire Legs” and is used to help the player reach distances not

normally reachable by a standard jump. This ability when used propels the player towards the direction of the

cursor by an amount proportional to the current MD level.

Look and Feel
Third Degree seeks to represent an intense, hectic environment for the player by emphasizing the

characters mental health and overall sanity. The player's sanity level is further represented by the 3-D

environment, where the world slowly transitions between two time eras depending on the player's current mental

health. The first era is set in 18th century, England-esque city scape, while the second is a futuristic, alien world.

These two contrasting periods hopefully convey to the user an overwhelming yet fascinating experience.

Project Design
The source code was under version control and the primary language was C++. The repository for our

entire project was hosted on Unfuddle.com. All team members were given accounts and access to the repository

to commit and update changes to their projects accordingly.

The design of the project as a whole was broken up into three aspects: engine, editor and game. Third

Degree was built within Microsoft Visual Studio 2008. For our editor's User Interface, we used Nokia’s Qt

libraries and tools. The Visual Studio plug-in was used to integrate Qt and allow us to design the Level Editor.

The game and engine also made use of NVIDIA's PhysX physics engine in order to handle object

movement and collision simulation. Initially, our project used the open source Bullet Physics Engine, but due to

a lack of documentation, integrating it into our project become cumbersome and problematic. After CPE 476++,

our team decided to move away from the Bullet Physics Engine and redesign our game around PhysX due to its

detailed documentation and the wider variety of physics simulation tools.

Editor
The editor provides an interface for the developers to visually create the levels for the Third Degree

game. The editor allows the placement of all game objects, spawn points and lights to create maps to be used

within the physical game.

Engine
The engine handles all graphical applications of Third Degree by handling the rendering of the game by

referencing the objects and particles based upon their transformations and draw methods. The engine also adds

all lights to the environment and sets up the differed rendering to light the world.

Game
The game manages the core game, handling the game state by utilizing the PhysX physics engine in

conjunction with the Third Degree game mechanics. All user interaction and game logic occurs at this layer of

the game in order to set up game state to be drawn by the engine.

Related Works
While there were many influences for Third Degree, the following works both influenced the gameplay

as well as helped to provide examples for how to approach certain tasks that were used for the different

components of Third Degree's design.

Trine
The general mood and feel of the game were greatly influenced by this side-scrolling platformer,

Frozenbyte's Trine. Visual inspirations, as well as overall feel of the gameplay mechanics such as movement,

puzzle object interaction and elements of the combat system helped in making decisions for Third Degree. In

Figure 1, a screenshot for Trine is shown depicting some of the art style and overall mood that influenced some

of the design and gameplay of Third Degree.

Fig. 1 – Screenshot for Frozenbyte's Trine

Maya
Some of the editor's functionality, particularly the transformation tools, were modeled after many 3-D

graphics software, particularly Autodesk Maya. Figure 2 shows an example of the transformation tools used in

Maya.

Fig. 2 – Examples of the Translate, Rotate & Scale tools in Autodesk Maya.

Doom 3
The animation in the game utilizes the MD5 format used in a number of 3-D games, most notably in

Activision's Doom 3. The MD5 structure created for Doom 3 provides a robust and efficient way for representing

animation. An example model from Doom 3 using MD5 is depicted in Figure 3 below.

Fig. 3 – Example of a MD5 model used in Activision's Doom 3

Algorithms Overview
The table below provides a list of the technologies implemented throughout the entire Third Degree

project as well as the authors that contributed to that particular item. For more information about each

technology, please reference the author's Senior Project write-up.

Technology Author(s)
High Level Design Jon Moorman, Mark Paddon

Editor – Object Transformations Joshua Marcelo

Editor – Main Functionality Chad Williams

Map Loading/Saving Jon Moorman

Menu System Michael Sanchez

Octree Mark Paddon

View Frustum Culling Joshua Marcelo

Core Engine Optimizations Chad Williams

Physics Engine Integration Tim Biggs, Jon Moorman, Mark Paddon

Object-Joint System (a.k.a. Puzzle Objects) Tim Biggs, Jon Moorman

OBJ Importer Michael Sanchez, Chad Williams

Player Control/Movement Joshua Marcelo

Enemy AI Joshua Marcelo

Combat System Joshua Marcelo, Tim Biggs, Mark Paddon

Focus Mark Paddon, Joshua Marcelo

Fire Legs Implementation Tim Biggs, Michael Sanchez

Animated Textures Mark Paddon, Michael Sanchez

Skeletal Animations Joshua Marcelo

Glow Shader Jon Moorman, Chad Williams

Particle System Chad Williams

GLSL Shaders Chad Williams

Deferred Rendering Ryan Schmitt, Chad Williams

Sound Design Mark Paddon

6

Algorithm Details
The following is some of the more complex processes and algorithms I implemented into the game.

Editor Object Transformations
The level editor is created with the intentions of allowing non-programming designers working on Third

Degree to be able to fully design the layout of a level with ease. One major facet of this is being able to place

and manipulate objects into a map. In order to this, user feedback for mouse actions need to occur in terms of

selecting objects on screen, as well as transforming objects with according to the direction of the mouse with

respect to the current angle of the camera. This allows the user to be able to translate, scale and rotate objects on

the fly as they properly set up various objects, spawn points and lights into the map.

Picking
In order to transform objects, the user must first be able to select objects with the mouse. Object picking

is used in order to determine which object the user selecting. In order to do this, a new scene rendered and is

processed OpenGL, but this time only rendering and analyzing the pixels around the area that the user clicked

the mouse.

//set the mode to select
glRenderMode(GL_SELECT);
//initialize the namestack
glInitNames();
//load a junk name to start
glPushName(0xffffffff);

//change matrix mode to projection for viewing
glMatrixMode(GL_PROJECTION);
//push matrix to save (new matrix will be changed for use in picking)
glPushMatrix();

//reset current matrix for picking projection
glLoadIdentity();
//set up projection for picking region around mouse
gluPickMatrix((GLdouble)_lastXPos,

(GLdouble)_viewport[3] - _lastYPos, 1.0f, 1.0f, _viewport);
//reset projection desired projection
gluPerspective(45.0, _width / _height, 1.0f, 1000.0f);

Then, the names of all objects drawn in that pixel area are added to a stack, and a depth test is used to determine

which object is closest to the camera's location and perspective. After which the stack is analyzed to find the

object with the shortest distance.

7

//set ptr to start of buffer
ptr = (GLuint *) buffer;
//set min to first object's depth - minZ
minZ = *(ptr + 1);
//traverse hits and print the names of the objects hit
for (int i = 0; i < hits; i++)
{

//start the list of object's names at ptr position to “names”
names = *ptr;
//check if zmin of current stack item is lowest
if((*(ptr + 1)) <= minZ)
{

//save data for lowest z-depth:
// number of names, minimum depth, and names ptr

numNames = names;
minZ = *(ptr + 1);
minNames = ptr + 3;

}
//advance the pointer to list of names - 4th element in array
ptr = ptr+3;
//go past the list of names at this depth
ptr += names;

}

Now that the object has been selected, transformations can be done.

Projection of Axis to Camera Perspective
All transformations of an object are done with respect to the x-axis, y-axis or z-axis. Additionally, the

camera in the editor is free roaming so that the user can view the map at any angle when building a level.

However, mouse movement across a screen for various transformations occur according to the current camera

view, and since the camera perspective of the map can be positioned or angled in any number of ways, the

perspective of objects and the different directional axes can be in number of positions and angles themselves.

This can greatly affect the directions a user wishes to manipulate the objects with their mouse. Figure 6 gives an

example of how an axis can be manipulated at different angles in relation to the camera.

Fig. 4 – Example of the translate tool showing how an axis
will need to be transformed at different camera angles.

8

Therefore, since transformations along a specific axis needs to reflect the direction of movement of the

mouse according to a certain camera perspective, the axis the transformation is occurring must first be projected

onto the plane of the screen.

//direction camera is pointing
NxVec3 cam_vect(_camera.x - _lookAt.x, _camera.y - _lookAt.y,

_camera.z - _lookAt.z);
//normal of the plane the camera lies on (ie, the screen)
NxVec3 cam_norm(_lookAt.x - _camera.x, _lookAt.y - _camera.y,

_lookAt.z - _camera.z);

//get the projection of the axis to the camera's plane
NxVec3 axis_proj = axis - (cam_norm * (cam_norm.dot(axis)));
//normalize
axis_proj.normalize();

Now the direction and movement of the mouse can be properly related to the axis of transformation by

projecting the mouse's movement vector to the new axis projection in order to handle all transformations with

respect to the user's perspective.

Representing Rotations
Representation for the translation and scaling of an object can be represented by projecting the mouse's

movement onto the axis of the respective transformations. However, extra work needs to be done in order to

represent rotations. While quaternions are used in order to provide accurate and flexible representation for

rotations, Euler angle equivalents need to be represented in the editor so the user has a neat representation for the

rotation of an object. The following function transforms the quaternion (represented by datatype NxQuat) into a

vector (represented by NxVec3) containing the Euler angles.

NxVec3 GetEulerAngles(NxQuat quat)
{

float yaw(0.0f); //z
float pitch(0.0f); //y
float roll(0.0f); //x

//transformation matrix data structure
NxMat33 mat(quat);
//vectors to hold major rows
NxVec3 row[3];

//save rows from matrix into array
for(int i = 0; i < 3; i++)
{

mat.getRow(i, row[i]);
}

9

//check for gimble lock between z and y axis
if(fabsf(row[2].x) >= 1.0f)
{

//x rotational shift
float delta = atan2f(row[0].x, row[0].z);
//set z rotation to zero
yaw = 0.0f;
//check direction of rotation
if(row[2].x > 0.0f)
{

//y = 90
pitch = M_PI / 2.0f;
//x rotation
roll = pitch + delta;

}
else
{

//y = -90
pitch = -M_PI / 2.0f;
//x rotation
roll = -pitch + delta;

}
}
else
{

//standard rotation pulled from transformation matrix
pitch = -asinf(row[2].x);
roll = atan2f(row[2].y / cosf(pitch), row[2].z /

cosf(pitch));
yaw = atan2f(row[1].x / cosf(pitch), row[0].x /

cosf(pitch));
}
//convert to degrees
yaw *= 180.0f / M_PI; //z
pitch *= 180.0f / M_PI; //y
roll *= 180.0f / M_PI; //x
return NxVec3(roll, pitch, yaw);

}

In order for OpenGL to utilize a quaternion value, the quaternion needs to be represented as the angle of rotation

about the Euler rotation axis.

angle(Θ) = 2.0∗cos−1(w)

axis(x,y,z) = (1.0, 0.0, 0.0) if angle(Θ) = 0,
= (x

1−w 2 , y
1−w 2 , z

1−w2) otherwise

The angle and axis obtained are then used to generate the rotation transformation for a given object. Through

this, the user can freely rotate objects in a variety of angles when using the level editor.

10

View Frustum Culling
For a large number of games, especially 3-D games like Third Degree, many objects can exist in the

environment at any particular moment, both on-screen and off-screen. All of those objects are represented by

hundreds, often times thousands of meshes, each of which are comprised of several vertices. That means that

more often than not, a full game may contain millions of vertices throughout each instance of its environment.

In order to improve the speed and efficiency of the graphics pipeline, objects not in view of the camera's

perspective will be removed manually by the program before sending all the object data to the GPU. This

process is called View Frustum Culling. Parts of the culling process is much faster when done manually through

the program because several optimizations can occur on the programming side when analyzing objects, which

will be specified later. Additionally, since a large number of vertices are no longer sent down the graphics

pipeline, View Frustum Culling allows for improved speed and efficiency to the graphics system.

The first step of View Frustum Culling is to set up a representation of the camera's view frustum. When

a camera's perspective is set up, the environment it perceives is enclosed in a view frustum. The view frustum is

a volume that encloses a section of the environment into the view frustum's top, bottom, left, right, near and far

planes, representing area of the environment currently visible to the camera. Figure 5 provides a visual

representation of the view frustum volume.

Fig. 5 – View frustum based on the camera's position and perspective

 OpenGL uses the command gluLookAt as a way to set the camera's position, as well as setting the near

and far limits of the frustum. The program then creates the view frustum's volume based upon those settings. In

order to determine the dimensions of the view frustum, we use the environment's transformation matrix in order

11

to derive the planes of the view frustum. The following takes a 4x4 matrix and converts that information into the

six planes of the view frustum.

//left plane
_camPlanes[0] = NxPlane(tMatrix[0][3] + tMatrix[0][0],

tMatrix[1][3] + tMatrix[1][0],
tMatrix[2][3] + tMatrix[2][0],
tMatrix[3][3] + tMatrix[3][0]);

//right plane
_camPlanes[1] = NxPlane(tMatrix[0][3] - tMatrix[0][0],

tMatrix[1][3] - tMatrix[1][0],
tMatrix[2][3] - tMatrix[2][0],
tMatrix[3][3] - tMatrix[3][0]);

//bottom plane
_camPlanes[2] = NxPlane(tMatrix[0][3] + tMatrix[0][1],

tMatrix[1][3] + tMatrix[1][1],
tMatrix[2][3] + tMatrix[2][1],
tMatrix[3][3] + tMatrix[3][1]);

//top plane
_camPlanes[3] = NxPlane(tMatrix[0][3] - tMatrix[0][1],

tMatrix[1][3] - tMatrix[1][1],
tMatrix[2][3] - tMatrix[2][1],
tMatrix[3][3] - tMatrix[3][1]);

//far plane
_camPlanes[4] = NxPlane(tMatrix[0][3] + tMatrix[0][2],

tMatrix[1][3] + tMatrix[1][2],
tMatrix[2][3] + tMatrix[2][2],
tMatrix[3][3] + tMatrix[3][2]);

//near plane
_camPlanes[5] = NxPlane(tMatrix[0][3] - tMatrix[0][2],

tMatrix[1][3] - tMatrix[1][2],
tMatrix[2][3] - tMatrix[2][2],
tMatrix[3][3] – tMatrix[3][2]);

After defining the view frustum, we can apply different optimization techniques to the culling process. One way

is that instead of individually analyzing each vertex of an object, we can generalize the entire object as a

bounding box shape that encompasses all the vertices of an object. This way, we can quickly determine if no part

of an object lies within the view frustum, removing the need of analyzing the object's vertices completely. When

iterating through all the objects in the scene, the program analyzes each of them and checks if that object's

bounding box is within the view frustum. The following code checks if a particular bounding box lies within the

camera's view frustum.

bool CameraFrustum::ContainsBox(NxBounds3 bounds)
{

//setup the corners of the bounding box
NxVec3 corners[8] =
{

NxVec3(bounds.min.x, bounds.min.y, bounds.min.z),

12

NxVec3(bounds.min.x, bounds.min.y, bounds.max.z),
NxVec3(bounds.min.x, bounds.max.y, bounds.min.z),
NxVec3(bounds.min.x, bounds.max.y, bounds.max.z),
NxVec3(bounds.max.x, bounds.min.y, bounds.min.z),
NxVec3(bounds.max.x, bounds.min.y, bounds.max.z),
NxVec3(bounds.max.x, bounds.max.y, bounds.min.z),
NxVec3(bounds.max.x, bounds.max.y, bounds.max.z)

};

//check each plane to see if corners are on wrong side of plane
for(int plane_index = 0; plane_index < 6; plane_index++)
{

//plane contains box if at least one corner is in view
bool contains = false;
for(int corner_index = 0; corner_index < 8; corner_index++)
{

contains =
contains || (_camPlanes[plane_index].distance(

corners[corner_index]) >= -0.0001f);
}

//if box is not in view of plane return false
if(!contains)
{

return false;
}

}

//return true if the box was on the correct side of all planes
return true;

}

Only objects where the boundaries of its bounding box lie within the view frustum are sent down the graphics

pipeline. The following figures give comparisons of just how many objects are actually sent down the pipeline.

Figure 4 depicts a screenshot of the normal camera perspective.

Fig. 4 – Screenshot for Third Degree's normal camera perspective.

13

In Figure 5, a comparison is given for a zoomed out view of the camera's perspective in Figure 4. The entire map

is shown, portraying just how much of the map is culled out when View Frustum Culling is applied.

Fig. 5 – Comparison of the entire level for when the objects outside of the view frustum are culled (left)
and when the objects are not culled (right).

Player Control
Side-scrolling platformers require smooth and intuitive movement that properly reflect the user input.

The player in the game is capable of running left and right, either forwards or backwards depending on the

placement of the mouse with respect to the player. The player faces left or right by comparing the position of the

mouse with where the player resides at the center of the screen. This allows the player to shoot more freely in all

directions in an intuitive manner. Additionally, the player is capable of jumping, crouching, and crouch walking

in either direction as well. Furthermore, pacing of the player became an important issue as the character needed

particular movement speeds for not only when running, but also as the player moved in the crouching position,

as well as the height and distance of a player's jump. Figure 6 gives an example of some of the different

movement actions the player can perform.

Fig. 6 – Depictions of character movement from left to right: Running, crouch walking, and jumping

14

Another problem that came up with was dealing with player collision with the environment. Although

the players movement in the game is controlled primarily by the user, player objects must have unique responses

to the environment, such as reacting to moving objects, or getting hurt by hazardous areas. Callbacks and object

states needed to be consistently updated and tracked throughout the game. All these properties needed to be

tweaked through numerous play-tests in order to get a fluid control system.

Enemy AI
Third Degree utilizes enemy combat to increase the action oriented aspect of the game. The key

functionality of the enemies is to patrol areas of the level, as well as to attack the player whenever they across

them, and all is maintained and controlled by an internal artificial intelligence (AI) system. Initially, our team

had planned on having a separate AI programming team develop the controls for enemy units.

Although that team had started on initial designs for an AI system, communication, scheduling and

overall work output became a serious issue. Eventually, the core Third Degree team decided to scrap the

previous AI team's work, and I solely took over design and implementation of the AI. Due to some time

constraints after having to retool AI design, a very basic artificial intelligence was created by me for enemies that

would have the enemy units transition between different combat states when interacting with the game

environment.

The enemy starts off patrolling a specified area of the level within a fixed range. Enemies would

continuously “patrol” this area, represented by the enemy unit pacing back and forth, and the enemy continues

this until the player crosses into that enemy's “alert” range. When an enemy has become alerted to the player's

proximity, the enemy briefly signifies their alerted state to the player by jumping. This action helps provide a

feedback to the player that they have been spotted.

After this, the enemy switches to an attack state where they periodically shoot the player until either the

player runs away out of range, the player kills the enemy, or the enemy kills the player. If the player runs away

or manages to get around passed the enemy, the enemy will go back into patrol mode, where the enemy will

restart its cycle until coming across the player once again. Should the player manage to kill the enemy, the

enemy unit is removed from the level by turning off all collision instances for the enemy, as well as no longer

15

rendering that enemy into the environment. The following pictures in figure 7 depict the different AI states for

the enemy units.

Fig. 7 – Example of enemy's AI states from left to right: patrol, alert, and attack.

Combat
Combat was a group effort from many member of the main Third Degree programming team. My

objectives were to handle bullet impacts upon the player as well against enemy units. Because of the rich

environment in Third Degree, there were a variety of objects that could be affected by bullet shot, whether it

come from an enemy unit, or the player themselves. Mark Paddon utilized a ray tracing algorithm upon the

bullet's trajectory in order to check for the next object the would collide with that bullet (for more information

see Mark Paddon's Senior Project Write-Up). It was my job to properly handle the different situations for bullet

impacts and handle them accordingly.

When a particular character in the game fires a bullet, there are three possible outcomes: the bullet flies

off-screen and hits no objects, the bullet collides with an object or building that is a part of the level's

environment, or the bullet will collide with either a friendly or enemy unit. In the case of the bullet flying off-

screen without colliding into any object, the bullet will be removed from the current list of active bullets after a

set duration of time has passed of the bullet flying through the air and not hitting any objects. If the bullet were

to collide with an element of the environment, an impact callback is sent to the impacted object through the

PhysX engine, where the physics simulation emulates any movement that the bullet would cause to the fired

upon object.

The final possibility for the bullets impact is against another character unit. If the character unit was a

“friendly” character, such as an enemy unit's bullet potentially impacting a different enemy unit, the bullet would

16

pass through that object, since friendly fire is removed from the game. The ray tracer would then update the

bullet with a new object that it would potentially hit. If the fired upon character was a “non-friendly” character to

the bullet's owner, such as the player shooting an enemy unit, then a callback would occur that would damage

the hit character's health. Tweaks to gameplay occurred through game testing in order to determine appropriate

damage levels for the weapons. Balance was needed that would create enough of a challenge to the player with

combat against enemies while maintaining a free flowing platforming experience. Figure 8 gives an example of

the combat between a player and the enemy.

Fig. 8 – Example of a gunfight between the player (left) and the enemy (right).

Skeletal Animation
Animated modeling can be a very complex process. Constantly maintaining positional data for every vertex can

be a computational and memory intensive process. Skeletal animation helps this process by simplifying the

structure of models to a skeleton, and basin movement for the model around its skeletal structure. All 3-D

animation within Third Degree utilizes skeletal animation, where the vertices for animated objects are anchored

to a hierarchical joint structure.

MD5 Structure
The data for the skeletal animation is stored in md5mesh and md5anim files. The program parses all files

needed for the game and saves the data to generate the animated models. The core structure of the model is

found within the md5mesh file. Each model contains a group of textures, joints and meshes. All joints are given

a starting base position and base rotation, where the rotation of the joint is based upon the local space around that

joint's parent joint position.

Each mesh within the model is a triangular mesh consisting of three vertices. Each vertex in the model

has a texture coordinate and a list of weights associated to it. For those list of weights, each weight references a

17

joint and its position relative to that joint. Figure 7 depicts how all this data comes together.

Fig. 7 – Example MD5 model depicting the hierarchical structure of the joints
and how the meshes and normals are anchored around the skeleton.

Building the Model
The MD5 model starts of with a base position defined in the md5mesh file, where the position and

rotation of the joints are predefined. In order to create the full animated model based upon this joint skeleton, the

positions of each vertex of the model's meshes need to be calculated. After obtaining all the data for the joints

and weights from the md5mesh file, each mesh is analyzed by iterating through the mesh's vertices. To

determine the exact position for a particular vertex, the weights in the vertex's weight list are analyzed to see

how that vertex's position is affected by a particular joint.

Every weight defines how much a joint affects a particular vertex. The weight has a joint associated to

the weight, an offset to a particular joint, and a bias for how much that joint affects the vertex's final position.

The weight is used to convert the vertex from local space with respect to the joint to the local space of the entire

model. The cross product of the weight offset and its associated joint's rotation is calculated to determine the

rotational direction of the weight's offset. Then, that rotational direction is combined with the joint's position,

and that resulting vector is multiplied by the weight's bias to determine the final position for vertex with respect

to that joint.

//get the direction the weight rotates the joint
vec3 rotationDir = WeightPosition * jointRotation;
//add the rotation of the joint based on the weight
vertex += (rotationDir + JointPosition) * WeightBias

This occurs for every weight in the vertex's weight list, where the weight's transformations on the vertex are

18

added together to determine the final position. Once every vertex position is determined, the meshes for the

animated model can be rendered in the appropriate position and the complete model can be drawn.

Updating Positions
Each animation cycle is saved within an md5anim file and is loaded at start-up. The animation file

contains a variety of information about the animation cycle, but most importantly it specifies how many frames

are in the cycle, the frame rate for an animation, a list of key frames, and the position of the model at each of

those frames. At startup, the skeletal pose of the model for each frame is saved so that the program can refrenece

this data in order to position the model through the animation cycle.

When the model is being updated during the animation cycle, the program must figure out at what stage

the model is at in the animation cycle. Very rarely does an animation lie directly on a particular key frame.

Because of this, the program needs to determines which two key frames the model is between in the current

animation cycle.

//increment time-step
_animTime += timeElapsed;

//make sure animation ime is between the overall animation duration
while(_animTime > _animDuration)
{

_animTime -= _animDuration;
}
while(_animTime < 0.0f)
{

_animTime += _animDuration;
}

//calculate current and next frame
float frameNum = _animTime * (float)_frameRate;
int frame0 = (int)floorf(frameNum);
int frame1 = (int)ceilf(frameNum);
frame0 = frame0 % _numFrames;
frame1 = frame1 % _numFrames;

Also, because frames only provide the key positions of the model, interpolation must be done in order to

fill in the gaps and generate the motion and position between the two frames.

//determine how much time between current frame and next frame
_fInterpolate = fmodf(_animTime, _frameDuration) / _frameDuration;
//interpolate in between the two frame positions based upon time
InterpolateSkeletons(_skeletonList[frame0], _skeletonList[frame1],

_fInterpolate);

19

The joints of the model's skeleton is then interpolated between the frames to determine the final

positional data for interpolated joint.

//update joint
finalJoint.ParentID = joint0.ParentID;

//interpolate between positions linearly
finalJoint.Position = (joint0.Position * (1.0f - fInterpolate)) +

(joint1.Position * fInterpolate);

//get angle between quaternions to use for slerp
float s_angle = acosf(quat0.dot(quat1));
//do spherical linear interpolation to get rotation data
finalJoint.Quat =

quat1 * sinf((1 – fInterpolate) * s_angle) / sinf(s_angle) -
quat2 * sinf(fInterpolate * s_angle) / sinf(s_angle);

Joint data is now set for the skeletal at the current animations pose, and the models position is rebuilt

based upon the new skeletal joint positions and rotations.

Rendering
Because the vertices of the animated model are weighted to the joints of the skeleton, every vertex must

be updated constantly. However, this can be a very computational intensive process since the vertices must be

constantly updated and then sent to the GPU to be transformed yet again when positioning them to world space.

In order to relieve some of the load onto the GPU, a vertex shader is used to boost processing power by having

all vertex transformation calculations occur on the GPU. That way, vertex position with respect to the joints is

also calculated along with the overall transformation matrix in one process.

However, the models data must first be sent to the GPU to perform the calculations. When using GLSL,

the program needs to get the location of the variables used in the shader and enable a link between the program

and the GPU. In this situation, those variables are the joints and weights.

//locations of attributes in vertex shader
GLint weightLocs[MAX_JOINT_WEIGHTS];
GLint jointIDsLoc0, jointIDsLoc1;

//locations of uniforms
GLint jointPosLoc, jointQuatLoc;

//get the location of the attributes for the weight and quat data
for(int index = 0; index < MAX_JOINT_WEIGHTS; index++)
{

std::stringstream weightStr;

20

weightStr << "Weight" << index << "";
weightLocs[index] =

glGetAttribLocation(_animationShader->Program,
weightStr.str().c_str());

}

jointIDsLoc0 =
glGetAttribLocation(_animationShader->Program, "JointIDs0");

jointIDsLoc1 =
glGetAttribLocation(_animationShader->Program, "JointIDs1");

jointPosLoc =
glGetUniformLocation(_animationShader->Program, "JointPos");

jointQuatLoc =
glGetUniformLocation(_animationShader->Program, "JointQuat");

//enable vertex arrays
glEnableClientState(GL_VERTEX_ARRAY);
glEnableClientState(GL_TEXTURE_COORD_ARRAY);
glEnableClientState(GL_NORMAL_ARRAY);

//enable attribute arrays
for(int index = 0; index < MAX_JOINT_WEIGHTS; index++)
{

glEnableVertexAttribArray(weightLocs[index]);
}
glEnableVertexAttribArray(jointIDsLoc0);
glEnableVertexAttribArray(jointIDsLoc1);

After getting the uniform and attribute locations, this information is sent to the shader.

//uniforms
glUniform3fv(jointPosLoc, MAX_JOINT_UNIFORMS,

&(_jointPosArray[0][0]));

glUniform4fv(jointQuatLoc, MAX_JOINT_UNIFORMS,
&(_jointQuatArray[0][0]));

//pass attribute arrays to shader
for(int index = 0; index < MAX_JOINT_WEIGHTS; index++)
{

glVertexAttribPointer(weightLocs[index], 4, GL_FLOAT, GL_FALSE,
0, &(mesh.WeightsBuffer[index][0]));

}

glVertexAttribPointer(jointIDsLoc0, 4, GL_FLOAT, GL_FALSE, 0,
&(mesh.JointIDsBuffer0[0]));

glVertexAttribPointer(jointIDsLoc1, 4, GL_FLOAT, GL_FAL

The initial vertex, normal and texture data is also sent to the shader.

//pass vertex data to shader
glVertexPointer(3, GL_FLOAT, 0, &(mesh.VertexBuffer[0]));
glNormalPointer(GL_FLOAT, 0, &(mesh.NormalBuffer[0]));
glTexCoordPointer(2, GL_FLOAT, 0, &(mesh.TexBuffer[0]));SE, 0,

&(mesh.JointIDsBuffer1[0]));

21

Once all the information is sent, the GPU is now able to calculate and draw the meshes and their vertices.

//draw mesh triangles
glDrawElements(GL_TRIANGLES, mesh.IndexBuffer.size(), GL_UNSIGNED_INT,

&(mesh.IndexBuffer[0]));

At the end of the process, the attribute and uniform data is disabled to prevent any overlap of information.

//disable array attributes
for(int index = 0; index < MAX_JOINT_WEIGHTS; index++)
{

glDisableVertexAttribArray(weightLocs[index]);
}

glDisableVertexAttribArray(jointIDsLoc0);
glDisableVertexAttribArray(jointIDsLoc1);

//disable vertex arrays
glDisableClientState(GL_NORMAL_ARRAY);
glDisableClientState(GL_TEXTURE_COORD_ARRAY);
glDisableClientState(GL_VERTEX_ARRAY);

//disable texture used
Texture::DisableTextures();

Over on the GPU, all the data is received for processing. One particular problem that come up when working

with GLSL is that the GPU can only reference a small number of attributes. Therefore, the weight's position and

bias are stored as a 4-dimensional vector to save space, the position is stored in the (x, y, z) positions of the

attribute's vector and the 'w' value is the bias.

The joint positions associated with each vertex are then calculated by weighing the joints onto the vertex

and summing them up just like you would do when building the model's vertex positions outside of the GPU.

void AddWeightToVertex(in vec4 weight, in vec4 quat, in vec3 joint,
inout vec3 vertex)

{
vec3 cp1 = cross(quat.xyz, weight.xyz);
vec3 cp2 = cross(quat.xyz, cp1);
//get the direction the weight rotates the joint
vec3 rotationDir = weight.xyz + (2.0 * quat.w * cp1) +

(2.0 * cp2);
//add the rotation of the joint based on the weight
vertex += (rotationDir + joint) * weight.w;

}

The same must also be done for the normals.

void AddWeightToNormal(in vec4 weight, in vec4 quat,
inout vec3 normal)

{
vec3 cp1 = cross(quat.xyz, gl_Normal);

22

vec3 cp2 = cross(quat.xyz, cp1);
vec3 rotatedNormal = gl_Normal + (2.0 * quat.w * cp1) +

(2.0 * cp2);
//add the rotation of the joint to the normal
normal += rotatedNormal * weight.w;

}

After the vertex position in the model's local space is calculated, the vertex is then takes the transformation

matrix and converts it to global space.

gl_Position = gl_ModelViewProjectionMatrix * vec4(newPos, 1.0);

A fragment shader is also used to save lighting data to be used by differed shader.

vec3 packedNormal = (normalize(normal) + 1.0)*0.5; //compress normal
gl_FragData[0] = vec4(packedNormal, 1.0);
gl_FragData[1] = texture2D(tex, Texcoord);
gl_FragData[2] = vec4(0.0, 0.0, 0.0, 1.0);

Results
Accomplishments

Third Degree's development started with the intentions of creating a unique player experience that

integrates the story into the gameplay in a fluid manner. As a whole, development and focus shifted more

towards the graphical technologies of the game. The visual representation and integration for the Mental

Deterioration Bar with the environment were very positive. As a whole, the graphics are the main feature for the

current version of the game. From integrated particle and deferred rendering, to the animations and model

designs, the aesthetics of the game came out for better than I personally had initially envisioned.

Even with this focus more on the aesthetics of the game, the entire Third Degree team is proud of how

the foundation of the story still managed come along during the senior project. While the version of this senior

project is only the starting elements for the overall story development for the entire game, the feedback for the

dialogue and initial cut scenes were positive. A lot of the accomplishments for Third Degree can definitely be

attributed to the excellent team synergy that exists amongst our group.

Even though clashing of ideas and different visions for which direction to take the game occurred on a

fairly frequent basis, communication and discussion was always constructive in order to generate comprises on a

23

variety of decisions. Quite possibly, it is this wide variety of ideas and perspectives, although at times may have

slowed some general design and implementation decisions, contributed to the overall uniqueness of Third

Degree's overarching concept and representation.

Play-test Feedback
The following is feedback provided by various people that have played the game, and some of their critiques and

recommendations about Third Degree.

• Nice graphics and models.
• Interesting concept and story.
• Smooth physics simulation.
• Bullets a little slow
• Inconsistent frame-rates.
• Camera movement seemed off and did not fit too well with gameplay
• Certain bugs with map in collision detection for a few locations.

This feedback was used during the latter part of development in order to retool, change and fix various

elements of our game, as well as try to emphasize particular elements that testers enjoyed.

Development Analysis
Often times when developing a product, particularly video games, there are four things developers need

to be aware of: cost, resources, scheduling and scope. For this senior project, scheduling was clear with the two

quarter system, and our project advisor did a good job of providing iterative milestones to keep all involved on a

fairly consistent schedule. However, when putting scope of the project into play with the actual schedule,

ambitions and hopes within the team led us to bite off more than we can chew. Several features in regards to

story development and overall game mechanics had to be scaled back a number of times throughout the

development process. While it is not an uncommon trait of software development, particularly with video games,

to not properly balance the scope of the project with the physical schedule, our team could have taken better

measures to keep aspirations more realistic to the course structure.

Within the group, cost and resources were essentially relegated to personal hours available to work on

the project, and we all were committed to providing the proper effort. However, many issues came about when

trying to allocate resources outside of the main programming group. These issues generally came about when

24

putting trust into groups outside of our main team.

During the development of Third Degree, AI was initially planned on being handled by a separate team,

and many of the 3-D models and visuals were to be generated by a handful of artists. The core problem that

arose between the main Third Degree team and the other parties was that we were unable set up consistent times

and places to continuously meet up and work on the project. I feel that because the Third Degree team was able

to meet on a frequent and consistent basis, we were able to generate frequent and consistent work. Eventually,

communication and scheduling slowly became major problems between the groups, and the lack of output of the

initial AI team and the 3-D modelers became so much of a burden that we had to redesign and reschedule our

project in the middle of development.

Looking back, management of scheduling and resources would have been improved through improved

communication through a consistent development cycle for not just the main Third Degree programming team,

but all parties involved as well. Through this, issues regarding problems with communication, scheduling and

overall development might have been caught earlier on in the development's life cycle. Despite the difficulties,

all these experiences provided valuable lessons in balancing cost, resources, scheduling and scope when

developing a video game, not just in regards to the design of the game, but also the management of the

developers and personnel involved.

Conclusion
The duration of the project provided me a plethora of information about game development and general

software design and implementation. Some of the graphical information about working with the GPU and

camera projections and perspectives gave me better insight into about several graphical optimizations

technologies and optimizations used to enrich the look of a virtual environment.

However, the missteps throughout the project also helped me to grow as a programmer and video game

developer. Perhaps the biggest lesson learned was how despite certain schedule restraints, our group would have

benefited from overall consensus on the entire game mechanics before the actual design process and

implementation would begin. Although the structure of the course and senior project schedule required us to start

25

programming sooner one might be comfortable with, taking that extra time to start off slow would prevent many

of the speed bumps along the way, making up for it in the long run. By addressing the game mechanics and

features in full, then coming up with fully fledged design that addressed the mechanics early on, we would not

have spent so much time retooling aspects of our game's design to fit certain mechanics and features we wanted

to put in or take out.

As a whole, this whole process gave me so much insight and experience as to what goes into making a

game, as well as a better perspective on the different focal points developers need to keep in mind to create

excellent games. Even with some of the trip ups along the way, those obstacles provided me with a better

appreciation to always keep the game itself in mind, making sure to create a provocative and fulfilling game by

through a playful and fun experience.

Future Work
The following are a list of personal goals to be done for future iterations of the game.

• More robust AI: enemies that follow an A-Star search along waypoints through a map in order to chase

after the player

• More In-Depth Combat System: addition of melee and weapon variety to game, plus defensive system

for blocking enemy attacks.

• Develop fuller story to draw in player's attention and immerse them further into the virtual environment.

26

References
1. “Picking Tutorial”, Lighthouse3d, http://www.lighthouse3d.com/opengl/picking/

2. Baker, Martin, “Maths - Conversion Quaternion to Euler”, EuclideanSpace.com,

http://www.euclideanspace.com/maths/geometry/rotations/conversions/quaternionToEuler/index.htm

3. van Oosten, Jeremiah, “Loading and Animating MD5 Models with OpenGL”, my Academy for Digital

Entertainment, myapp.nl/?p=1053, March 14, 2011.

27

	Abstract
	Acknowledgments
	Introduction
	Why Video Games?
	Course Structure

	Project Overview
	Genre
	Story
	Game Mechanics
	Look and Feel
	Project Design
	Editor
	Engine
	Game

	Related Works
	Trine
	Maya
	Doom 3

	Algorithms Overview
	Algorithm Details
	Editor Object Transformations
	Picking
	Projection of Axis to Camera Perspective
	Representing Rotations

	View Frustum Culling
	Player Control
	Enemy AI
	Combat
	Skeletal Animation
	MD5 Structure
	Building the Model
	Updating Positions
	Rendering

	Results
	Accomplishments
	Play-test Feedback
	Development Analysis

	Conclusion
	Future Work
	References

