
	

	

Orbs Particle System

Michael Brent Dimapilis

California Polytechnic State University, San Luis Obispo

	

	

Orbs Particle System	

Particle systems are always usually found in modern video games. They are used to

simulate visual effects, which include explosions, moving water, and magical spells.

Particle systems are generally popular to implement because individual particles are

easier to implement when they are all contained together and follow a set logic. An

example of a particle system is the orbs particle system that follows a trailing behavior.

Lume implements a particle system to reflect the behavior of “orbs energy”. The

algorithm described in this paper works off of Craig Reynolds’ boids algorithm with

adjustments particular to the game. The behavior of the particles (hereinafter known as

“orbs”) within this system has gone through many adjustments in order to catch the

desired behavior wanted for the game. The process of reaching this desired behavior and

the final algorithm used in the game is described in this report.

Using The Boids Algorithm	

The particle system implemented in this project initially followed the boids algorithm.

The boids algorithm, developed by Craig Reynolds in 1986, is an artificial life program

that imitates the flocking behavior of birds. The simulated flock is an elaboration of a

particle system, with the simulated birds being the particles

[http://www.cs.toronto.edu/~dt/siggraph97-course/cwr87/]. Basically, the boids algorithm

uses three important heuristics to determine how the particles will be translated in 3D

space: particles translate towards the center of mass of neighboring particles, particles

keep a certain distance from other particles, and particles try to match the velocity of

nearby particles. The initial version of the orbs particle system used the boids algorithm,

	

	

adjusted with the tendency to move towards the character’s position. Figure 1.1

illustrates the three different rules that the boids algorithm follows.	

	

Figure 1.1: Main heuristics of boids algorithm: separation, alignment, and cohesion

Adjustments For The Game	

After implementing the orbs particle system to use the boids algorithm, multiple orbs

dispersed from a single energy source in different directions with the tendency to

translate towards the character. Because all the orbs followed a single target and moved

in different directions, at certain times, the orbs would fill most of the screen space,

making it difficult for the user to see past a group of orbs. Limiting the number of orbs

emitted from an energy source to a low number was not considered a solution to this

problem because the game was to illustrate the character absorbing great amount of

energy. Allowing a high number of orbs to be released from an energy source while

recognizing the user’s visibility was essential towards the game. The way to achieve this

was for the orbs to translate towards the character in a trail-like manner.	

Algorithm	

The algorithm described illustrates the behavior of the orbs after they have been activated

and made visible.	

	

	

The Orb Data Structure	

The orb takes advantage of a 3D point data structure in order to hold information on the

orb’s current position and velocity. To create a trail-like behavior, the orb needs only to

translate towards the orb ahead of it in the trail as oppose to the character. Therefore, a

pointer to another orb lies inside the orb’s data structure to represent the orb ahead of

itself in the trail. Only for the first orb in the trail does it translate towards the character.

Velocity Calculation

Previously, the velocity of an orb was calculated using the three mentioned heuristics

above: collision avoidance, alignment, and cohesion along with velocity limitation and

tendency. For the purposes of the game, it currently only follows collision avoidance

along with velocity limitation and tendency. The collision avoidance method and the

tendency method read in the orb data in order to calculate the right velocity. Figure 1.2

shows how the velocity is calculated from pnt3d Source::collisionAvoidance(Orb

o).

	

	

Figure 1.2: Collision avoidance method

The resulting velocities from pnt3d Source::collisionAvoidance(orb o) and

pnt3d Source::tendToPlace(Orb o, pnt3d dest, float force) are then added

together and passed to pnt3d pnt3d Source::limit_velocity(Orb o) to reduce the

resulting velocity if it is larger than a specified value. Finally, the resulting velocity is

added to the current position of the orb in order to do the translation.

The interesting part of this algorithm is pnt3d Source::tendToPlace(Orb o, pnt3d

dest, float force). Every orb that isn’t in the front of the trail holds a pointer to the

orb in front of it and is passed to this method. Because the orb in front is translated

towards the character, every orb behind it follows naturally, producing a trail-like, fluid

behavior. Figure 1.3 shows how the trail appears in the game.

Figure 1.3: Orb trails in the game Lume

	

	

Ending The Trail

When the front orb reaches a certain distance from the character, it is set to inactive and

no longer drawn. The orbs behind follow the same procedure, except referencing the orb

ahead instead of the character. In order to prevent an orb from ending too soon, the orb is

only set to be inactive if the orb ahead is inactive. The energy source determines when

the trail has completed when the last orb in the trail has been set to inactive.

In order to allow the orbs to rotate and flow around the character, a time interval was

used on the leading orb during the transition to its inactive state. Upon getting within the

specified distance to become inactive, the leading orb was not to be set inactive until the

time interval expired. Implementing this, orbs flowed around the character rather than

simply disappearing.

Results

The algorithm described results in a smooth, fluid, and trail-like movement for the orbs

used in the game. Figure 1.4 lists more images of the orbs particle system evident in

Lume.

	

	

Figure 1.4: Orbs particle system in Lume

	

	

References

1. Reynolds, Craig W. (1987). Flocks, Herds, and Schools: A Distributed Behavioral

Model. http://www.cs.toronto.edu/~dt/siggraph97-course/cwr87/

