
Sweet Water
3D Platform Shooter

By Robert Bernal
California Polytechnic State University

San Luis Obispo
Winter and Spring 2011

Advisor: Professor Zoe J. Wood

1

Introduction

The role of computer graphics in gaming is essential. As computer processing and

graphics processing units improve, the limits of real time rendering are beginning to

disappear. The increase in computing power has enabled us to create applications with

amazing graphics. Video games have become a big part of human society. In today’s

world, users expect games to respond to input instantaneously. Players do not want to sit

around while their computer frantically draws the next frame. Because games need to be

highly interactive, about 30 – 60 frames per second, we need to render complex scenes

quickly. Rendering complex scenes presents many challenges, and our papers present

solutions to overcome these challenges.

Problem Description:

Creating a beautiful interactive 3D game has many smaller sub problems. We spent the

last two quarters focused on finding the answers to these two questions:

1. How do we render a complex scene with many special effects in milliseconds?

2. How do we encode fun into our application using 1’s and 0’s?

Drawing a complex scene, with thousands and thousands of vertices, in 0.033 seconds

sounds impossible by human standards. Computers have evolved to have the capability

to do this for us. However, we have to find ways to tell the computer how to do this

efficiently. Even though computers have become incredibly fast, they still have limits.

2

Imagine playing a game and you come across a rock. Sounds boring right? That rock had

to go through matrix transformations, lighting calculations, texture mapping, and possibly

other special effects. Lighting alone is one of the most physically complex entities in the

universe. Trying to compute how light actually works can take hours for large scenes,

and it is incredibly difficult to implement.

Since we don’t have hours to compute one scene, we have to fake how it light works.

Other effects such as physics, shadows, and animations are also computationally

expensive. We have to fake some of those simulations in order to compute them in a

reasonable amount of time. Complex algorithms are required to fake these simulations.

The other problem we set out to solve was making our game fun. Unfortunately, we did

not get to invest as much time into improving game play. Sweet Water’s game play is

limited because our focus was the graphics technologies in the application.

Previous Work/Related Work:

There have been many great shooters created since the first games came about. The halo

series, created by Bungie, for the Xbox and PC has been one of the most successful

shooters of all time. Doom 3, created by id Software, won awards for its engine.

Shadow Complex, created by Chair Entertainment for the Xbox Live Arcade, is a

Metroid style game. All of these games had some influence in the creation of Sweet

Water.

3

Halo Series

Who doesn’t like defending the universe against hoards of aliens called the covenant?

This first person shooter presents stunning scenery combined with ruthless enemies. The

goal is to save the human race with a variety of weapons. Halo uses the

Doom

Considered by many to be the best first person shooter of all time, Doom popularized the

first person shooter genre with its amazing graphics and game play. Doom features a

space marine who fights demons from hell on Phobos, a moon on Mars.

Shadow Complex

Shadow Complex features great graphics, and the platform based environment. Although

only 2.5D, Shadow Complex allows for 3D movement of entities other than the character.

Shadow Complex inspired Sweet Water’s 2.5D adventure theme. The Unreal Engine 3

powers Shadow Complex.

General Description

Sweet Water is a 2.5D platform shooter. You begin the game as a soldier of war on

military prison ship Sweet Water. A mysterious event occurs that gives you the

opportunity to escape. Your must fight your way through prison guards to find a way to

escape the ship.

4

Games are complex. They require a large number of components to work correctly in

unison. We created Sweet Water using C++. We used OpenGL for rendering, OpenAL

for sound, Physx for in game physics, and we made our own tools for level editing,

particle effects editing, and resource loading. This section will list the major components

in our solution and provide general information about them. All of the tools used for

Sweet Water, were created using C++. Sweet Water, and the graphics related tools

utilize SDL as a multimedia library. We also use several shaders for complex effects

such as per pixel lighting.

Game Engine

• Application Controller: Application initialization and start of the game loop

• Audio System: OpenAL Initialization and sound instances

• Video System: OpenGL initialization and render state

• Event: Inputs

• Logger: Error reporting and debugging

• Resource Manager: Manages textures, sounds, etc...

• Settings: Screen resolution, sound volume, etc...

• Game: Game Logic

Entities

An entity class represents the player, enemies, and other objects in the game. All of these

entities have their own classes, which then derive from the entities class.

5

Level Editor

3ds Max plug-ins allowed us to transform 3ds max into a level editor. We wrote and

used plug-ins to turn 3ds max into a level editor. The plug-ins were created in C++ using

the 3ds Max SDK. The plug-in functionality included:

• Geometry exporter

• Light and camera exporter

• Entity exporter

Particle Editor

We created the particle editor from scratch because we wanted to customize the effects in

our game. The particle editor allowed us to create custom effects and then integrate the

effects into our game quickly.

6

External Features Seen By the Player

The following represents other technologies present in our game:

• Animation

• Inventory System

• Shadow Mapping

• Normal Mapping

• Per Pixel Lighting

• Particle Effects

• Physically based character movement and interaction (collision detection)

7

Algorithms:

Our solution contained many algorithms, but this paper will focus on the animation. If

you would like to find more detailed information about the other algorithms used in

Sweet Water you can read the papers of my teammates Nick Moresco, Ilya Seletsky, and

Steven Udall.

Character Animation

There are several ways to do character animation. Procedurally generating movement is

best suited for movements that can be easily described using mathematic equations.

Another way is to have an artist create the animations from scratch using a model and

some software such as 3ds max. We used 3ds max to modify existing animations for our

character movement. We then applied an algorithm to combine these animations. We

wanted to avoid spending a large amount of time combining animations for the game

through modeling software.

8

Set Up

In order to use the md5 format, we wrote an md5 importer that reads md5anim files. The

importer retrieves the model and animation data for use in the game. The importer uses

common parsing techniques to obtain the information and store it in the associative data

structures. The number of data structures required to accomplish this becomes numerous.

Each data structure builds off the lower level structures to create one structure that

contains all the data.

Data Structures

Md5 animations define movement of a character using key frames. Each key frame

contains offsets from a single base frame. The offsets of each key frame are contained in

the joints defined for the character using a modeling software such as 3ds Max. The

joints have a position and orientation, and we can manipulate these values to obtain the

desired look. Every manipulated bone contains a non-zero flag value.

The data structures we used were stripped down from other solutions we encountered in

our research. We did not need some of the data present in md5 files, so we used lighter

structures. Using lighter structures saved memory, and computation time in our

application. I introduce these structures in order to provide some information required to

explain other parts of the animation process.

9

Animation

struct Anim {
 int numFrame;
 int numAnimatedComponents;
 std::vector<Frame> frames;
 std::vector<Joint> joints;
 std::vector<JointInfo> jointInfo;
};

The Animation structure holds all of the necessary information from an md5anim file. It

contains a list of frames, joints, and information about the animation itself. Once this

structure filled, you have all the data you need to start basic animations.

Frame

struct Frame {
 std::vector<float> animatedComponents;
 std::vector<Joint> joints;
};

The frame structure holds information about the number of components that are

animated, and which components are animated. The frame lists only the joints that differ

in position and/or orientation from the base frame.

Joint

struct Joint {
 NxReal pos[3];
 NxQuat quat;
 int flags;
 bool prioritized;
};

10

The joint structure holds the position and orientation of the bone. The NxReal and

NxQuat fields are the Vector and quaternion used with Physx. The joint also holds flags

that reveal which components have been modified. The prioritized variable allows for the

mixing of animations without changing the md5 file format. Prioritizing the animations

will be discussed when we go over the animate algorithm.

Weight

struct Weight {
 int joint;
 NxReal weight;
 NxReal pos[3];
};

The weights describe how a vertex depends on a bone. More weights can increase the

accuracy of rendering an animation. Each vertex can have more than one weight.

Vertex

struct Vertex {
 int weightIndex;
 int weightCount;
 NxReal pos[3];
 NxReal textCor[2];
 NxReal normal[3];
};

The vertex structure contains fields you would typically find in any vertex container. The

outstanding fields in this application are weightIndex and weightCount. The weightIndex

retrieves the corresponding weight to vertex from the list of weights, and the weight

count is how many weights a vertex depends on.

11

Animation Algorithm Details

Data Structures

struct AnimPer
{
 bool m_loop;
 bool m_running;
 int m_priority;
 int m_curFrame;
 int m_animNum;
};

The AnimPer structure separates animation data between instances of characters. We do

this to save memory usage. Characters with the same model share model data, but an

instance structure is required to keep every model running animations separately.

• m_loop – Determines if the animation repeats after it ends.

• m_running – Set to true as long as the animation needs to run. Determines

whether the animation displays in the current frame.

• m_priority – Level of priority for this animation. The application currently has

five levels of priority ranging from 0 to 4. An animation’s prioritized bones will

draw over an animation with a lower priority.

• m_curFrame – The current frame of the animation. The animating algorithm

builds an interpolation frame using this frame.

• m_animNum – Index into the list of animations an entity has available to it.

Algorithm

The algorithm responsible for animating a character breaks down into four different

steps. This solution allows for modularity and the ability to break down the code into

12

multiple functions that can be tested separately. The animate function has the following

signature:

void animate(float dt){}

The only parameter to the animate function is the change in time since the last frame.

The change in time allows the function to run independently of the frame rate of the

application. A great deal of initialization is required per frame before animation can take

place. After the animate, but before drawing the character, the character’s vertices and

normals are built. The following portions of the application all contain animation related

code.

1. Update the character.

2. Set animations to Running or Not Running.

3. Call animate function.

4. Build the vertices and normals before rendering.

Updating the Character

The state of the character updates from the previous frame. Anything that has happened

since the last frame is reflected in the character’s state. For example, if a user presses the

move left key then the character’s position should be updated and the animation changes.

13

Set Animations to Running or Not Running

The animations that the character displays are set to running or not running based on the

user input. If the user presses the fire button, the firing animation is set to run. When the

fire animation ends, the fire animation is set to not running. Distinguishing running from

not running animations allows multiple animations to run concurrently.

Animate

The animate function itself can also be broken up into several distinguishable steps.

1. Determine what animations need to advance or end based on the change in time.

2. Sort the animations based on priority.

3. Set up interpolation frame.

4. Build interpolation frame by adding prioritized joints.

Animation Advancement

The running animations will advance if enough time has passed. Our solution supported

using the change in time from the last call, or it could combine the time with a framerate

set by the md5 file. The algorithm needs to check which animations currently run, and it

should advance the frame of the animation if necessary. The following pseudocode gives

one example of how we did this.

animationTime += change in time

for every animation
set tempTime to animationTime
if animation is running

if tempTime > 1.0
while(tempTime > 1.0)

14

tempTime -= 1.0
nextFrame = curAnim’s current frame + 1 || 0

if curAnim’s current frame is the last frame in animation
set curAnim’s current frame to the beginning of animation
set curAnim to not running

 push the animation to the end of the running vector

The algorithm should be adapted to fit the needs of your particular application. A data

structure that can easily sort should be used. At the time of writing this portion of the

code, correctness was more important than speed. The algorithm can be optimized based

on the requirements of the application.

Sorting Animations

Sorting the animations based on priority can make further computation easier. Because

the number of animations running at one time is limited for most character, any basic sort

will suffice. Even if a character runs 10 animations at a time (for our application the

most we use is three), the computation time is trivial.

Interpolation set up

The interpolation frame needs to have room for all the joints in the model. If you

accidentally overlook this step, as I found out during coding, you will have strange

behavior and crashes in your application. A simple if statement will prevent any

surprises relating to the size of the interpolation frame.

If interpolation frame’s joints != number of joints in the model
Resize interpolation frame’s joints to be the number of joints in the model

15

Build Interpolation Frame Joints

In order to interpolate the frame, we need to decide what the positions and orientations of

the joints. A joint is added into the interpolation frame based on its priority in the current

animation. The priority scheme behaves the same as a priority queue. Joints are added in

order of the priority of the animation. The algorithm adds joints from lowest to highest

priority so that only one pass is required. The following pseudocode presents a general

solution.

If there are running animations
for every joint in the lowest priority animation

set interp frame’s joint to running animations running frame joint
for every other running animation

for every joint in current animation
if the joint is prioritized
set interp frame’s joint to current animation running frame
joint

Describe solution into overall solution of project

Even though we have all this data that describes how the character moves, we still need a

way to get this information onto the screen. The characters vertices are built before

calling the draw methods that every entity has.

Building the Vertices

Rendering a character’s triangle mesh from md5 format requires building the vertices

before rendering. As stated before, a number of weights are associated with each vertex.

Md5 gives you the capability of having multiple meshes in order to split your model into

multiple components. Splitting your model could reduce computation if you have some

part of the model only needs to display part of the time. Some of the meshes may be used

16

for special effects therefore do not need to be visible all the time. By giving the mesh’s

internal representation a boolean variable, we can control the visibility of the mesh.

The following pseudocode describes a general solution.

For every mesh in the model
If mesh is visible

For every vertex in mesh
For every weight per vertex

Get weight from vertex weight index
Get joint from current running frame and weight’s joint
index
Build quaternion q with weight
Build quaternion res from q * joint.quat *
inverse.joint.quat
vert += joint.pos + res * weight

After building the vertices, they may need scaling. We scaled the vertices by a small

factor in order to scale the models to game size. One might also scale the vertices using a

graphics api function call. In the latter case you would need to isolate your drawing of

the character meshes from everything else.

Building the normals

The lighting model you use will dictate how to build the normals of the entity. The

normals can be built depending on what lighting model you are using. In any case,

building the normals requires computed vertices. Our solution creates the normals per

vertex. The normal for each vertex is summed from each contributing face. The time

needed to compute the normals can be reduced by culling out any unseen meshes.

17

Animation Results

The following pictures portray the animations before they could interpolate with

each other.

The figure on the left shows the character firing in a normal mapped environment. The

figure on the right shows the character firing without the normal maps.

These figures show the character in different stages of movement including moving

backwards.

18

The figure on the left shows the character jumping down an elevator shaft. The figure on

the right shows a character jumping in the opposite direction.

The following pictures portray the animations after interpolation was possible.

19

The figures above show the character performing multiple actions at the same time. They

also show new animations that were implemented during the second quarter.

Results:

A fully playable platform shooter resulted from the last two quarters. Sweet Water has

gone through play testing, and it received positive reviews. We reached our goal of

20

creating a fun highly graphic intensive real time application. Below are some pictures of

our efforts.

Debug mode showing normals, physics objects, and collision grid.

Geometry in level 2 created using 3ds Max.

21

Fire particle effects and shadows in game.

Shadows shift with character movement.

22

Future Work:

Due to our time constraints and small team, we did incorporate some features that would

enhance the game play. We strived to add more weapons, and better firing effects. We

would’ve like to add more weapons, and better firing effects. We also wanted to add

Screen Space Ambient Occlusion, but we ran out of time.

Today, many games are released and constantly improved upon. We would have liked to

optimize some of the computational intensive algorithms we used. For example, moving

the building of character vertices per frame from the cpu to the gpu using a shader.

There’s always room for improvement, and maintaining a video game can be just as fun

as making it.

Conclusion:

Though we ran into many bumps during the last two quarters, we ended up with a

playable game. We have two nearly complete levels, basic game mechanics, and many

graphics technologies. Creating a game in two quarters was a great learning experience.

A good team can improve the experience. Having a good team helped make my

experience enjoyable.

Though I enjoyed the experience, there were a few things I would have done differently

with a second chance. Though we did some initial design, the majority of design was

23

finished during coding. Some more initial design may have reduced the time we spent

redesigning and reworking our code. In addition, I would have listed all the features we

wanted to implement at the beginning. This would have provided a solid framework for

development throughout the two quarters.

Overall, the project was a success. We have a working playable game.

References:

http://tfc.duke.free.fr/coding/md5-specs-en.html

http://en.wikipedia.org/wiki/Doom_(video_game)

http://youtube.com (3ds max tutorials)

http://usa.autodesk.com

3ds Max SDK Documentation

24

http://usa.autodesk.com/
http://youtube.com/
http://en.wikipedia.org/wiki/Doom_(video_game
http://tfc.duke.free.fr/coding/md5-specs-en.html

	Introduction
	Problem Description:
	Previous Work/Related Work:
	Halo Series
	Doom
	Shadow Complex
	Game Engine
	Entities
	Level Editor
	Particle Editor
	External Features Seen By the Player

	Algorithms:
	Character Animation	
	Set Up
	Data Structures
	Animation
	Frame
	Joint
	Weight
	Vertex

	Animation Algorithm Details
	Data Structures

	Algorithm
	Updating the Character
	Set Animations to Running or Not Running
	Animate
	Animation Advancement
	Sorting Animations
	Interpolation set up
	Build Interpolation Frame Joints

	Describe solution into overall solution of project
	Building the Vertices
	Building the normals
	Animation Results

	Results:
	Future Work:
	Conclusion:
	References:

