
Senior Project Writeup

Written By: J. Reece Engle

Advised By: Professor Z. Wood

Additional Group Members:

Alan Delonga

Evan Kleist

Jordan Gacsh

! I. Introduction

! With the recent boom in the video game industry, the design and development of

games has become an extremely competitive and sought-after job market for software

developers. In 2009 the video game industry generated over 19.6 billion dollars, this

overwhelming revenue surpassed both music and movies.

! Video games immerse the player into visually complex and captivating worlds

that are represented using complex algorithms. This is done by creating realistic effects

that model the real world such as dynamic shadows, detailed shading, and vivid particle

effects. Additionally, utilizing lifelike models with fluid animations in true to life

environments helps a player feel oriented in this representation of a virtual world.

! Despite the leaps and bounds in hardware performance representing all these

realistic effects mentioned above is computationally expensive. This makes

conventional programming design specifications, structured iterative development

processes, and constant testing critical aspects of video game development. Without

concern for efficiency these complex effects will easily hurt performance and has the

ability to make a graphically beautiful game completely unplayable.

! Dr. Woodʼs ʻ476++ʼ course presented a unique opportunity for students to take a

ʻhead-first diveʼ into the world of game development, while learning advanced graphics

techniques, and completing the senior project requirement all in 20 weeks. Personally, I

have always been very fascinated by video games. I could argue that my interest in

video games may have been most influential factor in my choice in going into computer

science at Cal Poly. Therefore, I chose to implement, Zombs, a real-time 3D video

game with classmates Evan Kleist, Alan Delonga and Jordan Gasch.

! The Zombs project was an appealing choice for our group with the present

popularity of video games and the demand the presence of many essential elements of

Computer Science such as design, teamwork, and implementation. Zombies have been

increasingly appearing in all forms of popular culture. Regularly depicted in horror and

fantasy based entertainment, Zombies have captured the interest of millions of people

plus our group of four.

! Software projects have grown in size significantly and as a result applications are

rarely worked on individually in practice. This makes being productive in groups a

critical skill exercised regularly while working in industry as a software developer. With

our ideas inspired by popular video games and other forms entertainment as a

reference for the look and feel we wanted for our game, we gave ourselves a lot of work

from the start. The overwhelming workload made task prioritization and assignment an

essential dynamic that continually evolved over the 20 week implementation to suit the

needs of a particular milestone.

! II. Project Overview

! The Zombs project was initially conceived as a proposal in our CPE476++ class,

of a game that would be a mix between bomber-man and Diablo II, using cell shading.

As the project progressed we chose to follow a more ominous ambiance with our

models, lighting, camera angle and background sounds. By having a democratic

atmosphere, where all members gave input, our project became a cohesive culmination

of our ideas. Our team was initially 5 members but due to the inabilities of one of the

members we only had 4 for the second phase of implementation. Our members are

Alan DeLonga, Evan Kleist, Jordan Gasch, and Reece Engle. As we started the project

we were given a list of technologies that were mandatory to incorporate into the game.

! By the end of development we were able to complete all of the following

technologies and fully integrated them into our game:

 Real-time movement/update (All) Level Editor (Reece Engle)

View Frustum Culling(Evan K., Reece E.) Level Import/Export Functionality (Reece E.)

Particle generation (Alan DeLonga) HUD (Alan D., Reece E., Evan K.)

Spatial data structures (Evan Kliest) Inventory (Alan D., Reece E.)

Per pixel shading (Jordan Gasch) Per pixel shading (Jordan Gasch)

Spatial data structures (Evan K.) Collision detection (Evan K.)

Wall Transparency (Evan K.) Sounds (Alan DeLonga, Evan K.)

AI (Jordan Gasch, Reece E.) Shadows (Jordan Gasch)

Models (Alan DeLonga) Animations (Alan DeLonga)

Smart Camera (Evan K.)

Along with these

technologies we had

to create a cohesive

gaming experience.

Since each member

incorporated different

aspects I will only go

into detail on the

parts I worked on.

!

Figure 2.1 : Zombs Video Game

! The game was coded the project using C++ utilizing the following libraries: SDL,

libSDL_mixer (for sounds), libSDL_ttf (for text), libfreetype, libGLEW(for models, and

shading). Our game idea was originally inspired by Diablo IIʼs camera view and model

interaction. After receiving negative player feedback about our cameraʼs view we made

the decision to alter it by locking the camera behind the player, dropping the angle, and

pulling the camera in (instead of above) when the camera collides with walls.

!

! A. Story

! The basic idea behind the story is you are a survivor in a zombie apocalypse.

With an ʻall-to-clichéʼ start in the zombie genre, your character wakes up in a hospital

and the last thing you remember is being in a car accident. Your main objective being to

find your wife who was also in the car. Your walking is labored and you can only sprint

for short distances. As you progress through the level you realize something has gone

horribly wrong and that zombies have over run the hospital. Throughout the game you

are updated with the inner thoughts of your character which help lay out this story line

and give hints to game play aspects. The game is centered on following the objectives

which aid you in finding weapons and items to fight off the zombie hordes. By using

ordinary hospital items as weapons and tools to aid your navigation through the floors of

the hospital to try to find your wife.

! Except thereʼs an interesting twist.... Although, you are having conscious

thoughts you begin to notice that your wounds donʼt look like they came from a car

accident alone, could you be infected too?

! B. Look and Feel

Breaking Down the Heads-up Display!

! The heads-up display (HUD) displays all

the information a player needs to keep in mind

while playing Zombs. A major element of the

HUD is the mini-map which shows your current

position and orientation, the current objective

location, and any enemies within a radius of the

player. Above the mini map we have the current

objective. Oriented to the right of the mini-map

are inner thoughts/story line in blue, and hints

and game play help appear in yellow.

!

! In the bottom right corner we have a zombie awareness indicator. Currently it is a

zombie picture that changes through 6 color sets, portraying the alertness of zombies in

the level. The higher the awareness the faster the zombies move, and the longer the

path distance for the zombie AI, to get to the player, becomes. This means at the

highest awareness level zombies move faster than the player, unless you are sprinting,

and all the zombies in the level will be aware of the player and be trying to get to them.

In the upper right the collected non-weapons are shown. Currently this contains 3

Figure 2.B.1 - Mini-map

Figure 2.B.2 - Story-Line/Hint Text

different types of keys and adrenaline injection. Lastly just to the left of the keys is the

playerʼs health and the adrenaline timer bar shows up under the health, when activated.

Keeping Inventory

! Our game also includes

an inventory that automatically

combines, creates, and makes

weapons available for use. The

system is set up to make a

weapons available for selection

as soon as all necessary components have been collected. Once the weapons are

available they are set to appear in the upper left hand corner. The currently selected

weapon is shown in the left corner; all available weapons are show in their upgrading

tiers to the right of the current weapon. Below the currently selected weapon its name

and associated cool-down are displayed. Each weapon is set up with different use and

cool-down weights to reflect the power of the item, and balance them with game play.

Did you hear that?!

! We also incorporated over 30 different sounds, including 7 sounds looping for

background ambiance. There are sound cues for various actions and situations

including but not exclusive to: dead bodies, doors, crawlers, zombie pain and groan,

non-playable character hiding and found reactions, player pain, melee, heartbeat, use of

Figure 2.B.3 - Inventory Display

adrenaline, and sprint. We used the SDL library for itʼs API on point-based sound and

text display management. We did run into issues with the limitation of the number of

available channels. Since we have so many sounds going at any given time some get

kicked out of their channel before finishing. We tried to solve this issue by allocating

more channels, but we seemed to be constricted to 8 running channels at any one time.

I hate hospitals....

! As many fans of the

zombie genre know a hospital

is probably one of the last

places you would want to be

during a zombie apocalypse.

Capturing the “look and feel”

of a hospital was very

important for the story line to

be reflected in our gameplay.

By using actual floor plans of

hospital to start level design

and then adding hospital-like

furniture and textures we were

able to emulate the feeling of

being in a hospital. Using low ambient lighting and shaders we were able to give a

darker feeling to the hospital environment.

Figure 2.B.4 - Hospital Hallway

! C. Gameplay

! Zombs is an objective-based game that guides the player through a series of

way-points in a level to lead the player to the ultimate objective, finding his wife. The

HUD combines the 2D level representation and objectives helps guide the player

through the levelʼs objective. This helps with teaching the player critical gameplay

aspects and develops the storyline simultaneously.

! The key game controls are “wasd” to move, moving the mouse controls the

cameraʼs rotation, left click is melee-attack and space bar is designated for weapon use.

Secondary game controls include: ʻgʼ uses any adrenaline shots available, ʻpʼ pauses

gameplay, and the tab key allows the player to cycle through weapons in their

inventory.

Figure 2.C.1 - Player Fighting Zombie

! The difficulty we encountered in developing an objective-based game is the

balance forcing the player to follow our planned routes while at the same time allowing

the player to enjoy the experience. When a player misses an objective they miss crucial

story updates, hints, and description of the controls.

! III. Level Editor Tool

! The level editor was a straight-forward idea but an important tool that was

created to aid in producing levels for the Zombs projects. Manually creating levels can

be a long and tedious project that can take several hours and when things are placed

incorrectly it can be a nightmare to correctly identify and replace an object. The level

editing tool for this game went through two main stages of development. Due to an

initial urgency to produce a level editing for our game, I built a completely standalone

tool. However, during the second quarter I realized that the gap between the tool and

our game had grown to large to effectively expand functionality for both the game and

level editor functionality.

! Since nobody in our group has prior experience developing tools for games I felt

this would be a good area for me to step in and fill an important role for our group. Yet

in the weeks to come I never imagined how much experience I would receive in tool

development as I accepted responsibility for this assignment.

! Since our gameplay is largely based on level progression, our entire group

realized the importance for a tool that would effectively create levels early in

development. The initial push for this led to a rushed development and an extremely

simple standalone level editor that created walls. Then, I needed to design a solution to

save all this data since a program is unable to retain memory after it has stopped

running. There are numerous innovative methods of storing this level descriptions such

as representing your levelʼs walls as pixels in a bitmap image. However, instead of

implementing an image parser I decided to take the more direct information and save

information on the start and end points of each wall. Below you can see a figure of the

first level editor adding walls to a level.

! As depicted above, the first version of the level editor was a basic grid-based

editor. After this initial development, the amount of objects and information our levels

vastly expanded and so did the technologies in our game. By the end of the first quarter

the shortcomings of the tool were becoming unbearable. The growing number of

Figure 3.1 - Level Editor - v1.0

objects that occupied our levels led to very confusing controls. Also, the grid-based

movement made it very difficult to accurately place items and the fact that there wasnʼt

a method to undo previous placement made mistakes potentially disastrous if you did

not frequently use the export functionality frequently. Hence, the birth of the Zombs

Level Editor 2.0 illustrated in the figure below.

Figure 3.2 - Zombs Level Editor v2.0

! As previously stated, the main short-coming of the previous level editor had been

the growing gap between the technology of our tool and the constantly advancing

technologies of our game. To solve this critical issue I decided to inject the level editor

code into our game and essentially combine their functionality. With the proper

commands running our game Zombs will load into ʻEdit Mode.ʼ By doing this I was able

to see how objectʼs would look inside our game instantly. This upgraded feature alone

made the redesign process worthwhile because previously you would have to shut

down the level editor and start up the game to see how changes would look after they

had been added. This also allowed the level editor to change as the game did and

rarely made it necessary to upgrade for new technologies that were implemented.

Figure 3.3 - Level Editor v2.0 - Menu

! The addition of a ʻEdit Menuʼ shown in the figure above allowed for the

simplification of controls. This was essential to support the steady increase of unique

objects during implementation. This allowed the user to select different items separated

into broad categories in the menu. To cite a use-case as an example, when a user

wants to add a chair to a level they would first press ʻfʼ to access the furniture menu.

After this the user is presented with all of the different furniture objects available to the

level editor. By pressing ʻcʼ a user will select chair mode and will be able to drop a chair

into a level with whatever orientation he indicates with the tab toggle. In addition, if a

user is unsatisfied by their previous placement by pressing ʻrʼ the user resetʼs all edits

after the last export. This ability to undo and export object placements without quitting

the program allowed for a user to create levels significantly faster by granting the user

the ability to preview items in the level.

! Shown below is a user adding two chairs with different rotation to block off the

exit and force the player to choose another route.

Figure 3.3 - Level Editor in Action

! Zombs used a series of files to represent the various objects that make up a

level. The different categories of objects represented in these files include weapons/

power-up items, static furniture models, zombies, non-playable characters, walls and

doors. These files kept information pertaining to an objectʼs particular type, rotation and

position within our virtual world. By giving the level editor the capability to export all the

information in these various files Zombs was able import this information and give the

same representation of our levels as presented in the level editing tool.

! One particularly interesting file that has not been mentioned was our

transformation of the levelʼs spatial data for the “artificial intelligence” that controls the

movement of all the zombies. This file is a representation of our map as a 50 x 50 grid

of zero and one values. One values represent where walls exist and the zeros

represent empty space in which zombies can move freely. Using this representation of

our level a particular zombie in a level can determine the best possible path to the

player. The artificial intelligence is explained in more detail later but to put it simply by

calculating the distance of the best path to the player we determine whether a zombie is

within range to move towards the player and if so, we make a ʻstepʼ towards the player

along the path.

! To make it possible to use this form of artificial intelligence there had to be certain

restrictions placed on our levels and some of the objects within. To symbolize a level

with a 50 by 50 grid-like representation we first placed a limitation on the size of our

maps to 50 units long and 50 units wide. Additionally, we had to orient our walls on this

grid to have concurrency with our abstracted representation used by the zombies.

Consequentially since doors are attached to walls this restriction was also forced upon

the doors. However, doors are not represented in the artificial intelligence file because

we wanted zombies to able to pile up on a door to attack a player if they are playing

without any discretion towards their ʻawarenessʼ meter.

! The level editor made it possible to finish two complete levels in the Zombs

project. This tool also leaves the door wide open for our group and even other users to

expand upon our game with minimal coding experience or background knowledge by

creating new levels.

! IV. Results

! In the end, we accomplished what our group set out to do; make a game that

was fun to play. After the first stage of development we were able to produce an

extremely visually stimulating experience. However, in our haste to add content and

technologies we neglected to think if the game was fun to play. Since engaging

gameplay is arguably the most critical aspect of a game we focused our efforts towards

making Zombs a fun game to play.

! To correct our mistake we literally took our game back to the drawing board and

carefully laid out future levels. This allowed us to give our playerʼs direction by giving

them a pre-determined route through the level. Determining how the player would

progress in a level allowed us to include our storyline and introduce controls as the user

played the game. Throughout the development of Zombs I frequently had friends play

in order to make sure our game was simple to understand and fun to play. This quick

and sometimes brutally honest feedback allowed to quickly eliminate aspects that

detracted from the playerʼs experience. Following the full development of our first level I

had many of the play testers anxiously asking when the second level would be done.

! However, not all the feedback was good and we failed to give some of our testers

a fun experience. The main cause for negative feedback was when playerʼs chose to

ignore our objectives. Without following the objectives the user completely misses out

on introductions to essential controls to gameplay, story-line progression, and helpful

hints. Unfortunately, most testers who did not follow the objectives ended up getting

confused and generally lost interest with the game very quickly. It was always heart-

breaking to see someone struggling to have fun with your game, but identifying aspects

that lead to confusion and take away from the experience is critical to making a fun

game. Then again, it was also important to keep in mind that it is impossible to truly

please everyone, but that didnʼt stop us from trying.

! Our team was also able to incorporate complicated algorithms in order to achieve

effects such as per-pixel lighting, dynamic shadows, and vibrant particle effects. I am

truly proud to say that I took this challenge head-on and was a integral part of the

development of Zombs.

! V. Conclusion

! One of the most interesting aspects of working with this game was the seemingly

endless amount of time one can spend working on developing a game and itʼs tools.

Making seemingly simple changes to gameplay can sometimes take a fair amount of

time, become extremely complicated, and eventually taken out of the game. For

instance, I developed an inventory system for keeping a playerʼs items. At first, it was

simple and just required keeping a list of references but then extra requirements to

make the inventory click-and-drop to enable item combinations made it very difficult.

Then the most important lesson of all was after all this development we decided to take

all this work out of the game because it made things to complex. At first, I was

extremely biased and wanted the product of all my hours of work to be in the game

despite how it changed the gameplay. Now, I can see that it was a better decision to try

to simplify the gameplay despite the work I put into development. This is important

because with programming requirements change and to be a useful software engineer

you have to be ready to adapt to whatever challenges present themselves.

! Looking back over the months of development it is amazing to think that Zombs

started 20 weeks ago with absolutely nothing. Zombs evolved from an idea to a set of

specifications and then finally became the game it is today. Being apart of the design,

development, and testing of Zombs is an experience that I will never forget. Learning

the inʼs and outʼs of game development has been a bumpy road with the constant

pressure of adding new technologies to your game. But now that itʼs over, I cannot stop

thinking of new features to add to the game to make it better. This makes me think that

future development is almost a certainty.

