
Asteroid Blaster

By Sterling Hirsh

California Polytechnic State University

Winter - Spring 2011

Advisor: Zoë Wood

Table of Contents

Introduction
Course Structure
Objectives
Look and Feel
Story
Technologies Used
Previous Work / Related Work
Algorithms Overview
Algorithm Details

Cube Walls
Collision Detection
Asteroid Explosions

Results
Future Work
Conclusion
References / Bibliography

Libraries
Games

Introduction

Atari’s Asteroids, released in 1979, is one of the most popular and influential arcade games of all time.

The game works like this: The player flys a small triangular ship around a world with floating asteroids.

The player’s ship has a gun that is used to shoot the asteroids. When the asteroids are hit, they explode,

breaking into smaller asteroids. Occasionally, an enemy ship will fly across the screen and shoot at the

player. The object of the game is to get the most points by shooting everything while avoiding being hit.

Since then, Asteroids has spawned hundreds of clones for many platforms. Some of these have included

graphical improvements, while many have added new gameplay mechanics. Asterax, for example, is a

shareware adaptation of Asteroids for the Macintosh. In Asterax, exploding asteroids occasionally drop

crystals that the player may collect and spend to upgrade his or her ship.

This project, Asteroid Blaster, is a new approach to Asteroids in 3D. It combines elements from several

video game genres, including first-person shooters, flight simulators, and role-playing games. It is not the

first 3D game in the style of Asteroids, but it combines fast-paced Asteroids-style action with attractive

graphics and some new game mechanics.

Course Structure

Asteroid Blaster is part of Zoë Wood’s two-quarter CSC 476++ class, which is a computer science

technical elective that also serves, for many students, as a senior project. The project was primarily

developed by a team of five students: Taylor Arnicar, Chris Brenton, Sterling Hirsh, Jake Juszak, and

Ryuho Kudo. Additional AI work was performed by Sean Ghiocel, Justin Kuehn, and Mike Smith.

Genre and Setting

Asteroid Blaster is a 3D space adventure game

for a general audience. The player can fly

freely within a bounded environment in outer

space and shoot asteroids, much like the classic

arcade game Asteroids. When asteroids are

shot, they break apart into smaller asteroids,

and sometimes they drop crystals that the

player can gather by flying into them. The

player’s ship is also equipped with a tractor

beam to attract nearby crystals.

The game takes place inside a multi-colored cube. The cube’s faces are colored red, blue, green, yellow,

cyan, and magenta. These colors help the player stay oriented in the world. There is no concept of “up” or

“down” in the game, since players are free to pitch and roll however they please. During testing, some

players found this disorienting at first, but most players became comfortable with the world within several

minutes.

Objectives

The object of the game is to destroy all asteroids and collect all the crystal shards released while taking as

little damage as possible. To this end, the player starts with two weapons: the blaster and the tractor beam.

The blaster shoots many lightly damaging projectiles in quick succession. The tractor beam projects a

continuous cone from the ship, pulling in crystal shards that are inside it.

Asteroid Blaster is played in levels. A level ends after three minutes or when all asteroids and shards are

collected, whichever comes first. The player begins with three lives, and must wait several seconds after

dying before respawning. Players receive a new weapon after completing each level to add an incentive to

reach later levels. The game is over when the player has lost all his or her lives.

At the beginning of each level, any remaining crystal shards and asteroids are cleared, and new asteroids

are randomly created. That is to say, level one has one asteroid; level eight has eight asteroids. Level

eight and beyond, only eight asteroids are spawned. Because the size of the world is constant, a level with

more than eight large asteroids is virtually unplayable.

Between levels, the player is taken to the

store, where he or she spends crystals to

purchase ship upgrades, such as better armor,

weapon upgrades, or a faster engine. Players

may continue to upgrade their weapons;

however, upgrades get more and more

expensive as the player progresses through the

levels.

Beginning with level two, players compete for crystals against a computer-controlled AI player that fights

against the human player and shoots asteroids. Every level after level two adds one or more additional AI

players, up to four per level. An AI player will stay in the world across levels and respawn after being

killed until it is killed three times.

Look and Feel
Since the beginning of the project, we always had a clear art aesthetic in mind, inspired by games like

Geometry Wards and Beat Hazard. These games have bright colors, saturated neon particles, and retro

wire-frame art styles.

Story

Our game is very influenced by retro games. Most old arcade games have sadistic difficulty and addictive

gameplay, but lack a fleshed out story. Asteroid Blaster is no different. The game gives no explicit reason

to shoot the asteroids, collect shards, or blow up other ships. The player is simply dropped into the action

without any context. This confuses some players initially, but due to the popularity of arcade games, most

players are able to understand what they are supposed to do as soon as they understand the controls.

Technologies Used

Asteroid Blaster is programmed in C++ as per the class requirements. Because it is free and commonly

available, we used g++ as our compiler. The most natural choice for a 3D graphics library for our project

is OpenGL, since it is free and portable. We used Simple Directmedia Layer (SDL) for windowing, font,

image loading, and audio. Boost was used for threading, networking and serialization.

Previous Work / Related Work

A lot of games have influenced the design of

Asteroid Blaster. The biggest influence was

Asterax, by Arvandor Software. When

collected by a player’s ship, Asterax’s

crystals either replenish health of the ship or

serve as currency for the in-game store. The

store appears between levels and allows the

player to purchase upgrades, items, points,

and extra lives. Asterax is in 2D; however,

many of its ideas can be adapted to work in 3D.

A three-dimensional Asteroids clone exists,

aptly titled 3D Asteroids by Grass Games.

According to its website

(grassgames.com/asteroids), it is the first 3D

clone of Asteroids. 3D Asteroids maintains

the dark, lonely feel of the original, but

moves the game to a fully 3D environment.

Unfortunately, 3D Asteroids has a confusing

control scheme and an unintuitive view.

Before playing the game, the player must

play through a 15-minute tutorial.

In part because of the confusing controls and view, 3D Asteroids loses the fast-paced excitement of the

original. Additionally, 3D Asteroids retains the infinitely looping world of the original. A player may

travel in a single direction indefinitely without being stopped by any walls. This works well in the 2D

original, since the entire world may be seen at once, but in a 3D setting, players can (and do) run into

unseen asteroids when looping around the edges of the world. Asteroids appear to pop into and out of

existence when these boundaries are crossed, and it is easy to become disoriented.

Quake III Arena was released by id Software

in 1999. It features a minimalist deathmatch

experience. There are ten weapons and two

items. It has little story if any at all, focusing

instead on gameplay. In Quake III Arena,

players must kill everyone else while

attempting to stay alive. Although the game

does not play like Asteroids, both game share

similar objectives. Also, Quake III Arena is very straightforward and easy to learn. This makes it a good

model for several aspects of Asteroid Blaster.

Bizarre Creations’s Geometry Wars has a

unique visual style comprised primarily of

lines and particle effects. This style combines

elements of retro games like Asteroids with

more modern graphical techniques, which is

our goal with Asteroid Blaster.

Algorithms Overview
! Procedural Modeling (Chris)
! Bloom Lighting (Chris)
! Spring System (Chris)
! Multiple Render Targets (Chris)
! Ammo for weapons (Taylor)
! Design & interface of shooting AI & flying AI (Taylor)
! Shooting AI weapon selection (Taylor)
! Shooting AI target selection (Taylor)
! Shooting AI difficulty levels (Taylor)
! Weapon unlock system per level (Taylor)
! View frustum culling for player's view (Taylor)
! Radar (Taylor)
! Minimap (Taylor, Sterling)
! Network (Ryuho, Sterling)
! Text/Font (Ryuho, Taylor)
! SoundEffect / Music code (Sterling, Ryuho)
! 3D Audio (Sterling)
! Sound Design / Music Compositon (Sterling)
! Menu System (Ryuho, Sterling, Chris)
! Weapon Upgrade (Ryuho, Sterling)
! Weapon Price / Balance (Ryuho, Sterling)
! Levels (Ryuho)
! Spectator Mode Camera (Ryuho)
! Input System (Mike, Ryuho)
! Particle System (Sterling, Ryuho, Taylor, Chris)
! Collision Detection (Sterling)
! Asteroid Explosions (Chris, Sterling)
! Bounding space (Sterling)
! Ship modeling/animation (Jake)
! Weapon and effect modeling/animation (Jake)
! Barrel Roll (Jake, Sterling)

Algorithm Details

Cube Walls

One of the most obvious and visually appealing

graphical effects is the ripple effect on the walls

of the cube. This is triggered whenever an object

bounces off the sides of the cube. Large asteroids

cause a large ripple, while smaller objects cause

smaller ripples. The effect is achieved by drawing

parallelograms the same color as the wall in a

circle originating where the object hit.

Each cell of the wall is its own object, called a GlowSquare. When nothing has hit the wall, none of the

GlowSquares draw. As soon as an impact is detected, the object that impacted is reflected and the ripple

effect is triggered. The wall does the actual collision detection, so when something hits it, the wall finds

the closest GlowSquare to the object and uses that as the center of the ripple.

Each GlowSquare keeps a priority queue of

times sorted from earliest to latest. These times

represent when the GlowSquare’s animation

should begin. When the wall detects a collision,

it first finds all affected GlowSquares. The wall

adds the current time to the priority queue of

the center GlowSquare. GlowSquares that are

further from the center have the current time

delayed proportional to their distances from the center before the time is added to their queues.

When drawing, the GlowSquares use the latest time in the priority queue that has not yet passed. By using

a constant animation length, the GlowSquare can calculate how much of the animation has passed from 0,

meaning the animation just started, to 1,

meaning the animation is just finishing. This

value is called amountComplete. The

GlowSquare uses this value to set its position

and opacity. When amountComplete is 0, the

GlowSquare is half transparent (alpha 0.5).

This fades linearly to fully transparent (alpha

0), at which point the GlowSquare is no

longer drawn.

The position of the GlowSquare is also

modified during the ripple effect. The

GlowSquare is translated along its normal by

an amount proportional to the

sin(amountComplete * PI). As

amountComplete goes from 0 to 1, the

GlowSquare drops behind the wall, moves

back in front of the wall, and then fades out

as it settles back to its original position.

This ripple effect has been the single largest source of positive feedback when showing people Asteroid

Blaster. Unfortunately it also is one of the most computationally intensive parts of the game. Several

profiles have show it using over 40% of CPU time. However, the effect is very pretty, so it’s CPU time

well-spent.

In its first iteration, the GlowSquares only stored a single time, as opposed to a priority queue of times.

This worked fine when only a single ripple happened at a time, but when two ripples would overlap, the

second would cancel the first in an ugly way. Adding the priority queue ensures that one ripple does not

overwrite the times from another.

Collision Detection

Many of the commonly used spacial data structures, such as oct-trees and binary space partition trees,

seem to be well-suited for large, mostly static scenes, like terrain. Asteroid Blaster presents a less

traditional challenge of handling collisions in a world with at most one or two hundred objects, all of

which are moving (there are only six walls, all of which are axis-aligned, so this algorithm does not

include collision detection for walls). Most of the time, however, the objects are small and the world is

sparsely populated.

To handle this sparse population, all collideable objects are stored in a single list. Each object must

specify its minimum and maximum values in the X dimension. Every frame, after object positions are

updated but before collisions are tested, the list of objects is sorted by the objects’ minimum X values.

When testing for collisions, the program starts at the element with the smallest mimimum X value. It

checks if the next item in the list has a minimum X value less than the current item’s maximum X value,

signifying a potential collision. If so, that item will be tested again more thoroughly, as in a sphere-ray

intersection or a sphere-cone intersection. The next item is then checked, and so on, until one item’s

minimum X is greater than the first item’s maximum X, indicating no more collisions are possible with

the first item. Next, the second item is checked. Only items further in the list must be checked, since

previous items will already have been checked.

Each step of this algorithm can be thought of as taking a slice of the world along the Y-Z plane containing

just enough space to hold the object to be checked. Only other objects in that slice must be checked. This

has a worst case scenario of being O(n^2). However, in this application, it is exceedingly rare for every

object to occupy the same slice of the world. If it did happen, it would only be for a small number of

frames, since every object is moving. Furthermore, having all objects exist in the same slice is only likely

to happen when there are a small number of objects, in which case the test would not cause a performance

hit anyway.

Each collideable object has a collision object that defines the shape and parameters of the collision area.

For example, each asteroid has a CollisionSphere centered at the asteroid’s center with a radius equal to

the asteroid’s radius. This allows various objects with different interfaces to have a consistent way of

checking for collisions with each other. Each collision object has a method that accepts each other type of

collision object and returns a bool indicating whether or not the objects collide.

Once collisions are detected, they are handled separately. The first version of collision handling used a

virtual method on each collideable object called handleCollision that accepts a pointer to the other object.

This worked fine during the initial stages of development, but quickly became unwieldy. The effects of a

collision could come from either of the collided objects, and the order of the handleCollision calls could

not be guaranteed. This was replaced with the current collision handling system. There are now template

functions that handle each type of collision outside of either of the collided objects. For example, when an

asteroid and a ship collide, the function handleCollision<Ship, Asteroid>(a, b) is called. Centralizing all

collision handling had made the code far more maintainable. If some new effect is to be applied whenever

a ship gets hit with a shot, seven functions -- one for each type of shot -- must be changed in the same file.

In the past, the effect could be applied in any of 10 places (the ship, each of the shots, and some parent

classes of shots) -- a maintainability nightmare!

Asteroid Explosions

When the ship explodes in the original Asteroids, it breaks from a triangle into a few lines that drift apart

for a few seconds. That effect inspired the explosion effect of the asteroids in Asteroid Blaster.

When an asteroid spawns, its lines are white. This indicates that its health

is at maximum. As it is hit more, the colors change toward a fully

saturated color, indicating lower health.

When the asteroid’s health reaches zero, it explodes. If the asteroid is big

enough (radius > 2 world units), it leaves two smaller asteroids in its

place. When asteroids explode, each of the triangles turns into its own

object in 3D with its own trajectory and rotation. This gives the

appearance of the shattering like glass.

Each asteroid has a randomly generated triangle mesh. When the asteroid

explodes, each vertex on each face is converted to world space from

object space. Then the center point is calculated for each face. The

coordinates for the vertices are then made relative to the centerpoint for the face. A random axis of

rotation is generated, with the initial

angle set to 0. Faces are given an initial

velocity based on the velocity and

rotation of the asteroid. If an asteroid is

spinning fast, faces near the equator

will fly farther than those near the

poles. Faces from asteroids are not

collideable objects, although they do

bounce off the walls, generating ripples.

Since they don’t collide with anything,

and since asteroids are randomly generated on the client side in network games, faces never need to be

sent over the network.

Results

Asteroid Blaster ended up being ranked first in playability by other students in the class. The game’s

graphics have an arcade feel that fits well with the style of gameplay. There are enough levels that a

player could reasonably play for over an hour, and the game would still offer an increasing challenge at

each level.

Throughout Asteroid Blaster’s development process, the development team had friends, family, and other

students play test it. Nearly all who played agree that Asteroid Blaster is pretty. Most players also agreed

that the early levels were appropriately easy for new players. Several players thought the game did not get

difficult fast enough, so we modified the AI to make it self-adjust to the player’s performance. Now,

when people play, they frequently report that the AI provides a challenge without being impossible.

When some people initially tested Asteroid Blaster, they would continue to respawn infinitely three

seconds after dying. Players complained about feeling like there was no point to playing, since the game

did not end, even when the player performed poorly. To address this, we added the concept of lives to the

game. This gave players a way to lose, which gave them an reason to care about playing. This single

change made the game significantly more satisfying.

We attempted to add networking in the last several weeks of the project. Unfortunately, this ended up

being a very difficult task. At its best, players could use two of the weapons, and the tractor beam caused

a segmentation fault. Before turning in the project, we decided to deactivate the networking code, since it

was unstable and incomplete.

We also attempted to implement a deferred shading engine. We made a lot of progress, but in the end, the

we were unable to fully implement light geometry. This was partially due to a paucity of available

resources online and partially due to time constraints. At this time, deferred shading is an emerging

technology that has only recently become popular in the game industry.

Regarding the development

process, this project was a great

success. We used the Trac

ticketing system with

Subversion for task management

and revision control. Over the

course of two quarters, Asteroid

Blaster saw about 1000 commits

to its Subversion repository and

over 200 Trac tickets. After the final version was created, we used the Gource repository visualization

software (pictured) to create a video representation of our commit history. A link to this video will be

available on the project’s web page.

As a team-based school project, Asteroid Blaster was somewhat unique. This project allowed our team to

decide what challenges to accept and to what degree: we set our own goals and decided how ambitious to

be. This gave us an enormous amount of freedom to experiment with the graphics and gameplay.

Future Work

Like many software projects, Asteroid Blaster could always benefit from more features. Unfortunately,

time is limited, especially in school. We could add a lot of usability improvements, like remappable

player input and autodetection of screen resolution. However, this project has been an exercise in

managing priorities. Our team has done an enormous amount of work in the time we were given, but we

still were not able to finish every feature we wanted.

More weapons would extend the time that the player continues to encounter new game material. There

were a few weapons that we started working on, but never finished. Others, we started thinking about, but

never worked on. For example, we started a weapon called the lawnmower. This ended up looking like

lobster claws coming out of the ship, which unfortunately did not make any sense, so we cut it from the

game.

Another big feature that we would have liked to implement is multiple game modes, especially for

multiplayer. At best, multiplayer only supports free-for-all deathmatch. It would not have been

unreasonable to support cooperative play with some simple modifications. We also discussed adding other

gametypes, such as one we called “Shard Soccer,” where the goal is to use weapons to push a shard into

the opponent’s goal.

Adding droppable powerups would make gameplay more interesting. Asteroids could, for example, have

a random chance of dropping a health powerup or a temporary speed boost. These kinds of things can add

variety to the game. It would also be fun to be able to grab these with the tractor beam, since the tractor

beam is currently only used for grabbing shards.

Another thing we would like to add is multiple types of asteroids. It would be interesting to have some

sort of indestructable asteroid that could be pushed into other players by shots.

Finally, there are plenty of ship upgrades and items that could be added to the store. The more store items

available, the more choices players have when constructing their ship. Already, there are a few interesting

things to buy. But with more upgrades, the player has more control over the balance of engines and

shields.

Conclusion

Our group had a friendly rivalry with another group in the class, Project Lume. We teased each other in

class, but we shared a mutual respect for each other’s work. This rivalry motivated us to put our best

effort into the game, and that effort shows in both Asteroid Blaster and Project Lume.

We spent a lot of time working on networking and deferred shading, which we never finished. If we had

made them work, they would have been huge wins, but we didn’t end up having enough time. If I had

been able to realize that sooner, I could have reassigned the people working on those features and gotten

more done in other areas. I’m glad this was a school project, since canceling a feature like networking so

late into the development of a production game is not feasible. If we had given up early, we would have

always wondered if we could have pulled it off.

Over the last quarter, I learned that with time and effort, I really can make something awesome. I realized

that the key to good code is a mixture of self-confidence, persistence, and honest self-evaluation. I learned

how far I can push people I’m managing and what I can expect from them in a given amount of time. I

learned not to wait until the end of a project to add features as big as networking or deferred shading, and

I learned not to expect a single programmer to be able to do it all. I reinforced my knowledge of the value

of pair programming. I learned how difficult it can be to integrate third-party code, but that usually, it is

still less work than writing the code yourself. I learned that sometimes, it’s better to cut your losses than

pour a lot of resources into unlikely features.

Our game turned out great. I got to have my vision realized, which was intensely satisfying. It was a lot of

work, but the whole experience was a blast.

References / Bibliography

This includes several of libraries that we used in the creation of Asteroid Blaster, as well as games that

inspired us.

Libraries

SDL http://www.libsdl.org/

SDL Mixer http://www.libsdl.org/projects/SDL_mixer/

SDL Image http://www.libsdl.org/projects/SDL_image/

Boost http://www.boost.org/

OpenGL http://www.opengl.org/

GLEW http://glew.sourceforge.net/

Games

Quake III Arena http://www.quake.com/games/quake/quake3-arena/

Asterax http://musegames.com/news/games-we-loved/asterax/

Geometry Wars http://store.steampowered.com/app/8400

3D Asteroids http://www.grassgames.com/asteroids/

