
LUME
Senior Project General Write-Up By Mike Buerli, Brent Dimapilis, Trent Ellingsen, Jeff Good, Teal 

Owyang, Jonathan Rawson, Ryan Schroeder

Senior Project Specific Sections Write-Up By Trent Ellingsen

Introduction
Video game design is a constantly expanding industry, grossing more than 31.6 billion dollars annually. 

Game design is not only the work of large entertainment companies but has also become available to 

small companies, freelancing, and individuals. This growing industry is one of the major contributors to 

new and upcoming technologies in the computer science field. Computer games and graphics alike are 

constantly evolving with the invention of better hardware and more efficient algorithms. The challenge 

in game design is to create something unique and up-to-date with the latest technologies. Adventure 

games, in particular, require a large amount of content in order to drive the objective-based system. It is 

this genre of video game that provides a large amount of revenue for the game industry, often spawning 

from story-lines of books and movies. Because of the impact of this genre and the expansiveness of the 

game industry as a whole, our team chose to implement a 3D interactive adventure game for our senior 

project.

Project Lume was a two quarter long real-time graphics project. Our design team consisted of seven 

team members: Mike Buerli, Brent Dimapilis, Trent Ellingsen, Jeff Good, Teal Owyang, Jonathan Rawson, 

and Ryan Schroeder. As a team, we successfully developed a fully playable computer game, along with 

the necessary engine, content, and tools needed to create such a game. This project not only produced a 

unique and interactive 3d game, but also gave team members invaluable experience with computer 

gaming and graphics technologies. 



Project Overview
Lume is a unique 3D adventure game created in C++ and OpenGL. The game exhibits a large array of 

computer graphics technologies complemented by a strong story and distinctive aesthetic appeal. Lume 

also uses a different style of controls by implementing both first and third person perspectives, while still 

keeping the controls intuitive and fluid.

Lume is centered around a creation and sandbox feel intended to give the user a fully immersing 

adventure experience. Players are encouraged to build upon the world in order to reach new objectives, 

checkpoints, and gain more abilities. The world originally starts dark and desolate, however, when the 

user interacts with buildings and moves throughout the world they give light and life back to the world 

providing the player a strong sense of influence over their surroundings. Throughout the course of the 

game, the player gains more abilities through leveling up including: the ability to control of moving 

platforms, further extend blocks, and jump through blocks that have been built. All of these abilities 

must be utilized in order for the player to reach new heights and complete the various objectives for 

each level.

The main objective of Lume is to reach the top of a collection of buildings which comprise a level to 

harness more energy. Focusing on this simple idea is imperative in game development. Abilities and 

controls must be simple and engaging; a game must begin with a simple concept and build upon that 

concept with features that help bring more value to the game by either improving basic game play or 

strengthening the story. The focus in Lume was the ability to extend blocks from any building in the 

world and climb up them, allowing the user to choose their own path through various levels. 

Throughout the development of Lume, other features were added to help strengthen the story or 

improve the game play.

Look and feel is another vital component to game development. A game must have a very cohesive 

theme and style in order to keep the user engaged. Lume’s theme focuses on futuristic and abstract 



lighting with heavy contrasts between light and dark. Objects are constantly pulsating with a darker 

shade of light, which contrasts the bright glow of the edges surrounding buildings. The color pallet of 

the world possesses a variety of neon colors which help convey a futuristic style. The look and feel of a 

game must also help convey the story. Lume focuses on tying a relationship between the dark and bland 

qualities of the world to objects that KOG is controlling. As the player progresses through the game they 

harness energy from KOG and create a brighter and more colorful world with the newly harnessed 

energy providing a stark contrast between light and dark. Players can add color to the world simply by 

building blocks on any building. Organic, colorful patterns extend from each block a player creates in the 

world. Lastly, to further convey the differences between KOG and the player, objects associated with 

KOG are much more linear and rigid, while objects associated with the player are more organic and 

abstract.

The last element and platform for which a game is built upon is the storyline. The KOG story was 

developed by teammates throughout the two quarters plotting out much more detail than is visible in 

the game. To be brief, the story is of a future civilization, which is under the complete control of KOG, 

who’s only hope of survival is Lume (the player). The story takes on the classic battle of humanity versus 

technology (not evident until the end of the game) as well as nature versus industry. The story starts out 

in the year 4200, where KOG, a privatized company now controls all civilization. All of earths resources 

have been depleted and the world is now solely based on energy. The intro scene for Lume starts with 

an image of a door labeled Project Lume. Project Lume is an experiment conducted by KOG to create a 

new and more efficient way of storing energy. Lume (the character) is the first prototype of this 

experiment which KOG quickly realizes is a failure due to Lume’s unexpected ability to manipulate 

energy. A computer terminal is seen activating a program called Insight. Insight is a computer AI 

designed back in 3119 at the creation of KOG, designed as a fail-safe to disable KOG should it ever gain 

too much control. Presently, one-thousand years after KOG’s rise to power, Insight finally sees its chance 

to take KOG down using Project Lume. The intro shows Lume falling from the sky (down from the upper 

KOG city) and then awakening in the tutorial level where the game begins. The first objective of the 



game is to download Insight (initially the player does not know what they are downloading). Once 

Insight is downloaded it talks to the player via the Heads Up Display (HUD), giving the player feedback 

and an introduction to the game’s plot. Insight guides you through a series of levels, in which you 

harness an increasing amount of KOG’s energy. Once all the energy is collected you can reach the upper 

city, where the player is given the opportunity to finally defeat KOG. After completing the game, it is 

revealed that KOG stands for Komputer Organized Government and that KOG is a Komputer (next gen 

computer). By shutting KOG down, all energy is relinquished back to the earth, allowing humanity and 

nature to start once again. 

Related Works
The general look and feel for Lume was inspired by the movie Tron: Legacy by Disney displayed in Figure 

1 below. Lume utilizes the dark and moody electronic sounds of the Tron universe as inspiration to 

create a unique ambiance for the player as they visit the different sections of the KOG empire.  Visually, 

the user is presented with an initially dark and bland world that lights up in vibrant neon oranges, blues, 

and greens as the player harnesses more energy and interacts with different areas of a level. The building 

architecture mimics the rigid futuristic building style used in Tron but adds a unique organic texture style 

to the sides of buildings that the player interacts with.



Figure 1: Tron Legacy

Throughout the development of Lume, the concentration was focused on adding new innovations to 

the 3D platformer genre. Lume’s game-play was inspired by several other 3D platformers including: 

Assassin’s Creed by Ubisoft, Super Mario 64 by Nintendo, and Mirror’s Edge by Electronic Arts. Traversing 

through the world by rooftop was a mechanic used in Mirror’s Edge displayed in 2 below and Assassin’s 

Creed displayed in Figure 3. The inspiration behind completing various objectives in the different KOG 

districts stems from the star collection mechanic of Super Mario 64 displayed in Figure 4. The key 

difference between these games and Lume is the innovative way in which the player traverses the world. 

As developers our intent was to create an intuitive path through the levels, however, with the ability to 

build on nearly every building in the KOG world the player is free to create their own path through a 

level. Minecraft was the main inspiration behind allowing the player to modify the world by building 

blocks anywhere in the world. Allowing the player the change the world freely grants them the ability to 

form their own path and visually alter a level differently on each play through.



Figure 2: Mirror’s Edge

Figure 3: Assassin’s Creed



Figure 4: Mario 64

General Technologies
Lume implements a variety of graphics technologies that allow the game to have an aesthetically 

pleasing look, while running in an efficient manner.  

Below is a list of the various technologies that was implemented, with the team member(s) that worked 

on it:

• 3D Interactive Environment (All)

• Collision Detection (Mike Buerli, Ryan Schroeder)

• Spacial Data Structure (Mike Buerli)

• Frame Buffer Objects (Mike Buerli)

• 3D Modeling and Animation (Teal Owyang, Brent Dimapilis)

• Model importer (Teal Owyang)

• “Spring-Loaded” Camera (Jeffrey Good)

• Freeform Camera (Ryan Schroeder)

• Camera Pathing (Ryan Schroeder)

• Robot AI/Pathing (Jeffrey Good)



• Bloom Shader (Jeffrey Good)

• Mapper/Importer (Jeffrey Good, Jonathan Rawson)

• Level Design (Jonathan Rawson, Jeffrey Good, Trent Ellingsen, Ryan Schroeder)

• Objectives (Ryan Schroeder)

• Growing Objects (Mike Buerli)

• Moving Objects (Jonathan Rawson)

• Heads Up Display/Main Menu (Jonathan Rawson)

• Picking (Mike Buerli)

• Player Logic (Ryan Schroeder)

• View Frustum Culling (Ryan Schroeder)

• Particle Explosions (Trent Ellingsen)

• Dynamic Abstract Lighting (Mike Buerli)

• Animated Textures (Trent Ellingsen)

• Textures & Logo design (Trent Ellingsen)

• Simple Level of Detail (Trent Ellingsen)

• Orbs Particle System (Brent Dimapilis)

• 2D Billboard Texturing (Brent Dimapilis)

• Robot/Plant Texturing (Brent Dimapilis)

Look & Feel

Within the game environment there are three 3D models that represent characters. These models were 

created using Blender and include the main character ‘Lume’ as well as two of the enemy robots 

controlled by the KOG corporation. The levels in which the game’s world resides were created through a 

stand alone map creating program. The mapper exports a custom file type, developed by the team, that 

the game is able to interpret and construct each of the worlds with. One of the technologies 

implemented in Lume was billboarding to simulate a 3D look using 2D objects. To create the look and 

feel of futuristic posters and logos, 2D textures were placed in 3D space and were alpha blended create 

the effect of glowing advertisements. There are two particle systems in place, the first occurs when the 

character gathers of energy and there are orbs that follow the character in a flocking simulation, the 



second occurs when robots are sprinted through and killed. Using both bloom and blur effects, the outer 

glow of the building was manufactured. Animated textures were used to create the title, intro, and 

loading screens.

Optimization

Lume implements several technologies that allow for optimized gameplay. To help the bottleneck of the 

graphics pipeline, Lume does not send all the geometry down the pipeline every frame. Using view 

frustum culling, objects that are not currently being viewed by the camera are culled out and not 

rasterized by the GPU. Skyline, a level in Lume, has a group of 70 robots. In order to continue ensuring 

smooth gameplay during Skyline, level of detail was implemented to draw objects with less geometry 

when the player is further away and objects with full geometry when closer. Each object drawn to the 

screen has an update function that is called during every frame. The objects are rendered this way in 

order to alter color or move blocks. The object update function is turned off when objects are too far 

away. To further improve performance a uniform spacial data structure was implemented that breaks up 

the world into a 3D grid. The 3D grid allows for testing collisions based upon the character’s position. 

The hit test function is only used to check the collisions of objects occupying the surrounding bucket 

spaces. To optimize the collision detection, Lume uses axis aligned bounding boxes to test the potential 

hits.

Specific Technologies
The following labeled sections are the technologies and aspects to the Lume game that I, Trent Ellingsen, 

contributed and will be explaining. These detailed descriptions should act as guide and initial step in 

creating similar aspects for future projects.



Lume Particle System Explosions - Trent Ellingsen
One of the aspects of the Lume game is the interaction the player has with the robots. The 3 ways that 

the character can interact with the robots in the world are 

• being hit and knocked off of the platforms in the world

• freezing the robots, making it so that they cannot move

• sprinting through robots, causing them to be removed from the game

To create a feeling that the player is hitting the robots, an explosion particle system is generated 

whenever the robots are hit. The particle explosion effect can be seen in Figure 5 shown below.

Figure 5: Demonstration of Particle Explosion

Why Particle Systems are Exciting

Particle systems add a major visual feel for games, movies, and in other 3D visual mediums. Particle 

systems are the driving force behind creating simulated smoke, fire, hair, water, dust, explosions, and 

other special visual effects. Once the concept for particle systems are understood the ability to add and 

expand upon it is made easy. The following description will detail and step through the process of 

creating a simple particle system that is easy to follow.



Particles
This section will describe the general concept of particle systems and what is required to implement one 

in the way that has been done for the Lume explosion effect.

Elements That Make Up a Particle

A particle system is a large amount of individual pieces acting together to create a single look and feel. 

To allow for the system to function, each particle in the system requires certain attributes to function 

correctly and give the ability for manipulability and individual movements. Here is a list of all the 

elements that make up a particle for Lume:

Representation in general:

• Position Vector

• Velocity Vector

• Acceleration Vector

• Force Vector

• Mass

• Gravity

• RGB value

• lifetime

• size

• change in time (dt)

• Object to be drawn



Representation in C++ (Code snippet):

Particle elements explained

Each aspect of a particle is needed to create the desired effect for our explosion. The position vector is 

used to determine the current position in the 3D environment that the particle occupies. The velocity 

vector determines the speed and direction at which the particle is currently moving within the world. 

The acceleration vector determines the speed and direction at which the velocity is changing. The 

force is used to determine the acceleration which effects the movement of the particle. The mass and 

gravity of the particles are also used in conjunction with the force to determine the acceleration of the 

particle. The lifetime is a value that is used to determine the amount of time that the particle is being 

drawn in the environment. Size is used to set the physical size of the drawn particle. The change in time 

dt that is used to ultimately determine the position. Finally the object is used to draw the desired 

object for the particle.

class Particle: public obj {
public:

   // Constructors and method declarations done here
   // pnt3d is a class used to represent vectors

   pnt3d _pos;
   pnt3d _vel;
   pnt3d _acc;
   pnt3d _force;
   float _mass;
   float _gravity;
   float _rgb[3];
   float _lifetime;
   float _size;
   float dt;
   obj2d o;

};



Physics

To create the particle system, the particles contain motion that are based upon certain physics equations 

that change the position of the particle’s location. The three main physics equations used in Lume’s 

implementation are

General Form:

• new_acceleration = force / mass

• new_velocity = current_velocity + (current_acceleration * dt)

• new_position = current_position + (current_velocity * dt) + (0.5 * current_acceleration * dt * dt)

C++ Implementation Form:

/**
 * Physics equation to find the current acceleration.
 */
void Particle::calcAcc() {
   // Done so that floating point exception does not occur
   if (_mass == 0) {  
      _acc = pnt3d(0, 0, 0);
   }
   else {
      _acc.x = _force.x / _mass;
      _acc.y = _force.y / _mass;
      _acc.z = _force.z / _mass;
   }
}

/**
 * Physics equation to find the current velocity.
 */
void Particle::calcVel() {
   _vel.x = _vel.x + _acc.x * dt;
   _vel.y = _vel.y + _acc.y * dt;
   _vel.z = _vel.z + _acc.z * dt;
}

/**
 * Physics equation to find the current position.
 */
void Particle::calcPos() {
   _pos.x = _pos.x + _vel.x * dt + 0.5 * _acc.x * dt * dt;
   _pos.y = _pos.y + _vel.y * dt + 0.5 * _acc.y * dt * dt;
   _pos.z = _pos.z + _vel.z * dt + 0.5 * _acc.z * dt * dt;
}



Update Function

Every frame of the game the position of all the particles must be updated so that they are in the correct 

location based on their velocity and have all the other correct properties based on the other aspects of 

the particle. Only a few things must be done in the particle update function for it to meet all the 

specifications. The dt variable needs to be passed in, velocity and position needs to be calculated, the 

lifetime variable is decremented and the size of the particle is shrunk based upon the initial size and 

lifetime of the particle. Below is the code segment implemented to do these tasks in Lume:

Note how calculating the acceleration is commented out. This has been done to optimize the code. 

Since the forces, mass, and gravity of the particles do not change for the explosion effect for the 

particles, acceleration does not change. The acceleration of the particles is thus calculated only inside the 

constructor. If the force were to change in some way (i.e. if the particles collided with objects) then a flag 

could set the calculation of the new acceleration when the forces change so that the code is still 

optimized to the fullest.

Drawing a Particle

When drawing the particle a few things must be considered when drawing. The color, size and position 

must be accounted for and then the object can be properly drawn. The Lume implemented code shows 

the draw method.

/**
 * Updates the position of a single particle.
 */
void Particle::update(float dt) {
   this->dt = dt;
   //calcAcc(); //Turn on if Force changes during animation
   calcVel();
   calcPos();
   _lifetime--;
   _size -= init_size/init_lifetime;
}



Particle Systems
This section will describe how a system of particles is implemented with the use of many individual 

particles.

Elements That Make Up a Particle System

To create the explosion particle effect that is used in Lume for the robot deletion a few aspects are 

needed to be defined. Here are the different elements of the particle system:

General elements:

• Source position vector

• Collection of particles

• Integer representing amount of particles in system

C++ definition of elements:

/**
 * Draws a single particle
 */
void Particle::draw() {
   glPushMatrix();
      glColor3f(_rgb[0], _rgb[1], _rgb[2]);
      glTranslatef(_pos.x, _pos.y + 1, _pos.z);
      glScalef(_size, _size, _size);
      o.draw();
   glPopMatrix();
}

class ParticleSystem: public obj {
public:

   // Constructors and method declarations done here
   // pnt3d is a class used to represent vectors

   pnt3d _source;
   std::vector<Particle*> particles;
   int _num_p;

};



Creating a System

To create the system of particles used for the explosion, the ParticleSystem class runs a createSystem 

method that creates _num_p number of particles. This method is shown below.

The new Particle(tex) uses a specific constructor of the Particle class for the purpose of creating the 

explosion particle system. The specialized constructor randomizes many of the elements of the particles 

to chosen specification. The position is randomized by a factor of up to 1 unit away from the source in 

any direction. The velocity is randomized to be initially a speed of 0 - 0.25 in any direction. To create 

the effect that the particles slow down near the end of their life, the force is initialized to be the 

negative of the initial velocity. Mass is set to 300 to create the best looking speed and slowdown of the 

particles. Color is set to be a gray value between 0, 0, 0 (black) and 0.15, 0.15, 0.15 (dark gray). Size is a 

random float between 1 - 5 and lifetime is between 30 and 80 iterations of the update function. 

Finally the object is set to be a 2D object with the specified texture. The segment of code is shown 

below.

/**
 * Creates a default system of particles. Called in the constructor.
 */
void ParticleSystem::createSystem(char *tex) {
   for (int i = 0; i < _num_p; i++) {
      particles.push_back(new Particle(tex));
   }
}



Updating the Particle System

Since all the particles of the system have update functions of their own that change the positions of the 

individual positions, the only requirement for the update function for the system is simply to iterate 

through and call each particle update function. The update function for the ParticleSystem class is shown 

below.

Drawing the Particle System

The final process in creating the explosion particle system that is found in Lume is to draw the system. 

There are a few things to do in the draw method. First the system checks if there are any particles to be 

drawn. Next it iterates through all available particles and if the lifetime of the particle is greater than 0 

then it translates it to the source of the system and draws the particle. If the lifetime of the particle is not 

/**
* Used to make a default Particle with specified texture.
*/
Particle::Particle(char *tex) {
  classId = OBJ_ID;
  _pos = pnt3d(randomizer(1), randomizer(3), randomizer(1));
  _vel = pnt3d(randomizer(1)/25, randomizer(1)/25, randomizer(1)/25);
  _force = pnt3d(-_vel.x, -_vel.y, -_vel.z);
  _mass = 300;
  calcAcc();
  _rgb[0] = _rgb[1] = _rgb[2] = randomizer(0, 15)/100;
  _size = init_size = randomizer(1, 5);
  _lifetime = init_lifetime = randomizer(30, 80);
  o = obj2d(tex);
}

/**
 * Updates all particles in system.
 */
void ParticleSystem::update(float dt) {
   for (int i = 0; i < _num_p; i++) {
      particles[i]->update(dt);
   }
}



greater than 0, then the particle is removed from the system. The way in which Lume implements this is 

shown below.

Animated Textures - Trent Ellingsen
This section describes the functionality of the animated textures that is used in the game Lume in such 

places as the menu, introduction, growing objects, and other areas.

General Concept

The purpose for using animated textures is to create the feeling of videos being used in the game. The 

key concepts in creating the Sprite class which allows for this functionality includes a need for a image 

sequence, a loader method that imports all the images, and a specific update method that iterates 

through the images with each iteration.

Why Animated Textures are Exciting

In games today, the leaders in the industry are able to create worlds that are dynamic and changing. 

With the use of animated textures, the world inside Lume comes to life by the character creating new 

/**
 * Draws all particles in system.
 */
void ParticleSystem::draw() {
   if (_num_p != 0) {
      for (int i = 0; i < _num_p; i++) {
         if (particles[i]->_lifetime > 0) {
            glPushMatrix(); {
               glTranslatef(_source.x, _source.y, _source.z);
               particles[i]->draw();
            } glPopMatrix();
         }
         else {
            particles.erase(particles.begin()+i);
            _num_p--;
         }
      }
   }
}



blocks. When the user clicks, a block is drawn on a building to aid them in reaching the top of the city. 

Along with the block growing out of the building, a “flourish” animation is shown to create the feeling of 

organic life growing from the block. This aspects brings a great “Wow” factor to the game and makes it 

more appealing to the eyes. With the animated menu, introduction, loading screen and other aspects 

Lume feels like a dynamic game due to the use of animated textures.

Creating an Image Sequence

The first thing to do is to use a desired way to create an animation. In Lume, all the animated textures 

were created using Adobe After Effects. To create animations using After Effects, tutorials may be found 

at http://www.videocopilot.net. To create the growing object flourishes that are drawn when the 

character creates new blocks in the game, an after effects pack called Evolution was purchased from the 

Video Copilot website as well. After creating the animation that will be used an image sequence must be 

generated.

To create an image sequence, first the desired movie is selected, then opened in Quicktime 7 Pro. Inside 

Quicktime 7 Pro the user goes to the File menu and selects Export. The settings are then set to image 

sequence with .jpg as the type of image. This will create an image sequence that can be read in by the 

Sprite class. To be properly loaded into the program the image sequence must be put into a folder with 

the same name.

Loading in the Image Sequence

To load in the image sequence, the folder with the images is specified as well as the number of frames 

that are desired to be loaded. The loader then simply iterates through all the images and loads them 

using the texture class. The code for the loader can be seen here.

http://www.videocopilot.net
http://www.videocopilot.net


Updating the Texture

To create the feeling of the movie, the update function iterates through the frames that are loaded in 

inside the update function. Every time the update method is called the time variable is increased by dt. If 

time is greater than the seconds per frame then the frame is incremented. There is an option for the 

animated texture to be looped. If the last frame is reached then the current frame is set back to the first 

frame. If the sprite is specified to not be looped then the frame is set to 0 which is created to be the same 

as the last frame and is specified to not change if set to 0. The code that is described here may be seen 

below.

/**
 * This loads the textures under the starting name of tex
 * and has the known amount of f frames in the animation.
 */
void Sprite::load(const char *tex, int f)
{
   if (f < 1) return;
   char word[64];
   bool doesExist = false;
   for(int i = 0; i < f; i++){
      sprintf(word, "textures/%s/%s%03d.jpg", tex, tex, i);
      tempInt = LoadTexture(word, &doesExist);
      indexes.push_back(tempInt);
   }
   id = indexes[1];
}



Logo Design - Trent Ellingsen
To create the best look and feel for the game and to fit the storyline element that KOG has taken over the 

world the environment has many company and store logos with KOG in the title. This design choice 

creates the correct feeling for the cities and allows the player to feel like they are within the world that 

has been taken over by KOG. Figure 6 shows the view in the skyline level of the world.

/**
 * This method updates the current frame based on time.
 */
void Sprite::update(float dt)
{
   if (indexes.size() <= 1){ 
      return;
   }
   if ((time >= spf)) {
      if (isLooping || !finished) {
         frame++;
      }
      else {
         frame = 0;
      }
      if (frame >= (int)indexes.size()) {
           if (isLooping) {
              frame = 1;
           }
           else {
              frame = 0;
           }
           finished = true;
      }
      id = indexes[frame];
      time = 0;
   }
   time += (float)dt*TIMERINT;
}



Figure 6: Skyline Logos

There are approximately 40 different logos that are used in the game. These logos were designed using 

photoshop software with some specific ideas in mind when being created. All logos met the following 

specifications:

• Pixel Ratio of 300 x 400 @ 300dpi

• Black background (for alpha blending)

• The use of the word KOG

• Imitation of some real world company

Once all the logos were created, the logos were placed in the world in front of buildings to allow for the 

correct look and feel. To see a sample of the logos see Figure 7 below.



Figure 7: Logos

Results
At the beginning of this project, all we had were some Youtube videos to give us some inspiration for 

the look and feel for the game, and some tools developed during the previous quarter. After two 

quarters, we were able to turn it into a playable game with a story and unique look and feel.



Our team was particularly proud of how we were able to take our limited graphics knowledge, and 

creatively use technology to create an appealing look. After completing a level, the world lights up as 

shown in Figure 8. Robot enemies are destroyed when sprinting through them, creating a particle effect 

that surrounds the robot as shown in Figure 9. 3D models of trees are animated to be brought back to 

life shown in Figure 10. A bloom shader is used on top of the trees to give them a pretty glow. An 

excessive amount of blocks built on a single wall shows the creation and life that is brought to the game 

seen in Figure 11. The look of the blocks on a wall is very appealing and demonstrates the freedom the 

player has to change the world he or she is in.

Figure 8: Level Completion Figure 9: Particle Explosion

Figure 10: Trees Grown

Figure 11: Blocks Created



We were also happy that we were able to create a game with a simple game mechanic that gives the 

player a lot of freedom to explore the world while still having set objectives that keeps the player 

interested. Below is a picture of the block that a player built shown in Figure 12. The player can jump on 

the block to maneuver around the world. In the top left is the current object the player must complete, 

with a progress bar towards completing the objective below.

Figure 12: Building

After the creation of Lume, we wanted to get user feedback on the playability, speed, how well the 

player is able to follow the story, and many other aspects. Listed below are 3 individual play tests and the 

feed back given by those participating. The feedback shown as well as other feedback given, was used to 

alter the game in terms of level design, what the look and feel was like, how intuitive the controls were 

and other aspects.



Play Tester Comments
Joanne Mark - 

(Week 15/20)

Fun Level (1-10) 1- Not fun / 10 - Totally awesome: 8

Game Crash? No

Laggy? No

Bugs seen? Yes:

• Can see through roof w/ camera

• Camera goes into the wall

• Ground causing death should be more clear

Likable features

• Finding / Gathering insight

• The trees

• The energy trails

• The evolution from the gobj

• Outline glow of the buildings

• The music

Dislikes

• Without building outlines it is hard to tell distance

• Didn't like the ramp to ramp jumps

• Don’t like the last part of suburbs with up & over needed to go up the 

levels, better if it was just going up

• Need more check points

Suggestions

• Have a girl character too!

• Have high score list (similar to Zelda load screen where it shows stats)

• Multiple saves for different players

• Freebies - extra energy / cannon shot / turn on moving walkways

Miscellaneous

Stopped at the back of the energy source building in the suburbs because of 

frustration



Play Tester Comments
Brian Sukkar - 

(17/20)

While playing Game Suggestions

• Make objective more clear - Download insight isn't self explanatory

• Make controls more clear (maybe cut scene?)

• When first enemy appears tell about sprint to kill them

• Change level 1 block that is floating

• Full animation

• Suburb if go wrong way on first part then hard to go back.

Fun Level (1-10) 1- Not fun / 10 - Totally awesome: 6/7

Game Crash? No

Laggy? Only at 1 point

Bugs seen? Yes:

• Died for no reason (probably lag + enemy shove)

• Camera went all wack and couldn't see

• Feet off edge but still on block

• De synced moving platforms

Likable features

• Pretty

• Challenge is fun

• Different routes are good

• Difficult to control direction at first but felt good after a while

• Everything moving

Dislikes

Jumping through blocks - it doesn't seem to make a difference

Additional Suggestions

• Fit trees more (but cool as is as well)

• Like the give life but maybe make purple?  like Avatar - the movie

Miscellaneous

Maybe black hole or something to bring to beginning / teleport at top of level



Play Tester Comments
Ken Li - (17/20) While playing Game Suggestions

• Ability to go anywhere makes me feel unsure if I’m going the right way

• Asked what the 2/10 was (didn't recognize that it was an objective)

• Camera zoomed in when walking along wall

• Want animation for creating the blocks (referenced the portal gun)

• “Defeat KOG” in overworld was unclear

• Can fall in a place w/o energy and get stuck (maybe use 'r')

• Can't feel effects of the +1 to abilities

• In suburbs, explain moving platforms will be turned on once you 

complete the first objective

Fun Level (1-10) 1- not fun / 10 - totally awesome: 5

Bugs seen? Yes:

• Leveled up then able to take all blocks back

• Bad picking sometimes 

Likable features

• Graphics

• Colors of making blocks

• Likes building lighting up when close

• First level well made

Dislikes

• Frustrated

• Check point so far back

• Save feature needs explanation

Additional Suggestions

• need 'e' explained

• suburbs not well built

• likes if there is narration

Miscellaneous

Stopped out of frustration on bottom of suburbs tower.



Based upon feedback from classmates and demonstration viewers, certain aspects of Lume were 

changed or expanded upon. One of the design aspects was to create a better way to show that the 

setting is a city. To accomplish this, billboards and logos were designed and integrated into the futuristic 

city shown in Figure 13.

Figure 13: City with Logos

Another aspect that was commented on was the lack of interaction with enemies or other characters.  

Users wanted another way to act against the robots of KOG.  In addition to the “sprint through to 

destroy” interaction, the ability to “freeze” large robots was added, to give the character the ability to feel 

more powerful.  This freezing ability is shown in Figure 14.



Figure 14: Freezing Ability

This experience gave the development team invaluable insight into what it is like to make a game on a 

team. Each technology that was developed had a unique way to make the game better, and we used 

each team member’s strengths to make a positive contribution to the game. The game would not be the 

same without the effort of each team member. The tasks that each person completed were motivated by 

decisions made about game mechanics, aesthetic appeal, story, technology, and play tester opinions. 

Our game was played by students from Cal Poly, including computer science masters students 

concentrating in computer graphics. Having fresh eyes playing our game was a great help. The play 

testers were able to convey what didn’t feel right in the game, explain what they liked about the game, 

and describe what was not clear in our game. Fixing these problems or expanding upon things that 

people enjoyed allowed for the team to make a game focused on the player’s desires.

The game testing started in the later stages of our game development, so the game mechanics and most 

of the look feel had been determined by this time. The major contribution that game testers gave were 

comments that clarified the story. Some players were confused at what the story was, and we later 

created cut scenes at the beginning and end of the game to clear up the story line. Game testers also 

said they felt lost at what to do in the game because it of their ability to roam freely. To address this, we 



created clear objectives in the game that gave the player an idea of what they are supposed to do in 

each level. We were also constantly modifying individual levels in the game to have a linear amount of 

difficulty as a player progresses through the game.

Dividing the work was done based on each member’s strengths or what they were particularly interested 

in. Allowing everyone to choose what they were interested in resulted in a more rapid development 

because each member was eager to learn about the technology involved. Small teams were assigned to 

different tasks in order to prevent anyone from working alone. These teams made up of two or more 

members allowed for more monitoring and motivation for each member.

Working alone as oppose to working in small teams was shown to be inefficient during the two quarter 

process. Deciding on design decisions without the input of at least one other member was likely to result 

in individual error. Furthermore, code was harder to interpret and errors were harder to debug when 

other members looking at it were not directly involved. Overall, our development process can be 

described as allowing small teams to rapidly develop technologies that they were most interested in, 

while in a manner that utilized each team member’s strengths. This was proven to be successful as is 

indicated by the progress of game over these last two quarters.



Future Work
After two quarters of work, Lume has become a fully fleshed out interactive 3D game. The next stage, 

should the team choose to pursue it, would be preparing Lume for release on Steam. The following 

aspects of Lume would need to be completed in order to confidently release Lume on Steam for users 

around the world to play.

More In-Depth Storyline

Currently, Lume has a complete storyline which is not conveyed clearly enough through playing the 

game. To improve upon this, the team would need to 

further develop the storyline by including more artistic cut scenes and more objectives that add purpose 

to the player’s choices. Interactive communication with Insight, so that the player can ask questions, 

would also expand upon game mechanics and story elements.

Memory Management

None of the classes in Lume have taken full advantage of destructors in C++. In addition to running a 

profiler to determine which methods can be optimized for better performance, the implementation of 

destructors for all of our classes would greatly improve the performance of Lume on older machines.

Portability

The current system specifications for Lume are 32-bit Linux operating systems. In order for our game to 

have the impact we wish for it to have, it must be modified to be playable on Windows and Mac systems. 

This requires some redesign of the code, most notably in the included libraries in each header file and 

the Makefile. Some function calls are specific to the operating system (namely Windows) and would 

need to be changed. This would allow us to distribute our game on Steam for any operating system.



References
irrKlang - An open-source library for playing sound files.

The Freesound Project - A repository of free sounds.

Swiftless Tutorials - Tutorial for heads up display.

GLSL - An open-source library for Open GL Shading Language.

Lighthouse 3D - Tutorial for view frustum culling.

NeHe - Tutorial for blur effect.

Journey In The Dark

MD5 to Blender 2.49b Importer and Blender 2.49b to MD5 Exporter

UV Mapping Tutorial 1

UV Mapping Tutorial 2

Maya Tutorials

MD5 Importer

http://www.ambiera.com/irrklang/
http://www.ambiera.com/irrklang/
http://www.freesound.org/
http://www.freesound.org/
http://www.swiftless.com/opengltuts.html
http://www.swiftless.com/opengltuts.html
http://www.opengl.org/documentation/glsl/
http://www.opengl.org/documentation/glsl/
http://www.lighthouse3d.com/opengl/viewfrustum/
http://www.lighthouse3d.com/opengl/viewfrustum/
http://nehe.gamedev.net/data/lessons/lesson.asp?lesson=36
http://nehe.gamedev.net/data/lessons/lesson.asp?lesson=36
http://jitd.blogspot.com/
http://jitd.blogspot.com/
http://www.katsbits.com/tools/
http://www.katsbits.com/tools/
http://www.youtube.com/watch?v=Bhp2ihqnJIk
http://www.youtube.com/watch?v=Bhp2ihqnJIk
http://www.youtube.com/watch?v=e5_2seDBQrw
http://www.youtube.com/watch?v=e5_2seDBQrw
http://images.autodesk.com/adsk/files/gettingstartedmaya2011.pdf
http://images.autodesk.com/adsk/files/gettingstartedmaya2011.pdf
http://tfc.duke.free.fr/coding/md5-specs-en.html
http://tfc.duke.free.fr/coding/md5-specs-en.html

