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Introduction 

 Computer graphics is an area in computing that is advancing rapidly.  This is largely in 

thanks to the explosion of the gaming industry.  The huge popularity of video games is one of the 

largest driving forces of computer graphics.  The role of computer graphics in gaming is 

essential.  In non real time graphics applications, we have the luxury of having few time 

constraints.  In a video game, we need to render complex scenes quickly because a game is 

highly interactive.  The need to create highly detailed and realistic scenes in a very short time 

raises a lot of complex technical challenges.  Shooter games, in particular, require a high level of 

interactivity because of the sheer amount of actions all happening at once.  Users expect a game 

to respond to their input instantaneously.  This paper will highlight some of the technical 

challenges of creating a 3D game and our methods of solving them.   

Problem Description: 

Our goal was to create a working game that not only had beautiful graphics, but was also fun 

to play.  To that end, we had to focus on a number of game design elements. 

  

 

 

 

 

 

 

 

A tetrad of related game design elements as seen in The Art of Game Design: A Book on Lenses  



We had to keep each of these four aspects in mind while designing our game.  While the 

primary focus of the project was on the technology side, each of these aspects is essential in 

creating an effective game.  Without an aesthetically pleasing game, all the complex 

technologies we endeavored to create are lost.  If there is no story or setting in the game, the 

player has little motivation to play our game.  If the game’s mechanics are too complicated or too 

simple, the player won’t enjoy playing the game.  Not only did we need to create a piece of 

software that rendered complex scenes quickly, we also needed to incorporate the “fun factor” 

into the game play.  Nobody wants to make a game that people won’t play.  The problem or 

question is twofold. 

1. How do we render a complex 3d scene with many special effects in a short period of 

time? 

2. How do we encode fun into our application using 1’s and 0’s. 

Motivation: 

Video games are becoming a bigger and bigger part of human society.  Many graphics 

technologies that exist today have been spurred on by the desire to create the next generation of 

games.  Games require many advanced technologies that mesh together to create a specific 

experience.  Discovering what it takes to create a game from start to finish was a great learning 

experience. 

Previous Work/Related Work: 

There are a number of games with similar elements to our proposed game.  The game 

play mechanics and graphical styles of Halo, Doom, and Shadow Complex all influenced the 

creation of Sweet Water. 



Doom 

Considered by many to be the best first person shooter of all time, Doom popularized the 

first person shooter genre with its amazing graphics and innovative first person perspective. 

Doom was created by Id Software features a space marine that fights demons from hell on 

Phobos, a moon on Mars.  The latest game in the series, Doom 3, is the inspiration behind many 

of our design decisions within the game engine including our decision to use the .md5 model 

format pioneered by Id Software. 

Halo 

Created by Microsoft for the Xbox and PC, this first person shooter series garnered 

massive popularity when it was first released in 2001.  You play a super soldier who leads an 

army to save the human race from an alien swarm with a variety of weapons.  Its popularity can 

be attributed to its stunning scenery, ruthless AI, and polished gameplay.  

Shadow Complex 

Shadow Complex is a game that was released on the Xbox Live Arcade in 2010.  Created 

by a small team under Epic Games, Shadow Complex features great graphics, and a platform 

based environment.  Much like our game, Shadow Complex is restricted to two dimensions while 

still featuring fully 3D scenes.  This game was responsible for many of our gameplay decisions 

and also drove our game’s desired graphical style. 



Project Overview 

Story 

 Sweet Water is a 2d platform shooter with 3d elements.  The game is set in the far future.  

The name Sweet Water refers to the moniker ironically given to an infamous prison ship floating 

out in deep space.  All the worlds' toughest criminals are sent there to be isolated from society.  

When an unknown force causes a disruption on the ship, your character seizes his chance for 

escape.  The objective of the game is simple enough: escape Sweet Water by fighting through the 

prison guards with whatever weapons you can find.   

Visual Style 

 Our graphical style is influenced by games like Shadow Complex and Mirror’s Edge.  

The characters in the game are humans who have been living on a prison ship for a number of 

years.  Our initial concept art portrayed them as very tough and battle-hardened. 

 

 

 

    

 

 

 

 

 

Initial Concept Art Drawn by Group Member Ilya Seletsky 



We wanted a clean industrial look with lots of cool neutral grays.  To offset this neutral 

color scheme, important elements of the word are very bright primary colors. 

 

 

 

 

 

 

 

 

 

 

 

 

 

The bright red balconies guide the player to jump on them. 

Mechanics 

 The emphasis of the gameplay is on strategic combat, ammo management, and 

exploration.  We didn’t want the player to run blindly through the level constantly firing in 

random directions.  We wanted each action by the player to be deliberate.  In order to accomplish 

this, we decided on a number of gameplay decisions early on in the development process. 

The player starts the game out with a weak pistol.  As the player defeats enemies, he is 

able to pick up their weapons, enabling access to 3 more powerful weapons.  Each weapon has 



its own strengths and weaknesses associated with it.  The shotgun fires multiple low damage 

pellets at the enemy.  It is very powerful from close range, but weak in long range situations.  

The sub machine gun fires very quickly and does a lot of damage, but is very inaccurate.  The 

rifle is very accurate and does a large amount of damage, but fires and reloads very slowly.  It is 

best used in long range situations. 

 One of our goals with the game was to encourage the player to use each weapon as the 

situation requires.  We found in play testing that players would often choose their favorite 

weapon and stick with it the rest of the game.  In order to force the player to switch weapons, we 

made the ammo for each weapon scarce.  The player has more than enough ammo to finish the 

level between all of his weapons, but one weapon does not have enough ammo to defeat all the 

enemies in the level by itself.   

 Our first level design consisted of mostly straight corridors with a few platforms that lead 

to raised areas.  Almost immediately, we found that players would just run forward and shoot in 

a straight line, killing enemies before they even had a chance to appear on screen.  Our later level 

design featured much more dynamic levels with multiple paths and forced the player to move in 

all four directions (up, down, left, right) in order to complete the level.  This made the player 

much more cautious in approaching each new area as enemies could be in more unpredictable 

locations.  This also helped us develop the exploration aspect of our gameplay as the player 

searches for the correct route through the ship. 

  



Technical Details 

Games are complex and require a great deal of components to work correctly.  Sweet 

Water was created using C++.  We used OpenGL for rendering, SDL for our windowing 

libraries, FMODex libraries for sound, and Nvidia’s PhysX libraries for in-game physics.  To 

support our game development, we made our own tools for level editing, particle effects editing, 

and resource loading.  This section will list the major components in our solution and a little 

information about each. 

Game Engine 

The main components of our engine are: 

 Application Controller: Application initialization and start of the game loop 

 Audio System: FMODex Initialization and sound instances 

 Video System: OpenGL initialization and render state manager 

 Event: Inputs 

 Logger: Error reporting and debugging 

 Resource Manager: Manages textures, sounds, etc... 

 Settings: Screen resolution, sound volume, etc... 

 Game: Whatever the high level game code might be  

Level Editor 

Since we had such a specific setting for our game, we needed a level with a lot of 

geometry to convey the setting properly.  Instead of writing our own level editor, we chose to use 

3ds Max to create the levels for our game world.  We wrote our own plug-in that allowed us to 

transform 3ds max into a level editor that exported into our own simple format we could use to 

load the level directly into our game.  This allowed us to harness the full ability of 3ds Max to 



create our levels instead of devoting time to creating our own level editor with reduced 

functionality.  The plug-in functionality allowed us to export the following: 

 Level geometry  

 uv texture coordinates 

 Entity locations (the player, enemies, particle emitters, etc) 

 Light locations 

 Camera locations. 

 

 

 

 

 

A view of one of our levels from a distance 

Particle Editor 

One of the first things we decided this game needed was a robust particle system.  

Particle systems would allow us to model effects like fire, blood, or the sparks of bullets hitting 

metal.  In order to create these effects, we set about making an editor for particles that could 

export directly into our game. This way, we could edit particle effects in real time and iterate on 

the settings until we found the effect we were going for. Our particles are texture-mapped 2d 

sprites. We implemented bill-boarding on the particles to ensure they look right regardless of 

camera orientation. 

  



 

 

 

 

 

 

 

 

The Particle Editor in Action 

External Features Seen By the Player 

The following represents other technologies present in our game: 

 Animation 

 Inventory System 

 Shadow Mapping 

 Normal Mapping 

 Per-Pixel Lighting 

 Particle Effects 

 Physically based character movement and interaction 



Algorithms: 

This paper’s primary focus will be on the implementation of Per-Pixel lighting, Normal 

Mapping, and Shadow Mapping using GLSL shaders.  If you would like to find more detailed 

information about the other algorithms used in Sweet Water you can read the papers of my 

teammates Robert Bernal, Ilya Seletsky, and Steven Udall.   

 Shaders in OpenGL 

 In OpenGL, rendering is done in a series of discrete steps.  This is known as the graphics 

pipeline.  Shaders allow you to take control of a specific step in the graphics pipeline and insert 

your own code in its place.  Originally, this code had to be written in assembly but more recent 

video cards support specific shader languages.  Shaders have become extremely popular in 

graphics applications because they allow you to create effects that would otherwise be 

impossible in the normal OpenGL pipeline.  All of the shaders in this paper have been written in 

GLSL because of it similarity to C and compatibility within OpenGL. 

Vertex Shader 

 The vertex shader takes control of the vertex processing stage of the graphics pipeline.  

The code in a vertex shader is executed per vertex.  Since you are taking control of the graphics 

pipeline, you have to handle all transformations, lighting, texture mapping, etc that OpenGL 

normally does automatically.  A trivial vertex shader that does the same thing as the graphics 

pipeline would be: 

 

  

 

void main() { 
  //transform the vertex to clip space 
  gl_Position = gl_ModelViewProjectionMatrix * gl_Vertex; 
} 



 GLSL gives you access to a number of things from OpenGL to simplify writing your 

code.  For example, gl_Vertex represents the vertex’s current location while gl_Position 

represents the final position of the vertex after it is transformed. gl_ModelViewProjectionMatrix, 

unsurprisingly, represents the model view/projection matrix. 

Fragment Shader 

 The fragment shader operates on every pixel sent to the shader after rasterization.  Like 

the vertex shader, anything that OpenGL does automatically for you must be handled manually 

in the shader.  A simple shader that just colors a pixel based on an object’s material properties is 

outlined below. 

 

 

In this case, gl_FragColor represents the final color of the pixel and gl_Color is the rgb 

value specified by glMaterial in OpenGL. 

Per-Pixel Lighting 

 In the OpenGL fixed-function graphics pipeline, all lighting computations are done per-

vertex.  Each pixel is lit based on an interpolation across these vertices.  This was an 

unacceptable lighting solution for us because much of our geometry is very planar.  The vertices 

on an object were often far away from each other.  This would result in a very flat shaded world 

with few specular highlights because of the small number of vertices in our level.  The solution 

to this is to implement a per-pixel lighting algorithm with a shader.  Instead of calculating the 

lighting at each vertex and interpolating the value for each pixel, we calculate the lighting 

equation for all pixels.  This is more expensive to compute, but since it is done in a shader, the 

void main() { 
 gl_FragColor = gl_Color; 
} 



graphics hardware does most of the heavy lifting and the performance hit to our game was 

negligible. 

Modeling the Shading Equations 

   In order to approximate lighting in our scene, we implemented the commonly-used 

Phong model.  The phong model breaks up lighting into three different components: ambient, 

diffuse, and specular. 

 

 

 

 

 

Taken from the Wikipedia Commons from the Article on Phong Shading 

Diffuse represents the light reflected off a dull or matte surface, specular represents the 

light reflected off a shiny surface, and ambient is an approximation of global lighting to prevent 

areas that are not hit directly by light from appearing pure black.  Most objects have a 

combination of diffuse, ambient, and specular lighting components.  Note that while ambient and 

diffuse components look the same no matter what angle the camera is at, the specular lighting 

changes depending on the orientation of the camera. According to the Phong model, the color of 

a pixel at Ip is: 

  



                                             ) 

Where: 

N = normal of the pixel 

L = light vector  

V = viewing vector 

R = reflected vector 

α = shininess component 

 

Since the reflected vector R is difficult to compute, a common optimization is to 

use the half-angle approximation.  This gives a vector that is similar to the reflected 

vector without computing an additional dot product. The equation is as follows: 

   
   

 
 

Substituting R for H gives good results and speeds up the calculation of this equation.  Since we 

need to do it for each pixel, this is very important. 

  



Implementation 

 All that is necessary now is to implement this equation using a shader.  Luckily this is 

very straight forward thanks to GLSL.  The vertex shader looks like this: 

  

 

 

 

 

 

 

 

 

 

 

 In this example, the label “varying” means that the variables normal and vertex_to_light 

are calculated per vertex and interpolated per pixel before being passed to the fragment shader.  

The actual code here just calculates the transformations necessary to pass the relevant data to the 

fragment shader.  The light’s vector is taken from OpenGL’s own light system that was specified 

before the shader code.  The fragment shader is where all the actual shading will happen.  It 

looks like this: 

  

varying vec3 normal; 
varying vec3 view; 
varying vec3 vertex_to_light; 
 
void main() { 
 
 // transform the vertex into world space 
 vec4 pos = gl_ModelViewMatrix * gl_Vertex; 
  
 // The normal matrix represents the inverse transpose model-view matrix. 
 normal = gl_NormalMatrix * gl_Normal; 
 
 // Calculate the viewing vector 
 vec3 view = vec3(gl_ModelViewMatrix * gl_Vertex); 
 
 // Calculate the light vector  
 vertex_to_light = gl_LightSource[0].position.xyz – pos; 
 
 // transform the vertex to clip space 
 gl_Position = gl_ModelViewProjectionMatrix * gl_Vertex; 
} 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

The fragment shader computes the lighting for the current pixel according to the Phong 

equation given above.  The uniform sampler2D variable diffuseMap is a texture that is passed 

into the shader to represent the base color of the object.  Note that for this implementation, we 

assume that the specular component of all objects is 1 and the shininess is hard coded to 10.  

Instead of hard coding these values, we could have passed them to the shader in a specular map 

and a gloss map to control the values of these parameters.  However, because of time limitations, 

we decided to hard code these values.  Since most surfaces in our game are metal, we felt this 

was a good compromise in the face of creating specular and gloss maps for each material in our 

game. 

varying vec3 normal; 
varying vec3 vertex_to_light; 
 
uniform sampler2D diffuseMap; 
 
void main() { 
 
 // Get the base texture color 

vec4 base = texture2D(diffuseMap, texCoord); 
 
 // get the ambient contribution from the light 

vec4 ambient = gl_LightSource[0].ambient; 
 
 // normalize the interpolated normal and light 
 vec3 normalVec = normalize(normal); 
 vec3 lightVec = normalize(vertex_to_light); 
 
 // calculate the diffuse contribution 
 float diffuse = gl_LightSource[0].diffuse * clamp(dot(lightVec, normalVec), 0.0, 1.0); 
 
 // calculate the half-angle 
 vec3 h = (lightVec + view) / 2.0; 
 h = normalize(h); 
 
 // calculate the specular contribution 

float specular = gl_LightSource[0].specular * max(dot(normalVec, h), 0.0); 
 specular = pow(specular, 10.0); 
 
 // combine terms to make color 
 gl_FragColor = diffuse * base + specular + ambient * base;  
} 



Normal Mapping 

 In order to have realistic visuals in our game, we need to show lots of detail in our 

objects.  Unfortunately, lots of detail means highly complex geometry that is expensive to 

compute.  One technique for lessening this geometry is called normal mapping.  In normal 

mapping, an additional texture is passed to the shader that specifies the normals of an object.  

This texture is called a normal map. This additional texture data is used to shade the object 

instead of the normals supplied by the geometry.   

 

 

 

 

 

 If we model an extremely high polygon model, we can export a normal map from that 

model.  We can then use a low poly version of the same model combined with the normal map to 

shade the object.  If we use very simple geometry that has complicated normals stored its normal 

map, we can give the illusion of a complex 3d object with lots of details when in reality the 

object is very low poly and easy to compute. 

Implementation 

 A normal map’s data is expressed in tangent space.  In order to use this data we must 

transform all our light and camera vectors into tangent space.  The matrix to do this is known as 

a TBN matrix and is as follows: 

 
                        

                              
                           

  



 In GLSL, we are given the normal vector and pas in the tangent vector. You must 

transform both of them by the inverse transpose of the model-view matrix (just like we did for 

the normals in the per-pixel shader).  To get the biNormal vector, take the cross product of the 

two vectors.  The Vertex shader code looks like this: 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

varying vec3 lightTangent;  
varying vec3 eyeVec; 
varying vec2 texCoord; 
 
attribute vec3 vTangent;  
         
void main() {     
 

// Calculate the TBN matrix 
 vec3 n = normalize(gl_NormalMatrix * gl_Normal); 
 vec3 t = normalize(gl_NormalMatrix * vTangent); 
 vec3 b = cross(n, t); 
  

… 
 
 // Transform the viewing vector 
 eyeVec.x = dot(view, t); 
 eyeVec.y = dot(view, b); 
 eyeVec.z = dot(view, n); 
 
 // Transform the light vector 
 lightTangent.x = dot(vertex_to_light, t); 
 lightTangent.y = dot(vertex_to_light, b); 
 lightTangent.z = dot(vertex_to_light, n); 

… 
} 



As previously stated, vTangent is passed in from OpenGL.  The view and light vectors 

are calculated as before.  The only difference is that they are transformed by the TBN matrix 

before being passed to the fragment shader.  The fragment shader also looks very similar to the 

per-pixel shader.  The only real difference is you get the normal from a texture lookup instead of 

an interpolated vertex. 

 

  

 

 

 

 

 

 

 

 

 

 

 

   

varying vec3 lightTangent; 
varying vec3 eyeVec; 
varying vec2 texCoord; 
 
uniform sampler2D diffuseMap; 
uniform sampler2D normalMap; 
 
void main () { 
 
 // Normalize incoming vectors 
  vec3 lVec = normalize(lightTangent); 
  vec3 vVec = normalize(eyeVec); 
    
 // Get normal from texture lookup 
  vec3 normalVec = normalize(texture2D(normalMap, texCoord).xyz * 2.0 - 1.0); 
     
 … 
 

// combine terms to make color 
gl_FragColor = vDiffuse*base + vSpecular + vAmbient*base; 

} 

 



Normal mapping goes a long way toward increasing the detail of a scene with only a 

minimal decrease in performance. In the picture below, the right side is normal mapped while the 

left side is not. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Normal mapping is especially apparent on the grating on the floor and the wall. 

Shadow Mapping 

 One of the most important ways to add realism to a scene is to render shadows.  Shadows 

add depth to a scene and convey a lot of perspective information to the player.  Unfortunately, 

shadows are very difficult to simulate in OpenGL because every triangle is rendered 

independently.  There is no way to know if one triangle is blocking the light of another in the 

fixed function pipeline.  Drawing a ray from the current pixel to the light and testing for 



intersection with each object, a technique done in ray-tracing, is far too slow a process for a real-

time application.  Our solution to this problem is an algorithm known as shadow mapping.  

Shadow mapping is a two-pass approach to shadows. 

1. Render the scene from the perspective of the light and store the depth information in a 

buffer. 

 

 

 

 

 

 

 

 

 

 

 

 

This is a depth-only render 

 

2. Render the scene normally and transform each point into the light’s coordinate space. 

3. Compare the depth of the pixel with that in the light’s depth buffer to determine if the 

current object is the closest object to the light (not in shadow). 



 

 

 

 

 

 

The area in shadow failed the depth test against the pink hexagon. 

Implementation 

 In order to store the depth buffer from the light’s render pass, you need to utilize a feature 

in OpenGL known as frame buffer objects.  Frame buffer objects allow you to render a scene to a 

texture instead of to the screen.  They are pretty simple to use, but require a bit of setup before 

they can be utilized.  For more information on initializing them, I recommend the tutorials on 

gamedev.net. 

 Before rendering the first pass, the first thing to do is turn on the newly created frame 

buffer object.  We must also turn off color writing since we only want to write to the depth 

buffer. 

 

 

 

 

  

   // Turn on the frame buffer 
   glBindFramebufferEXT(GL_FRAMEBUFFER_EXT, m_shadowFrameID); 
 
   //Disable color rendering, we only want to write to the Z-Buffer 
   glColorMask(GL_FALSE, GL_FALSE, GL_FALSE, GL_FALSE); 
 
   // Clear previous frame values as usual 
   glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT); 
 

http://www.gamedev.net/page/resources/_/feature/fprogramming/opengl-frame-buffer-object-101-r2331


drawObjects(); 
// Turn off the frame buffer object 
glBindFramebufferEXT(GL_FRAMEBUFFER_EXT, 0); 

 

Next, we must transform the view into the light’s perspective. 

 

 

 

 

 

 

 

 

Now we can draw the objects in the scene and turn the frame buffer back off. 

 

 

In the second pass, we must transform each point into the light’s coordinate frame.  A convenient 

way to do this is to store the current model-view projection matrix in one of OpenGL’s supplied 

texture matrices.  This makes it very easy to pass to the shader. 

 

  

// Change the viewport to the texture’s dimensions 
glViewport(0, 0, shadowBufferWidth, shadowBufferHeight); 
 
// Reset the projection matrix 
glMatrixMode(GL_PROJECTION); 
glLoadIdentity(); 
 
// Set the field of view, aspect ratio, and near/far planes 
gluPerspective(45, shadowBufferWidth / shadowBufferHeight, 0.1, 500); 
 
// Reset the model view matrix 
glMatrixMode(GL_MODELVIEW); 
glLoadIdentity(); 
 
// Place the light at lightPos looking at the player 
gluLookAt(lightPos.x, lightPos.y, lightPos.z, playerPos.x, playerPos.y, playerPos.z, 0, 1, 0); 
 

  // Shift units from [-1, 1] to [0, 1] 
  const GLdouble bias[16] = { 0.5, 0.0, 0.0, 0.0,  
                                               0.0, 0.5, 0.0, 0.0,  
                                               0.0, 0.0, 0.5, 0.0,  
                                               0.5, 0.5, 0.5, 1.0 }; 
 
   // Grab modelview and transformation matrices 
   glGetDoublev(GL_MODELVIEW_MATRIX, modelView); 
   glGetDoublev(GL_PROJECTION_MATRIX, projection); 
 
   glMatrixMode(GL_TEXTURE); 
   glActiveTexture(GL_TEXTURE7); 
 
   glLoadIdentity(); 
   glLoadMatrixd(bias); 
 
   // concatenate all matrices into one. 
   glMultMatrixd(projection); 
   glMultMatrixd(modelView); 
 
   // Go back to normal matrix mode 
   glMatrixMode(GL_MODELVIEW); 
 



The second pass is rendered as normal.  Our per-pixel lighting shader can be modified to 

accommodate shadows fairly easily.  The vertex shader only requires one additional line to pass 

the new texture coordinate lookup. 

 

 

 

 

 

 

The fragment shader is a little more interesting. 

 

 

 

 

 

 

 

 

 

The function shadow2DProj handles the depth comparison between the supplied depth buffer 

and the current pixel.  It will return 1 or 0 accordingly.  Notice that no matter if we are in shadow 

or out of it, we still add in an ambient term to prevent shadows from being 100% black. 

 

varying vec4 shadowCoord; 

… 

 

void main() { 

// Transform the shadow texture coordinate by the light’s 

// transform matrix 

 shadowCoord= gl_TextureMatrix[7] * gl_Vertex; 

… 

} 

 

// The depth buffer from the light’s render pass    

uniform sampler2DShadow shadowMap; 

… 

varying vec4 shadowCoord; 

 

void main() {  

… 

float shadow = 1.0; 

// Avoid sampling values behind the light’s view frustum 

  if (ShadowCoord.w > 0.0) 

shadow = shadow2DProj(shadowMap, shadowCoord).r; 

 

//combine terms to make color 

gl_FragColor = ((vDiffuse*base + vSpecular) * shadow) + vAmbient*base; 

} 

 



 Shadows not only make a scene look more realistic, they also convey depth information 

that is crucial to conveying the player the spatial orientation of everything in the scene.  

 

Results 

 The result is a fully playable single level with many advanced technologies under the 

hood.  Although we had no dedicated artists on our team, we finished one level that has the 

graphical style we wanted in a way that both looks aesthetically pleasing and serves the 

gameplay.   

The Importance of Tools 

 Spending the time we did to create tools to aid in development was very helpful.  It did 

not take very long to get basic versions up and running and the tools were continually improved 



over the development of our game.  The importance of being able to quickly see the results of 

our efforts is something that cannot be overstated.  Tools allowed us to quickly create content 

and iterate over it to find the design we wanted.  

 Our particle editor allowed us to create some really great looking particle effects 

(particularly the fire) using very few particles.  This reduced the computation time necessary to 

render particles and allowed us to have over 100 emitters on screen without slowdown. 

 

A wall of fire using 150 emitters at a very playable frame rate 

 The 3ds Max plug-in was also extremely effective.  The ability to create complicated 

geometry, swap textures on the fly, place lights, alter the camera’s zoom level per-room, and 

position enemies all in the same editor gave us a lot of flexibility in the creation of our level.  In 



fact, the true potential of our plug-in is not fully utilized as our single level only has two camera 

positions and one global light.  In later places in the level, our plans were to have claustrophobic 

areas with a tighter camera and darker environment.  Unfortunately, time constraints forced us to 

cut this idea. 

Technologies That Worked Well 

 One of the technologies that dramatically improved the fluidity of our game is the 

animation blending system.  In our game, we needed the player to be able to run, jump, crouch, 

fire, and reload.  Each of these actions has an associated animation with it.  Since we did not 

have time to create separate animations for each possible combination of these actions, our two 

options would have been to either display no animation (and thus leave the player confused as to 

what is happening on screen) or to arbitrarily restrict actions to the player could not reload or fire 

unless they were standing still.  Thanks to our animation blending system, we are able to 

seamlessly blend the animations for running and reloading or jumping and firing without the 

need to create separate animations for each possible combination of actions.   

 The technology that I personally am most proud of is the real-time shadows.  Not only do 

the shadows make the scene much more realistic, they also aid in the gameplay.  Without 

shadows, the player looks as if he is floating above the floor and it is difficult to tell what is in 

the background versus what is in front of the player.  With shadows, the necessary depth 

information is present and it is easy to tell where objects are with respect to one another.   

The Gameplay 

From a gameplay perspective, our game was mostly well received by play testers.  Most 

players enjoyed the feel of fighting (and beating) the enemy soldiers and using the different 

weapons.  The most common criticism we got was that the game was too hard.  We spent a lot of 



time tweaking the stats of the player, the enemies, and the weapons.  By the end of the quarter, 

we had multiple players finish our game without dying, so we feel that the game’s difficulty 

level is the right level of challenging without frustration. 

Working in a Team 

 For the most part, our team had a unified idea of what we wanted our game to be.  We 

knew we wanted a game that had a realistic tone that would cater to more experienced gamers.  

We wanted to avoid an “arcadey” game that consisted of blindly running and shooting 

everything.  Everyone in our group had a different aspect of the project they were interested in.  I 

was personally most interested in the shaders and visual aspect of the game.  The other group 

members found their interests in animation, engine development, and particle systems.  These 

differing interests came with their advantages and disadvantages.  They offered our group a 

certain independence in working.  It was easy to avoid stepping on each other’s toes when 

everyone was working on a separate thing.  Unfortunately, it also resulted in certain features 

becoming very developed while leaving other areas by the wayside. Since each person had a 

designated area to work in, the other areas were left under developed.   

 In the second quarter, our team decided to rewrite parts our underlying engine.  We were 

under the impression this rewrite would only include a few classes and would be finished within 

one or two weeks.  Unfortunately, this rewrite spiraled out of control and lasted nearly eight 

weeks instead.  While the new engine was undeniably better organized, more efficient, and less 

buggy, the time spent redoing old work was probably not worth these improvements.  It would 

have been better to devote these eight weeks to improving the gameplay and adding new 

mechanics such as different enemies or weapons. 

 



Future Plans 

 Our biggest constraint in this project was time.  We had a large number of ideas that 

never made it into the final game.  The original concept for the game featured multiple enemy 

types and a climatic mech battle with the prison warden.  Unfortunately, these concepts had to be 

scrapped in favor of time.  There was also a much deeper story component to the game as the 

player discovered the true purpose of Sweet Water.  There was going to be an emphasis on 

“visual” story telling in which we use the environment to tell the story rather than cutscenes with 

dialogue.  Unfortunately, without a dedicated artist, these plans were scrapped very early on.  We 

also had plans for one other major graphics technology: screen-space ambient occlusion.  This 

coupled with the shadows would have helped give the spaceship a brooding, dark, and 

foreboding atmosphere.  Sadly, a team of four people coupled with an engine rewrite halfway 

through the project restricted our options.  We decided the best thing to do was to set these ideas 

aside and possibly revisit them at a later date if we continue working on the game beyond the 

classroom. 

Conclusion 

 This project was a huge learning experience for me.  It has truly demystified the game 

development process for me.  I now have a tremendous respect for the amount of work that goes 

into the technologies in games.  That new sense of perspective has allowed me to notice many 

details in games that I would never have noticed before.  I can tell what technologies and new 

innovations each game brings to the table. 

 Beyond game development, the graphics concepts I have learned in this project can be 

applied to many 3d applications.  The most important skill I have been able to exercise is the 



ability to use my technical ability to create something aesthetically pleasing.  This eye for 

creating beauty out of a mess of vector math and matrix multiplication is critical for creating 

quality computer graphics applications.   
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 PhysX — A collision, rigid-body, and soft-body physics simulation library made by 

Nvidia. 

 SDL — Cross-platform multimedia library to support OpenGL apps. 

 Fmodex — Programming toolkit for audio playback. 

 PhysicsFS —Library to access abstract archives. 
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 ATI RenderMonkey — A Windows tool for prototyping GLSL shaders.b 

 Soundsnap — A archive of various royalty-free sound effects 
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