
CSC 476 – Lab 1 due April 9, 2007
A Simple Game

Please note that this lab should be completed in pairs! You may talk to one another about

the lab, but you may not look at someone’s working code other then your partner! I strongly

encourage you to pair with someone who took CSC 471 with me (as they will have a good

code base to work with).

This assignment requires you to develop a game program that implements a simple adventure game
in which a player moves around a 3D scene and collide with objects. In the game the player's view
position motion is controlled by key presses and the mouse to move the player through the scene.
the game scene includes a wire frame grid ground plane. When the game starts the only 3D object
that appears in the scene is the ground plane. But, every few seconds a new 3D mesh automatically
appears on the ground plane at a random position. After an object has entered the game it moves at a
constant velocity to a new position every frame, though objects must avoid colliding with other
objects and they must not move off the grid. The goal of the game is for the player to collide with
all the objects. He or she may do this by moving close to an object. Points are scored by
successfully capturing an object ("hit").

Each game will run for a fixed number of seconds, and then the game is over. During the game the
current value of several variables is displayed (in text within the game window): frame rate, count of
of 3D objects currently in the scene, count of # of objects encountered (i.e. collided with), game
score, and time remaining.

This game uses no complexity management for displaying objects or for determining whether
objects might collide. Objects will be stored in a linked list (or vector), and processing them
(collision checking and drawing) will be done by linear list traversal. Thus, all objects are drawn
even if they are outside the field of view (they will be clipped by the OpenGL rendering pipeline).
You must use display lists to render your objects. Checking for object collisions will be an O(N2)
complexity operation (for N = # of 3D objects). Thus, if the player is slow at picking up objects,
more and more objects will be created and the frame rate will get slower. A slower frame rate makes
motion control for the player more difficult, so poor play is penalized and leads to low scores. But
good play removes objects from the scene and maintains a high frame rate which leads to high
scores. Limit the number of meshes that can enter the game to 10.

• Learning Objectives

o Learn to implement a game data structure that adds and removes 3D objects by storing
them in a linked list or vector

o Learn to implement object updating by traversing the collection of game objects

o Learn to implement object collision checking by using axis aligned bounding boxes
(AABB)
o Learn to implement camera motion control that behaves with constant velocity
independent of rendering rate

o Learn to implement text display in a drawing window by drawing bit mapped font
characters

• Grading and Due Date

You must submit demo your program in lab on April 11th.

• Problem Specifications

Here are the rules of this game and specifications for your implementation of the game.

1. Ground plane

 The 3D scene contains a ground plane that is a wire frame grid in the X-Z plane (i.e., in the
plane defined by the plane equation y = 0). You may modify the grid parameters as you wish,
however, e.g., to make it larger. You may include any other scene elements you’d like (for
example some simple hierarchical models in the scene) – if you do include scene elements you
do not need to compute collision with them, but I encourage you to try.

2. Game objects

 Sitting on the ground plane will be one or more 3D objects. The size, structure, color, and
other attributes of the objects will be determined by the game developer (you). With the
exception that the object must be a mesh file (I recommend one of the smaller ones – bunny,
gargoyle, or Cessna (I will try to simplify some of the other meshes down to 500 faces). These
objects must be flat shaded.

 Each object has a current position, orientation, and velocity.

 When the game starts there is nothing in the scene except the ground plane (no objects). Each
object will be placed one at a time onto the ground plane automatically every P seconds. You
may choose the value for P, or you may handle it as an input value supplied at run time. Each
new object must be initially positioned at a random X and Z coordinate, but with a Y coordinate
such that the bottom of the object sits of the ground plane (Y=0). However, an object may not be
placed off the edge of the grid, and it may not be placed so that it overlaps with another object.

 Every frame each object moves in a constant velocity in its straight ahead direction to a new
position. But, an object may not move off the edge of the grid, and an object may not move so
that it collides with another object. If an object’s bounding box is about to go off the grid, it
must reverse its direction. If an object is about to collide with another object, it should just
freeze and not move for that frame (note: this could lead to deadlock for two objects that are
moving towards each other, but in this game you need not handle breaking such a deadlock).
The game developer (you) may specify that all objects have the same velocity or that they have
random velocities (within a minimum and maximum velocity range), and you may specify how
the initial direction of an object's motion is determined.

 The goal of the game is to collide with each object to make them stop moving. You may
play with other effects when collision has happened but at very least the object must stop moving
and have its color change.

 The game keeps track of the current number of "objects on the ground" and the current
number of "objects collided with".

3. Game Player

 The player has a current position and orientation. The game camera is attached to the
player so the player and camera will always have the same position and orientation used to
control the camera view. Therefore, this game is a "first person" type of game. There is no
geometry of the player that needs to be rendered.

 The player (camera) may move however you determine is best, but the user must be able to
control:

 the look direction yaw and pitch (but not roll).

 forward and back motion (up/down arrow) and side to side strafing (left/right arrow).
The player's direction of forward motion is the same as the current camera view orientation (as
set by the mouse controls).

 The player may not move below the ground plane (y=0), but the player may move to any x or
z position and to any y >= 0.

 The speed of motion (player/camera velocity) is initially set at a default value, but you may
add keys to increase the speed if desired..

 The player's position and view orientation can be reset to the initial values by pressing the
HOME key.

4. Game scoring

 H points for every object hit (removed)

 The game keeps track of the total number of seconds elapsed. When the number of
seconds reaches N, the game is over. You may choose the value for N, or you may design the
game to input that value at run time.

 During the game these same statistics are displayed in the upper left corner of the game
window

• Programming Design and Implementation Requirements

0. For background on this game, download and read the tutorial on Time Based Movement,
http://jerome.jouvie.free.fr/OpenGl/Tutorials/Tutorial26_Advanced.php

1. Write code for drawing the ground plane grid modified to be an appropriate extent and
spacing for the mesh size (You may also make the ground plane a solid plane and texture
mapped if you’d like).

2. 3D object class
You are required to design a C++ class for your 3D object. The class must have a constructor,
destructor, a step (update) function, and a draw function. You may include other functions if
needed.

 An object must have these data members:

 (x,y,z) position, e.g., it's center point

 (x,y,z) direction vector (y direction component must be zero)

 a scalar velocity

 a bounding box: min x,y,z and max x,y,z
Hint: the bounding box coordinates could be relative to the object's position. If so, then the step
function will not have to change the box coordinates every frame.

 The constructor must initialize the position, direction, velocity, and bounding box subject to
the constraints described above.

 The step function receives one parameter, dt, the elapsed time. It must update the position by
converting dt into elapsed time in seconds, then using that time value, the velocity and direction,
update the position. However, it must check two constraints:

1. If the new position would be off the grid, negate the direction vector and recompute the new
position.

2. If the new position would cause the object's bounding box to intersect the bounding of any
other object, do not update the position.

 The draw function should draw the object's geometry using OpenGL functions. You must
use display lists to render your 3d objects. Please see the tutorial at:
http://www.lighthouse3d.com/opengl/displaylists/index.php3?3

3. 3D objects collection

 All objects must be stored in a linked list or stl vector. You may choose how to implement
the linked list, either as simple pointer variables as one of the object's data members (e.g., a
"next" variable), as a separate class, by using the C++ STL (Standard Template Library) linked
list class, or other design of your choice. You may declare the head of the list as a global
variable, or you may choose an alternate design.

 Drawing the entire scene should be done by traversing the objects in the linked list and
invoking each object's draw function.

 Checking for collisions between objects when the step function updates an object's position
should be done by traversing the linked list and comparing the object's bounding box to the
bounding box of every other object (a second list traversal).
Note: this is an O(N2) computation. Later in this course you will learn algorithms to reduce the
complexity of such a comparison.

