
CSC 476 – Program 2 - due April 29th 1 minute after 11:59pm
Set up for a more complex environment for gaming & simple game play

Please note that as with all programming assignments this program should be done
individually! You may talk to one another about the program, but you may not look at
someone’s working code!

This is a somewhat large project, so please get started with as soon as possible.
To start with please create a 3D fractal terrain surface using BinTriTrees. The terrain surface must
use level of detail modeling and display based upon distance from the viewpoint. You will also
need to implement view frustum culling for this assignment. In addition, for the sake of debugging
aids, the game control must include modes for displaying the scene in wireframe mode as well as
filled polygon mode, and there must be a control for switching to sky view mode for observing the
level of detail and VFC effects from a viewpoint high above the terrain surface (e.g., like an airplane
or satellite view). The terrain should be colored in a visually pleasing way (i.e. at least 4 different
materials depending on height as shown in class or at least two different texture maps). Please note
the generating non-uniform terrain with view-frustum culling will be worth 80% of the points for
this program. At the start of the game, you should be able to switch to sky view mode and see that
the terrain is non-uniform.

The rest of this program is comprised of a simple object collection game, similar to program 1. You
have a number of choices of how to implement the game. However, you are required to have a
player (which can either be the camera or a mesh with 3rd person camera views) with can traverse
your terrain (and not intersect it) which looks for power-ups. Your player will start with an initial
amount of energy (which decreases as game play continues), which can be replenished by collecting
power-ups. The player’s view should float above the terrain at a constant height about the current
terrain. Power-ups may be represented by something fairly complex such as another mesh (or you
may create your own shape with a decent number of polygons > 100). They should appear on the
terrain (their alignment with the terrain does not need to be perfect but must be reasonable – please
ask me if you are unclear on this requirement). The power-ups must be randomly generated at the
start of the game (you can also have them re-generate) and there should be a fair number of them.
The power-ups do not need to move. You will collect the power-ups using simple collision
detection with the object (or your player may use a laser with finite range to collect the power-ups).
Please keep track and display the player’s current energy which increases and decreases during the
game depending on time (decreases) or power-ups gathered (increases). Please also implement
view-frustum culling for all power-ups (i.e. compute a bounding sphere and do not draw any power-
ups that are not in the current view frustum). Reasonable traversal of the terrain and interaction with
the power-ups (i.e. collision detection) comprises the last 20% for this programming assignment.
Please note that you may be as creative as you’d like with the game aspects of this program – if you
would prefer to have “good” and “bad” objects dropping from the sky which you need to collect and
avoid, that would be great also. (Your game just must include reasonable player movement across
the terrain and collision detection with target items).

• Problem Specifications

Here are the specifications for the 3D game scene, built on a terrain surface.
1. The terrain model must be implemented with a binTri tree data structure

(preferably using a height map to ease player interaction with the terrain).
1. The algorithm must apply pseudo-random numbers and fractal mathematics to

subdivide a small number of initial triangles into a hierarchy of many
triangles. The subdivision depth of the fractal terrain subdivision is a game
parameter that must be set at game initialization.

2. The dimensions of the terrain must be measured in meters. The terrain should
be at least 1 km by 1 km. The terrain's height will be determined by the fractal
subdivision depth and initial seed values for the terrain. Please do try to
generate reasonable looking terrain which includes at least one mountain.

3. The terrain model must be initialized with a small number of "seed points"
that specify elevation values at initial subdivision vertices so that a specific,
real world terrain surface can be approximated. The number and value of these
seed points are game parameters that must be set at game initialization.

4. Terrain triangles must be stored in the binTri tree data structure. The terrain
surface must be displayed with different levels of detail depending up the
distance from the game player's (camera) viewpoint by selecting the
appropriate level from the binTri tree. We will be doing this in an imperfect way
in order to learn about the concepts but save on implementation time. That is
you do not need to implement a merge operator to reduce the level of detail in
an area where the user has already been. This means that you will see the
benefits of L.O.D. at the beginning of your game, when you are rendering
triangles not in view (i.e. far away enough) as a lower resolution (this must be
able to be checked with a sky view mode). As you move through-out your
world though and increase the resolution of the local terrain, you will notice that
your fps will decrease – this is acceptable for this program (if your final project
uses a terrain model you should invest the time to do true L.O.D. with a split
and merge priority queue). In addition, please note that using the distance to the
camera is not the best metric to use for computing L.O.D., (we will be
discussing other methods in lecture), however, it is a fine metric for this
programming assignment in order to learn about the benefits of L.O.D.

5. Implement view frustum culling (vfc) to remove any binTrinodes and power-
ups that are not in the scene. Include a toggle to turn vfc on and off. Please
display the frames per second in both modes to show the gain for using vfc.

Please see the lab hand-out for this week for an initial specification of how to get
started on the BinTriTree. In addition, a number of useful links have been included
on the class webpage for fractal terrain generation, BinTriTrees and view frustum
culling.

