CSC 570R: 3D Data acquisition and Enhancement
Syllabus

Professor: Zoë Wood
Office: Building 14, room 209
Phone: 756-5540
Office hours: T/Th 3-4pm
Email: zwood@csc.calpoly.edu
Schedule: T-Th 4:10-6pm
Location: Building 2, room 203

General: This course will expose you to the latest research in computer graphics. In particular the course is focused on 3D models (acquisition, representation, enhancement, etc.) **This course requires substantial math and programming skills.** In particular it will be helpful if students are familiar with linear algebra and writing 3D computer graphics programs in OpenGL.

Assignments:
- One in class presentation about a current research paper from an instructor provided list of papers
- One larger final programming project of the student’s choice approved by the instructor.
- 1-2 intermediate programming assignments
- Participation in seminar discussions!
- Weekly quizzes or homework assignments related to the lecture material and papers.

Text: We will be primarily reading research and survey papers published in computer graphics related journals and conferences. See next page for the list of papers.
The following is a tentative schedule for seminar topics and assignments

<table>
<thead>
<tr>
<th>Week</th>
<th>Date</th>
<th>Topic</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1/3/06</td>
<td>Orientation</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1/5/06</td>
<td>Introduction to representations</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>1/10/06</td>
<td>Surface reconstruction</td>
<td>Quiz 1</td>
</tr>
<tr>
<td></td>
<td>1/12/06</td>
<td>Model acquisition</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>1/17/06</td>
<td>Model acquisition</td>
<td>Quiz2</td>
</tr>
<tr>
<td></td>
<td>1/20/06</td>
<td>Linear algebra review</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>1/24/06</td>
<td>Least squares</td>
<td>Program 1 (least squares)</td>
</tr>
<tr>
<td></td>
<td>1/27/06</td>
<td>Enhancement:simplification</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>1/31/06</td>
<td>Enhancement:simplification</td>
<td>Quiz 3</td>
</tr>
<tr>
<td></td>
<td>2/2/06</td>
<td>Representation: IBR</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>2/7/06</td>
<td>Representation: IBR</td>
<td>Quiz4</td>
</tr>
<tr>
<td></td>
<td>2/9/06</td>
<td>Parameterization</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>2/14/06</td>
<td>Parameterization</td>
<td>Program 2 (Parameterization)</td>
</tr>
<tr>
<td></td>
<td>2/16/06</td>
<td>Parameterization</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>2/21/06</td>
<td>Representation: smooth</td>
<td>Final project check-in demo</td>
</tr>
<tr>
<td></td>
<td>2/23/06</td>
<td>Representation: normal</td>
<td>Quiz 5</td>
</tr>
<tr>
<td>9</td>
<td>2/28/06</td>
<td>Representation: GIM</td>
<td>Final project check-in demo</td>
</tr>
<tr>
<td></td>
<td>3/2/06</td>
<td>Representation: normal+geom</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>3/7/06</td>
<td>Recent trends:lighting</td>
<td>Final project check-in demo</td>
</tr>
<tr>
<td></td>
<td>3/9/06</td>
<td>James Davis – UCSC Invited speaker</td>
<td></td>
</tr>
<tr>
<td>Final</td>
<td>3/14/06</td>
<td>7:10-10pm (subject to change)</td>
<td>Final Projects demo</td>
</tr>
</tbody>
</table>

The following are a tentative list of reference papers:

Implicit Surfaces by Jules Bloomenthal p 1-18 *(surface representation intro.)*

Marching Cubes: A High Resolution 3D Surface Construction Algorithm,
William E. Lorenzen and Harvey E. Cline; SIGGRAPH ’87 *(representation volume)*

Surface reconstruction from Unorganized Points, Hugues Hoppe, PhD Thesis, Ch. 1 *(surface reconstruction intro.)*

Recent progress in coded structured light as a technique to solve the correspondence problem: a survey Batlle et al, Pattern Recognition 1998 *(acquisition of range images)*

A Volumetric Method for Building Complex Models from Range Images, Curless & Levoy; Siggraph 1996 *(acquisition)*

Real-Time 3D Model Acquisition, Szymon Rusinkiewicz, Olaf Hall-Holt and Marc Levoy, , SIGGRAPH 2002 *(acquisition)*
Surface reconstruction from Unorganized Points, Hugues Hoppe, PhD Thesis, Ch. 2
(Representation points/surface)
Progressive Meshes, Hugues Hoppe, Siggraph 1996
(surface representation/enhancement:simplification)

Surface Simplification using Quadric Error Metrics, M. Garland and P. Heckbert,
SIGGRAPH 1997 (enhancement:simplification)
Dual Contouring of Hermite Data, Ju, Losasso, Schaefer & Warren; SIGGRAPH 2002
(volume representation/enhancement:simplification)

Modeling and Rendering Architecture from Photographs: A Hybrid Geometry- and
Image-Based Approach, Debevec. P., Taylor, Malik, Siggraph 1996 (acquisition &
representation:IBR)
(Also sketches from sig 05 + new IBR paper? Modeling Hair from multiple perspectives sig 05)

Parameterization and smooth approximation of surface triangulations, Michael Floater,
Computer Aided Geometric Design 1997 (enhancement:tool)

Fitting Smooth Surfaces to Dense Polygon Meshes, Krishnamurthy and Levoy,
SIGGRAPH 1996 (representation/enhanacement)
Appearance-Preserving Simplification, Cohen, Jonathan, Marc Olano, and Dinesh
Manocha.. SIGGRAPH 98 (representation/enhanacement)
Texture mapping progressive meshes, P. Sander, J. Snyder, S. Gortler, H. Hoppe.
ACM SIGGRAPH 2001(representation/enhanacement)
Geometry images, X. Gu, S. Gortler, H. Hoppe, SIGGRAPH 2002
(representation/enhanacement)

Efficiently Combining Positions and Normals for Precise 3D eometry, D. Nehab, S.
Rusinkiewicz, J. davis, R. ramamoorthi, Siggraph 06 (representation/enhanacement)

Precomputed Radiance Transfer for Real-Time Rendering in Dynamic, Low-Frequency
Lighting Environments, Peter-Pike Sloan, Jan Kautz, and John Snyder, SIGGRAPH
2002 (recent advances: lighting)
Precomputed Local Radiance Transfer for Real-Time Lighting Design
Anders Wang Kristensen, Tomas Akenine-Möller, and Henrik Wann Jensen, SIGGRAPH
2005 (recent advances: lighting)

Others?
A New Voronoi-Based Surface Reconstruction Algorithm, Amenta, Bern & Karnvysselis;
Siggraph 1998 (representation points/surface)